Yangtze River Contributed Detrital Materials to Jianghan Basin during Early Pleistocene: Constraints from Detrital Zircon U-Pb Ages
-
摘要: 江汉盆地西部和东部分布的宜昌和阳逻砾石层是否和长江的演化发育有关,目前一直存有争议.基于此,我们对宜昌和阳逻砾石层开展碎屑锆石U-Pb年龄分析,同时对宜昌砾石层近源的沮漳河和清江,以及阳逻砾石层周边的汉江、澴水、倒水和举水开展碎屑锆石U-Pb年龄测试,共取得654个新锆石U-Pb年龄数据.结合区域内砾石层的堆积时代和已报道的长江上游碎屑锆石U-Pb年龄结果,系统判定宜昌和阳逻砾石层的物源区.结果表明,长江至少在1.2~0.7 Ma和1.3 Ma成为宜昌和阳逻砾石层的砂层物质供给河流.通过和长江上游、下游同期砾石层对比,以及河流物源示踪结果,说明串联上游、中游和下游的长江在早更新世稳定出现,是对青藏高原隆升和东亚夏季风增强的响应.因而,东亚地区早更新世持续的构造过程和环境变化共同作用,对孕育长度超过6 000 km的大陆尺度的长江的稳定出现至关重要.Abstract: It remains controversial whether the Yichang and Yangluo gravel beds in the west and east of the Jianghan basin are related to the evolution and development of the Yangtze River. To address the problem, it carried out the detrital zircon U-Pb age analysis from the Yichang and Yangluo gravel layers. The U-Pb age analysis was also conducted on the Juzhang and Qingjiang rivers close to the Yichang gravel layers. It also analyzes detrital zircon U-Pb ages in Huanshui, Daoshui and Jushui rivers surrounding the Yangluo gravel bed. A total of 654 new zircon U-Pb ages have been reported. It collected the published detrital zircon U-Pb ages from the upper reach of the Yangtze River in the region, combined with the sedimentary age of the gravel beds, and systematically identified the material sources of the Yichang and Yangluo gravel beds. The results show that the Yangtze River becomes the sand material supply river of Yichang and Yangluo gravel beds in 1.2-0.7 Ma and 1.3 Ma, respectively. The comparison with the gravel beds in the upper and lower reaches of the Yangtze River and the provenance tracing results indicate that the Yangtze River appeared in the Early Pleistocene in response to the uplift of the Tibetan plateau and the intensification of the East Asian summer monsoon. Therefore, the combination of continuous tectonic processes and environmental changes in East Asia during the Early Pleistocene was crucial to the stable emergence of the Yangtze River with a continent-scale length of more than 6 000 km.
-
Key words:
- Yangtze River /
- zircon /
- gravel layer /
- provenance tracing /
- U-Pb age /
- Quaternary geology /
- environmental geology
-
图 2 江汉盆地冲积扇分布位置图(a.据陈立德和邵长生, 2016);宜昌和阳逻砾石层柱状图与江汉盆地和长江下游地区对比,常德(赵举兴等, 2014),洞庭盆地(柏道远等, 2010),江汉盆地西部(Zhang et al., 2008),江汉盆地东部(顾延生等, 2018),九江长江河流阶地(蒋复初等, 1997),长江三角洲(Yang et al., 2006; 黎兵等, 2011)(b)
Fig. 2. Location map of alluvial fans in Jianghan basin (a.modified from Chen and Shao, 2016); comparison of Yichang and Yangluo gravel bed histogram with Jianghan basin and lower Yangtze River area, Changde (Zhao et al., 2014), Dongting basin (Bai et al., 2010), western Jianghan basin (Zhang et al., 2008), eastern Jianghan basin (Gu et al., 2018), the terraces of the Yangtze River in Jiujiang (Jiang et al., 1997), Yangtze River delta (Yang et al., 2006; Li et al., 2011) (b)
表 1 样品采集信息
Table 1. Collected sampling point information
样品性质 采样点 经度(E) 纬度(N) 砂层(Y1) 宜昌 111°27'39" 30°33'10" 砂层(Y2) 宜昌 111°26'04" 30°31'50" 清江河漫滩 宜都 111°22'27" 30°24'07" 沮漳河河漫滩 当阳 111°45′40″ 30°51′44″ 汉江河漫滩 襄阳 111°58'18" 32°05'43" 砂层(Y3) 阳逻 114°33′10″ 30°41′35″ 澴水河漫滩 孝昌 113°57′47″ 31°14′58″ 倒水河漫滩 李集 114°40′08″ 30°52′59″ 举水河漫滩 新洲 114°45′42″ 30°55′47″ -
An, Z., Tunghseng, L., Yanchou, L., et al., 1990. The Long-Term Paleomonsoon Variation Recorded by the Loess-Paleosol Sequence in Central China. Quaternary International, 7: 91-95. https://doi.org/10.1016/1040-6182(90)90042-3 Bai, D. Y., Li, C. A., Chen, D. P., et al., 2010. Heavy Minerals Characteristics of Sediments in Lianghucun Borehole and Their Responses to the Quaternary Tectonic Movement and Environmental Evolutions of the Dongting Basin. Geological Review, 56(2): 246-260 (in Chinese with English abstract). Blythe, A. E., Burbank, D. W., Carter, A., 2007. Plio-Quaternary Exhumation History of the Central Nepalese Himalaya: 1. Apatite and Zircon Fission Track and Apatite [U-Th]/He Analyses. Tectonics, 26(3): 1-16. https://doi.org/10.1029/2006TC001990 Boulay, S., Colin, C., Trentesaux, A., et al., 2007. Sedimentary Responses to the Pleistocene Climatic Variations Recorded in the South China Sea. Quaternary Research, 68(1): 162-172. https://doi.org/10.1016/j.yqres.2007.03.004 Cai, M., Xu, Z., Clift, P. D., et al., 2020. Long-Term History of Sediment Inputs to the Eastern Arabian Sea and Its Implications for the Evolution of the Indian Summer Monsoon since 3.7 Ma. Geological Magazine, 157(6): 908-919. https://doi.org/10.1017/S0016756818000857 Cao, K., Bernet, M., Wang, G. C., et al., 2013. Focused Pliocene–Quaternary Exhumation of the Eastern Pamir Domes, Western China. Earth and Planetary Science Letters, 363: 16-26. https://doi.org/10.1016/j.epsl.2012.12.023 Chen, H., Xu, Z., Clift, P. D., et al., 2019. Orbital-Scale Evolution of the Indian Summer Monsoon since 1.2 Ma: Evidence from Clay Mineral Records at IODP Expedition 355 Site U1456 in the Eastern Arabian Sea. Journal of Asian Earth Sciences, 174: 11-22. https://doi.org/10.1016/j.jseaes.2018.10.012 Chen, J. J., Xu, X. B., Liang, C. H., et al., 2021. Provenance Analysis and Tectonic Implications of Middle Devonian Quartzose Conglomerate and Sandstone in Southeastern Hunan Province, South China. Earth Science, 46(10): 3421-3434 (in Chinese with English abstract). Chen, L. D., Shao, C. S., 2016. Quaternary Division and Correlation of Jianghan-Dongting Basin. China University of Geosciences Press, Wuhan, 1-92 (in Chinese with English abstract). Deng, B., Chew, D., Mark, C., et al., 2021. Late Cenozoic Drainage Reorganization of the Paleo-Yangtze River Constrained by Multi-Proxy Provenance Analysis of the Paleo-Lake Xigeda. GSA Bulletin, 133(1-2): 199-211. https://doi.org/10.1130/B35579.1 Deng, J. R., Xu, R. H., Qi, G. F., et al., 1987. Analysis of Gravel Formation in Yangluo-Longwang Mountain. Journal of Hubei University, 2: 81-87 (in Chinese with English abstract). Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2005. Stepwise Expansion of Desert Environment across Northern China in the Past 3.5 Ma and Implications for Monsoon Evolution. Earth and Planetary Science Letters, 237(1-2): 45-55. https://doi.org/10.1016/j.epsl.2005.06.036 Gehrels, G., 2011. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. Tectonics of Sedimentary Basins: Recent Advances, 45-62. https://doi.org/10.1002/9781444347166.ch2 Godard, V., Pik, R., Lavé, J., et al., 2009. Late Cenozoic Evolution of the Central Longmen Shan, Eastern Tibet: Insight from (U-Th)/He Thermochronometry. Tectonics, 28(5): 1-17. https://doi.org/10.1029/2008TC002407 Gu, Y. S., Guan, S., Ma. T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3899-4000 (in Chinese with English abstract). Guo, Z., Biscaye, P., Wei, L., et al., 2000. Summer Monsoon Variations over the Last 1.2 Ma from the Weathering of Loess-Soil Sequences in China. Geophysical Research Letters, 27(12): 1751-1754. https://doi.org/10.1029/1999gl008419 Han, P. Y., Guo, J. L., Chen, K., et al., 2017. Widespread Neoarchean (~2.7-2.6 Ga) Magmatism of the Yangtze Craton, South China, as Revealed by Modern River Detrital Zircons. Gondwana Research, 42: 1-12. https://doi.org/10.1016/j.gr.2016.09.006 He, M., Zheng, H., Clift, P. D., 2013. Zircon U-Pb Geochronology and Hf Isotope Data from the Yangtze River Sands: Implications for Major Magmatic Events and Crustal Evolution in Central China. Chemical Geology, 360: 186-203. https://doi.org/10.1016/j.chemgeo.2013.10.020 Hong, H., Gu, Y., Yin K., et al., 2010. Red Soils with White Net-Like Veins and Their Climate Significance in South China. Geoderma, 160(2): 197-207. https://doi.org/10.1016/j.geoderma.2010.09.019 Hu, Z., Pan, B., Guo, L., et al., 2016. Rapid Fluvial Incision and Headward Erosion by the Yellow River along the Jinshaan Gorge during the Past 1.2 Ma as a Result of Tectonic Extension. Quaternary Science Reviews, 133: 1-14. https://doi.org/10.1016/j.quascirev.2015.12.003 Hubei Bureau of Geology and Mineral Resources, 1990. Regional Geology of Hubei Province. Geological Publishing House, Beijing, 1-705 (in Chinese with English abstract). Jiang, F. C., Wu, X. H., Xiao, H. G., et al., 1997. Age of the Vermiculated Red Soil in Jiujiang Area, Central China. Chinese Journal of Geomechanics, 3(4): 27-32 (in Chinese with English abstract). Kang, C., Li, C. A., Wei, C., et al., 2021. Heavy Mineral Assemblage Variation in Late Cenozoic Sediments from the Middle Yangtze River Basin: Insights into Basin Sediment Provenance and Evolution of the Three Gorges Valley. Minerals, 11(10): 1-13. https://doi.org/10.3390/min11101056 Kang, C. G., Li, C. A., Wang, J. T., et al., 2009. Heavy Minerals Characteristics of Sediments in Jianghan Plain and Its Indication to the Forming of the Three Gorges. Earth Science, (3): 419-427 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.03.006 Kong, P., Granger, D. E., Wu, F. Y., et al., 2009. Cosmogenic Nuclide Burial Ages and Provenance of the Xigeda Paleo-Lake: Implications for Evolution of the Middle Yangtze River. Earth and Planetary Science Letters, 278(1-2): 131-141. https://doi.org/10.1016/j.epsl.2008.12.003 Kukla, G., Cílek, V., 1996. Plio-Pleistocene Megacycles: Record of Climate and Tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1-2), 171-194. https://doi.org/10.1016/0031-0182(95)00040-2 Li, B., Sun, D., Xu, W., et al., 2017. Paleomagnetic Chronology and Paleoenvironmental Records from Drill Cores from the Hetao Basin and Their Implications for the Formation of the Hobq Desert and the Yellow River. Quaternary Science Reviews, 156: 69-89. Li, B., Wei, Z. X., Li, X., et al., 2011. Records from Quaternary Sediment and Paleo-Environment in the Yangtze River Delta. Quaternary Sciences, 31(2): 316-328 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2011.02.14 Li, J., Fang, X. M., Van der Voo, R., et al., 1997. Magnetostratigraphic Dating of River Terraces: Rapid and Intermittent Incision by the Yellow River of the Northeastern Margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research: Solid Earth, 102(B5): 10121-10132. https://doi.org/10.1029/97JB00275 Li, J., Fang, X., Song, C., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002 Li, J., Xie, S., Kuang, M., 2001. Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation. Geomorphology, 41(2-3): 125-135. https://doi.org/10.1016/S0169-555X(01)00110-6 Li, Z., Sun, D., Chen, F., et al., 2014. Chronology and Paleoenvironmental Records of a Drill Core in the Central Tengger Desert of China. Quaternary Science Reviews, 85: 85-98. https://doi.org/10.1016/j.quascirev.2013.12.003 Liang, Z. W., Gao, S., Hawkesworth, C. J., et al., 2018. Step-Like Growth of the Continental Crust in South China: Evidence from Detrital Zircons in Yangtze River Sediments. Lithos, 320: 155-171. https://doi.org/10.1016/j.lithos.2018.09.011 Lin, X., Chen, J. X., Wu, Z. H., et al., 2021a. In-Situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implication for Provenance Tracing Studies in the Yangtze River. Acta Sedimentologica Sinica (in Chinese with English abstract). Lin, X., Liu, H. J., Wu, Z. H., et al., 2021b. Provenance Study on Geochemical Elements of Detrital K-Feldspar in Quaternary Gravel Layer in Yichang and Its Geological Significance. Journal of Geomechanics, 27(6): 1024-1034 (in Chinese with English abstract). Lin, X., Liu, J., Wu, Z. H., et al., 2021c. Provenance of the Loess in Shandong Province (Eastern China) during the Last Ice Age: Constraints from the U-Pb Age of Detrital Zircons. Earth Science, 46(9): 3230-3244 (in Chinese with English abstract). Lin, X., Liu, J., 2019. A Review of Mountain-Basin Coupling of Jianghan and Dongting Basins with Their Surrounding Mountains. Seismology and Geology, 41(2): 499-520 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2019.02.015 Lin, X., Liu, J., Wu, Z. H., et al., 2020. Detrital Zircon U-Pb Ages and K-Feldspar Main and Trace Elements Provenance Studying from Fluvial to Marine Sediments in Northern China. Acta Geologica Sinica, 94(10): 3024-3035 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.10.016 Liu, C., Deng, C., Liu, Q., et al., 2010. Mineral Magnetism to Probe into the Nature of Palaeomagnetic Signals of Subtropical Red Soil Sequences in Southern China. Geophysical Journal International, 181(3): 1395-1410. https://doi.org/10.1111/j.1365-246X.2010.04592.x Liu, C., Xu, X., Yuan, B., et al., 2008. Magnetostratigraphy of the Qiliting Section (SE China) and Its Implication for Geochronology of the Red Soil Sequences in Southern China. Geophysical Journal International, 174(1): 107-117. https://doi.org/10.1111/j.1365-246X.2008.03814.x Liu, J., Zhang, J. Y., Ge, Y. K., et al., 2018. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes. Science Bulletin, 63(30): 3070-3088 (in Chinese). Liu, W., Liu, Z., Sun, J., et al., 2020. Onset of Permanent Taklimakan Desert Linked to the Mid-Pleistocene Transition. Geology, 48(8): 782-786. https://doi.org/10.1130/G47406.1 Liu, Z., Trentesaux, A., Clemens, S. C., et al., 2003. Clay Mineral Assemblages in the Northern South China Sea: Implications for East Asian Monsoon Evolution over the Past 2 Million Years. Marine Geology, 201(1-3): 133-146. https://doi.org/10.1016/j.quascirev.2016.11.023 Mei, H., Hu, D. H., Chen, F. M., et al., 2011. Study on the Statistical Analysis of Gravels at Yanglo in Wuhan City. Earth and Environment, 39(1): 42-47 (in Chinese with English abstract). Mei, H., Li, C. A., Chen, F. M., et al., 2009a. ESR Stratigraphic Chronology Study of the Gravel Layer in Yanglo Town, Wuhan City. Earth and Environment, 37(1): 56-61 (in Chinese with English abstract). Mei, H., Li, C. A., Yang, Y., et al., 2009b. Sedimentary Environment of Gravel Bed in Yanglo Town in the Middle Reaches of Yangtze River. Quaternary Sciences, 29(2): 370-379 (in Chinese with English abstract). Pan, B., Hu, Z., Wang, J., et al., 2012. The Approximate Age of the Planation Surface and the Incision of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 356: 54-61. https://doi.org/10.1016/j.palaeo.2010.04.011 Pan, B., Su, H., Hu, Z., et al., 2009. Evaluating the Role of Climate and Tectonics during Non-Steady Incision of the Yellow River: Evidence from a 1.24 Ma Terrace Record near Lanzhou, China. Quaternary Science Reviews, 28(27-28): 3281-3290. https://doi.org/10.1016/j.quascirev.2009.09.003 Qi, G. F., X, R. H., Deng, J. R., 1987. The Discovery and Significance of Silicified Woods in Angiospermous Bischofia javanica BL at Southern Foot of Dabie Mountain in Hubei. Liaoning Geology, 3: 238-242 (in Chinese with English abstract). Replumaz, A., San José, M., Margirier, A., et al., 2020. Tectonic Control on Rapid Late Miocene-Quaternary Incision of the Mekong River Knickzone, Southeast Tibetan Plateau. Tectonics, 39(2): e2019TC005782. https://doi.org/10.1029/2019TC005782 Salcher, B. C., Wagreich, M., 2010. Climate and Tectonic Controls on Pleistocene Sequence Development and River Evolution in the Southern Vienna Basin (Austria). Quaternary International, 222(1-2): 154-167. https://doi.org/10.1016/j.quaint.2009.04.007 Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 Sun, J., Liu, T., 2000. Stratigraphic Evidence for the Uplift of the Tibetan Plateau between ~1.1 and ~0.9 Myr Ago. Quaternary Research, 54(3): 309-320. https://doi.org/10.1006/qres.2000.2170 Tan, X. B., Xu, X. W., Lee, Y. H., et al. 2010. Apatite Fission Track Evidence for Rapid Uplift of the Gongga Mountain and Discussion of Its Mechanism. Chinese Journal of Geophysics, 53(8): 1859-1867 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.08.011 Tian, W. X., Mao, X. W., He, R. L., et al., 2011. Progresses in Quaternary System of Wuhan Area in 1∶50 000 Regional Geological Survey. South China Geology and Mineral Resources, 2011(4): 286-291 (in Chinese with English abstract). Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021 Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 Wang, F., Sun, D., Chen, F., et al., 2015. Formation and Evolution of the Badain Jaran Desert, North China, as Revealed by a Drill Core from the Desert Centre and by Geological Survey. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 139-158. https://doi.org/10.1016/j.palaeo.2015.03.011 Wang, J., Li, C. A., Yang, Y., et al., 2010. Detrital Zircon Geochronology and Provenance of Core Sediments in Zhoulao Town, Jianghan Plain, China. Journal of Earth Science, 21(3): 257-271. https://doi.org/10.1007/s12583-010-0090-4 Wang, J. T., Pei, L. Z., Zhang, H. X., 2021. Morphology of Gravels from the Yangluo Formation in the Southern Piedment of Dabie Mountains. Geology in China, 48(1): 139-148 (in Chinese with English abstract). Wang, P., Zheng, H., Chen, L., et al., 2014. Exhumation of the Huangling Anticline in the Three Gorges Region: Cenozoic Sedimentary Record from the Western Jianghan Basin, China. Basin Research, 26(4): 505-522. https://doi.org/10.1111/bre.12047 Wang, P., Zheng, H., Wang, Y., et al., 2021a. Sedimentology, Geochronology, and Provenance of the Late Cenozoic "Yangtze Gravel": Implications for Lower Yangtze River Reorganization and Tectonic Evolution in Southeast China. GSA Bulletin, 15(1): 1-25. https://doi.org/10.1130/B35851.1 Wang, Y., Liu, C., Zheng, D., et al., 2021b. Multistage Exhumation in the Catchment of the Anninghe River in the SE Tibetan Plateau: Insights from Both Detrital Thermochronology and Topographic Analysis. Geophysical Research Letters, 48: e2021GL092587. https://doi.org/10.1029/2021GL092587 Wei, C., Voinchet, P., Zhang, Y., et al., 2020. Chronology and Provenance of the Yichang Gravel Layer Deposits in the Jianghan Basin, Middle Yangtze River Valley, China: Implications for the Timing of Channelization of the Three Gorges Valley. Quaternary International, 550: 39-54. https://doi.org/10.1016/j.quaint.2020.03.020 Wiedenbeck, M. A. P. C., Alle, P., Corfu, F. Y., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x Wu, Y., Zheng, Y., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/BF03184122 Xiang, F., Zhu, L., Wang, C., et al., 2007. Quaternary Sediment in the Yichang Area: Implications for the Formation of the Three Gorges of the Yangtze River. Geomorphology, 85(3-4): 249-258. https://doi.org/10.1016/j.geomorph.2006.03.027 Xiao, J., An, Z., 1999. Three Large Shifts in East Asian Monsoon Circulation Indicated by Loess–Paleosol Sequences in China and Late Cenozoic Deposits in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(3): 179-189. https://doi.org/10.1016/S0031-0182(99)00110-8 Xu, G., Kamp, P. J., 2000. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8): 19231-19251. https://doi.org/10.1029/2000JB900159 Xu, R. H., 1988. A Study of Neogene-Early Pleistocene Epoch Ancient Environment at the Eastern Edge of Jianghan Basin. Regional Study and Exploitation, (3): 52-54 (in Chinese with English abstract). Yang, C., Shen, C., Zattin, M., et al., 2019. Provenances of Cenozoic Sediments in the Jianghan Basin and Implications for the Formation of the Three Gorges. International Geology Review, 1-20. https://doi: 10.1080/00206814.2019.1576066 Yang, C., Shen, C., Zattin, M., et al., 2021. Formation of the Yangtze Three Gorges: Insights from Detrital Apatite Fission-Track Dating of Sediments from the Jianghan Basin. Terra Nova, 33(5): 511-520. https://doi.org/10.1111/ter.12543 Yang, L. H., Zheng, X. M., Ye, W., 2017. Sedimentary Environment of Vermicular Red Clay in South China. Journal of Mountain Science, 14(3): 513-526. https://doi.org/10.1007/s11629-016-3973-8 Yang, R., Herman, F., Fellin, M. G., et al., 2018. Exhumation and Topographic Evolution of the Namche Barwa Syntaxis, Eastern Himalaya. Tectonophysics, 722: 43-52. https://doi.org/10.1016/j.tecto.2017.10.026 Yang, S., Li, C., Yokoyama, K., 2006. Elemental Compositions and Monazite Age Patterns of Core Sediments in the Changjiang Delta: Implications for Sediment Provenance and Development History of the Changjiang River. Earth and Planetary Science Letters, 245(3-4): 762-776. https://doi.org/10.1016/j.epsl.2006.03.042 Yang, S. Y., Cai, J. G., Li, C. X., et al., 2001. New Discussion about the Run-through Time of the Yellow River. Marine Geology & Quaternary Geology, 21(2): 15-20 (in Chinese with English abstract). Yao, Z., Shi, X., Qiao, S., et al., 2017. Persistent Effects of the Yellow River on the Chinese Marginal Seas Began at Least ~880 ka Ago. Scientific Reports, 7(1): 1-11. https://doi.org/10.1038/s41598-017-03140-x Yuan, S. Y., Wu, G. X., 2014. Trace Element Variations in the Jianghan Basin: Response to the Water System Evolution of the Upper Yangtze River during the Early Pleistocene. In Advanced Materials Research, 864: 1025-1028. https://doi.org/10.4028/www.scientific.net/AMR.864-867.1025 Yue, W., Liu, J. T., Zhang, D., et al., 2016. Magnetite with Anomalously High Cr2O3 as a Fingerprint to Trace Upper Yangtze Sediments to the Sea. Geomorphology, 268: 14-20. https://doi.org/10.1016/j.geomorph.2016.05.032 Zeng, L., Yi, S., Zhang, W., et al., 2020. Provenance of Loess Deposits and Stepwise Expansion of the Desert Environment in NE China since ~1.2 Ma: Evidence from Nd-Sr Isotopic Composition and Grain-Size Record. Global and Planetary Change, 185: 103087. https://doi.org/10.1016/j.gloplacha.2019.103087 Zhang, Y., 2017. Application of Detrital Zircon in Provenance Research and Water System Evolution: A Case Study of Quaternary Deposits in the Changjiang-Zigui Section (Dissertation). Chengdu University of Technology, Chengdu, 1-52 (in Chinese with English abstract). Zhang, Y., Li, C. A., Wang, Q., et al., 2008. Magnetism Parameters Characteristics of Drilling Deposits in Jianghan Plain and Indication for Forming of the Yangtze River Three Gorges. Chinese Science Bulletin, 53(4): 584-590. https://doi.org/10.1007/s11434-008-0111-1 Zhang, Y. F., Li, C. A., Zhou, C., et al., 2014. Magnetism and Provenance Analysis of High Position Gravel Layer in the Middle Reaches of Yangtze River. Journal of Jilin University: (Earth Science Edition), (5): 1669-1677 (in Chinese with English abstract). Zhang, Z., Daly, J. S., Tyrrell, S., et al., 2021. Formation of the Three Gorges (Yangtze River) no Earlier Than 10 Ma. Earth-Science Reviews, 103601. https://doi.org/10.1016/j.earscirev.2021.103601 Zhao, J. X., Li, C. A., Xu, Y. S., 2014. Sedimentary Characteristics and Sedimentary Environment of the Gravel Bed within Paleo-Yuanjiang River from Dongting Basin. Geological Science and Technology Information, 33(1): 85-89 (in Chinese with English abstract). Zhao, X., Zhang, H., Tao, Y., et al. 2021. Pliocene to Early Pleistocene Drainage Reorganization in Eastern Tibet Inferred from Detrital Zircons. Geophysical Research Letters, 48: e2021GL094563. https://doi.org/10.1029/2021GL094563 Zheng, H., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110: 7556-7561. https://doi: 10.1073/pnas.1216241110 Zhou, S., Wang, X., Wang, J., et al., 2006. A Preliminary Study on Timing of the Oldest Pleistocene Glaciation in Qinghai-Tibetan Plateau. Quaternary International, 154: 44-51. https://doi.org/10.1016/j.quaint.2006.02.002 Zhuo, H., Wang, Y., Shi, H., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. https://doi.org/10.1016/j.quascirev.2015.10.012 柏道远, 李长安, 陈渡平, 等, 2010. 洞庭盆地两护村孔重矿物特征及其对第四纪构造活动与环境演变的响应. 地质论评, 56(2): 246-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002012.htm 陈家驹, 徐先兵, 梁承华, 等, 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义. 地球科学, 46(10): 3421-3434. doi: 10.3799/dqkx.2021.022 陈立德, 邵长生, 2016. 江汉‒洞庭盆地第四系划分与对比. 武汉: 中国地质大学出版社, 1-92. 邓健如, 徐瑞瑚, 齐国凡, 等, 1987. 新洲阳逻‒黄州龙王山砾石层的砾组分析. 湖北大学学报(自然科学版), 2: 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK198702015.htm 顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324 湖北省地质矿产局, 1990. 湖北省区域地质志. 北京: 地质出版社, 1-705. 蒋复初, 吴锡浩, 肖华国, 等, 1997. 九江地区网纹红土的时代. 地质力学学报, 3(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX704.003.htm 康春国, 李长安, 王节涛, 等, 2009. 江汉平原沉积物重矿物特征及其对三峡贯通的指示. 地球科学, (3): 419-427. http://www.earth-science.net/article/id/1845 黎兵, 魏子新, 李晓, 等, 2011. 长江三角洲第四纪沉积记录与古环境响应. 第四纪研究, 31(2): 316-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201102013.htm 林旭, 陈济鑫, 吴中海, 等, 2021a. 现代河流碎屑磷灰石原位地球化学分析——对长江物源示踪研究的启示. 沉积学报. 林旭, 刘海金, 吴中海, 等, 2021b. 宜昌第四纪砾石层钾长石主、微量元素物源研究及其地质意义. 地质力学学报, 27(6): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202106011.htm 林旭, 刘静, 吴中海, 等, 2021c. 末次冰期山东黄土物源研究: 来自碎屑锆石U-Pb年龄的约束. 地球科学, 46(9): 3230-3244. doi: 10.3799/dqkx.2020.334 林旭, 刘静, 2019. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展. 地震地质, 41(2): 499-520. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201902015.htm 林旭, 刘静, 吴中海, 等, 2020. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010016.htm 刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造‒气候‒地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm 梅惠, 胡道华, 陈方明, 等, 2011. 武汉阳逻砾石层砾石统计分析研究. 地球与环境, 39(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201101008.htm 梅惠, 李长安, 陈方明, 等, 2009a. 武汉阳逻砾石层ESR地层年代学研究. 地球与环境, 37(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901007.htm 梅惠, 李长安, 杨勇, 等, 2009b. 长江中游阳逻砾石层沉积环境分析. 第四纪研究, 29(2): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902029.htm 齐国凡, 徐瑞瑚, 邓健如, 1987. 大别山南麓秋枫等被子植物硅化木的发现. 辽宁地质, 3: 238-242. https://www.cnki.com.cn/Article/CJFDTOTAL-LOAD198703004.htm 谭锡斌, 徐锡伟, 李元希, 等, 2010. 贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论. 地球物理学报, 53(8): 1859-1867. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201008012.htm 田望学, 毛新武, 何仁亮, 等, 2011. 武汉地区1: 5万区调第四系研究进展. 华南地质与矿产, (4): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201104005.htm 王节涛, 裴来政, 张宏鑫, 2021. 大别山南麓阳逻组砾石层砾石形貌学研究. 中国地质, 48(1): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101011.htm 徐瑞瑚, 1988. 江汉盆地东缘晚第三纪‒早更新世的古环境. 地域研究与开发, (3): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DYYY198803014.htm 杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索. 海洋地质与第四纪地质, 21(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102003.htm 张瑶, 2017. 碎屑锆石在物源研究及水系演化中的应用(硕士学位论文). 成都: 成都理工大学, 1-52. 张玉芬, 李长安, 周稠, 等, 2014. 长江中游高位砾石层的磁性特征与物源分析. 吉林大学学报: 地球科学版, (5): 1669-1677. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405027.htm 赵举兴, 李长安, 许应石, 2014. 洞庭盆地古沅江砾石层的沉积特征及沉积环境. 地质科技情报, 33(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401014.htm