• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用

    柳保军 庞雄 谢世文 梅廉夫 郑金云 孙辉 颜晖 吴宇翔 向绪洪 冯轩

    柳保军, 庞雄, 谢世文, 梅廉夫, 郑金云, 孙辉, 颜晖, 吴宇翔, 向绪洪, 冯轩, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035
    引用本文: 柳保军, 庞雄, 谢世文, 梅廉夫, 郑金云, 孙辉, 颜晖, 吴宇翔, 向绪洪, 冯轩, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035
    Liu Baojun, Pang Xiong, Xie Shiwen, Mei Lianfu, Zhen Jinyun, Sun Hui, Yan Hui, Wu Yuxiang, Xiang Xuhong, Feng Xuan, 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035
    Citation: Liu Baojun, Pang Xiong, Xie Shiwen, Mei Lianfu, Zhen Jinyun, Sun Hui, Yan Hui, Wu Yuxiang, Xiang Xuhong, Feng Xuan, 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035

    珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用

    doi: 10.3799/dqkx.2022.035
    基金项目: 

    国家重大科技专项 2016ZX05026-003-003

    中海石油深海开发有限公司科技项目 CNOOC-KJ135ZDXM37SZ01SHENHAI

    详细信息
      作者简介:

      柳保军(1978-), 男, 高级工程师, 硕士, 主要从事油气储层预测及深水油气成藏综合研究.ORCID: 0000-0001-6222-2205.E-mail: liubj2@cnooc.com.cn

    • 中图分类号: P618.13

    Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin

    • 摘要: 壳幔拆离断裂活动与沉积体系响应为世界陆缘演变研究的热点,选取珠江口盆地白云凹陷壳幔拆离体系及其沉积响应开展系统性解剖.结合陆缘演变认识新进展、长电缆三维地震和钻井综合解释等揭示白云凹陷南部主控断裂带主要由4排NEE-NE向断至莫霍面的高角度铲式壳幔拆离断裂组成,裂陷期幕式活动使得白云凹陷经历了均一裂陷、拆离裂陷和断拗转换三阶段演化;均一裂陷期(下文昌组),控洼断裂未延伸至莫霍面,主要发育断裂转换带控制下的轴向陡坡辫状河三角洲/湖相沉积体系,缓坡物源体系不甚发育;拆离裂陷期(上文昌组),壳幔拆离断裂断至莫霍面,呈现强烈水平伸展和垂向落差,导致上盘远离断层一侧强烈旋转翘倾、抬升剥蚀成为最主要缓坡物源体系,靠近断层北侧沉降深陷成为深湖盆,上盘中段发育大型三角洲沉积;断拗转换期(恩平组),拆离作用减弱而沉降作用显著增强,控制了北部缓坡挠曲坡折和NW-SE向推进的大型三角洲/湖相沉积体系的发育.由此,主控断裂由均一伸展到壳幔拆离伸展的构造演变导致白云凹陷上文昌组至恩平组缓坡大型三角洲、下文昌组东西轴向转换带辫状河三角洲和洼陷周边陡坡带扇三角洲砂岩三类规模储集体与湖相泥岩满盆叠置的分布格局,使其成为深水勘探向中深层拓展的主要对象.

       

    • 图  1  白云深水区构造单元、控凹断裂与裂陷期文昌组‒恩平组地层厚度叠合图

      Fig.  1.  The geological framework of Baiyun deep water area composed of tectonic units and depression controlling faults superimposed on stratigraphic thickness of Wenchang and Enping formations

      图  2  陆缘深水区构造‒沉积充填综合柱状图(据庞雄等(2018)修改)

      Fig.  2.  Comprehensive histogram of structure sedimentation filling in deep water area of continental margin (modified from Pang et al., 2018)

      图  3  白云深水区构造‒沉积充填解释大剖面

      剖面位置见图 1;图a和图b据庞雄等(2018)修改

      Fig.  3.  Large section of structural sedimentary filling interpretation in Baiyun deepwater area

      图  4  珠江口盆地深水区Tg构造地貌与壳幔拆离控凹断裂体系叠合图

      Fig.  4.  Superimposed map of Tg structure geomorphology and crust-mantle detachment controlled sag fault system in deepwater area of Pearl River Mouth Basin

      图  5  珠江口盆地白云凹陷莫霍面、壳幔拆离控凹断裂带长电缆二维地震解释剖面特征(剖面位置见图 1

      Fig.  5.  2D seismic interpretation profile characteristics of long cable in Moho and crust-mantle detachment controlled depression fault zone of Baiyun Sag, Pearl River Mouth Basin (see Fig. 1 for profile location)

      图  6  白云凹陷深地震反射剖面与OBS联合解释的莫霍面深度图

      图中红线为图 5剖面位置,OBS测线结果来源于Yan et al.(2001)

      Fig.  6.  Moho depth map based on deep seismic reflection profile and OBS joint interpretation in Baiyun Sag

      图  7  白云主洼南部壳幔拆离断裂体系特征与关键界面三维地震解释特征(位置见图 1)

      Fig.  7.  Characteristics of crust-mantle detachment fault system and 3D seismic interpretation characteristics of key interfaces in the southern Baiyun main depression (see Fig. 1 for location)

      图  8  初始裂陷到断拗转换期地层厚度、沉积体系与断裂体系叠合图

      Fig.  8.  Superimposed graph of stratigraphic thickness, sedimentary facies and fault system in different periods of rifting stage

      图  9  不同层系拆离断陷作用与白云凹陷拆离断裂活动性特征

      Fig.  9.  Characteristics of activity of detachment faults in Baiyun Sag and detachment faulting in different strata

      图  10  白云主洼裂陷期壳幔拆离断裂控制下的沉积体系响应(位置见图 1)

      Fig.  10.  Response of sedimentary system controlled by crust-mantle detachment fault in Baiyun main depression during rifting period (see Fig. 1 for location)

      图  11  三幕裂陷构造演化控制下的沉积体系、古湖盆格局响应模式

      Fig.  11.  Response model of sedimentary system and paleolake basin pattern controlled by structural evolution of rifting in three episodes

      图  12  壳幔伸展拆离体系控制下的规模储集体发育模式

      Fig.  12.  Development model of large-scale reservoir controlled by crust-mantle extensional detachment system and reservoir characteristics of typical deep gas reservoir

      图  13  白云凹陷三角洲砂体、湖相泥岩叠合与典型中深层气藏储层发育特征(BY1井位置见图 1

      Fig.  13.  Superposition of delta sand body、lacustrine mudstone and reservoir development characteristics of typical deep gas reservoir in Baiyun Sag (see Fig. 1 for Well BY1 location)

    • [1] Chen, C. M., Shi, H. S., Xu, S. C., et al., 2003. The Conditions of Hydrocarbon Accumulation of the Tertiary Petroleum System in the Pearl River Mouth Basin. Science Press, Beijing (in Chinese).
      [2] Chen, F. J., Wang, X. W., Chen, Z. N., et al., 2004. Analysis of Extensional Fault Basin. Geological Publishing House, Beijing (in Chinese).
      [3] Cui, Y.C., Cao, L.C., Qiao, P.J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      [4] Ebinger, C. J., 1989. Tectonic Development of the Western Branch of the East African Rift System. Geological Society of America Bulletin, 101(7): 885-903. https://doi.org/10.1130/0016-7606(1989)1010885:tdotwb>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
      [5] Guo, R.J., Ji, H.C., Wen, Z.X., et al., 2019. The Relation between Tectonic Activity and Sedimentary Framework: Evidence from the Lake Albert, East African Rift System. Marine Geology Frontiers, 35(3): 1-12 (in Chinese with English abstract).
      [6] Hou, Y.L., Shao, L., Qiao, P.J., et al., 2020. Provenance of the Eocene-Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28 (in Chinese with English abstract).
      [7] Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988
      [8] Lavier, L. L., Manatschal, G., 2006. A Mechanism to Thin the Continental Lithosphere at Magma-Poor Margins. Nature, 440(7082): 324-328. https://doi.org/10.1038/nature04608
      [9] Liu, B.J., Pang, X., Wang, J.H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract).
      [10] Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract).
      [11] Masini, E., Manatschal, G., Mohn, G., 2013. The Alpine Tethys Rifted Margins: Reconciling Old and New Ideas to Understand the Stratigraphic Architecture of Magma-Poor Rifted Margins. Sedimentology, 60(1): 174-196. https://doi.org/10.1111/sed.12017
      [12] Mckenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      [13] Mi, L.J., Liu, B.J., He, M., et al., 2016. Petroleum Geology Characteristics and Exploration Direction in Baiyun Deep Water Area, Northern Continental Margin of the South China Sea. China Offshore Oil and Gas, 28(2): 10-22 (in Chinese with English abstract).
      [14] Morley, C. K., 1989. Extension, Detachments, and Sedimentation in Continental Rifts (with Particular Reference to East Africa). Tectonics, 8(6): 1175-1192. https://doi.org/10.1029/tc008i006p01175 doi: 10.1029/TC008i006p01175
      [15] Pang, X., Ren, J.Y., Zheng, J.Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract).
      [16] Péron-Pinvidic, G., Manatschal, G., 2009. The Final Rifting Evolution at Deep Magma-Poor Passive Margins from Iberia-Newfoundland: A New Point of View. International Journal of Earth Sciences, 98(7): 1581-1597. https://doi.org/10.1007/s00531-008-0337-9
      [17] Qi, J.F., Yang, Q., 2007. Structural Styles of Extensional Basins and Their Main Controlling Factors of Dynamics. Oil & Gas Geology, 28(5): 634-640 (in Chinese with English abstract).
      [18] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      [19] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      [20] Roberts, A. W., White, R. S., Lunnon, Z. C., et al., 2005. Imaging Magmatic Rocks on the Faroes Margin. Geological Society, London, Petroleum Geology Conference Series, 6(1): 755-766. https://doi.org/10.1144/0060755
      [21] Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      [22] Shi, H.S., Liu, B.J., Yan, C.Z., et al., 2010. Hydrocarbon Accumulation Conditions and Exploration Potential in Baiyun-Liwan Deepwater Area, Pearl River Month Basin. China Offshore Oil and Gas, 22(6): 369-374 (in Chinese with English abstract).
      [23] Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting- Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [24] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [25] Sun, Z., Liu, S.Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract).
      [26] Sun, Z., Pang, X., Zhong, Z.H., et al., 2005. Dynamics of Tertiary Tectonic Evolution of the Baiyun Sag in the Pearl River Mouth Basin. Earth Science Frontiers, 12(4): 489-498 (in Chinese with English abstract).
      [27] Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      [28] Tian, L.X., Zhang, Z.T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid-Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activity. China Offshore Oil and Gas, 32(6): 1-11 (in Chinese with English abstract).
      [29] Unternehr, P., Péron-Pinvidic, G., Manatschal, G., et al., 2010. Hyper-Extended Crust in the South Atlantic: In Search of a Model. Petroleum Geoscience, 16(3): 207-215. https://doi.org/10.1144/1354-079309-904
      [30] Vetti, V. V., Fossen, H., 2012. Origin of Contrasting Devonian Supradetachment Basin Types in the Scandinavian Caledonides. Geology, 40(6): 571-574. https://doi.org/10.1130/g32512.1 doi: 10.1130/G32512.1
      [31] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291(5817): 645-648. https://doi.org/10.1038/291645a0
      [32] Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      [33] Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338(1): 1-21. https://doi.org/10.1016/S0040-1951(01)00062-2
      [34] Zeng, Z.W., Zhu, H.T., Yang, X.H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract).
      [35] Zhang, G.Y., Ma, F., Liang, Y.B., et al., 2015. Domain and Theory-Technology Progress of Global Deep Oil & Gas Exploration. Acta Petrolei Sinica, 36(9): 1156-1166 (in Chinese with English abstract).
      [36] Zhang, L., Chen, S.H., 2017. Reservoir Property Response Relationship under Different Geothermal Gradients in the Eastern Area of the Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 29-38 (in Chinese with English abstract).
      [37] Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      [38] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社.
      [39] 陈发景, 汪新文, 陈昭年, 等, 2004. 伸展断陷盆地分析. 北京: 地质出版社.
      [40] 崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      [41] 郭瑞婧, 季汉成, 温志新, 等, 2019. 东非裂谷系Albert湖盆构造活动对沉积充填的影响. 海洋地质前沿, 35(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201903001.htm
      [42] 侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世-中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002003.htm
      [43] 柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(增刊1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      [44] 柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm
      [45] 米立军, 柳保军, 何敏, 等, 2016. 南海北部陆缘白云深水区油气地质特征与勘探方向. 中国海上油气, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
      [46] 庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
      [47] 漆家福, 杨桥, 2007. 伸展盆地的结构形态及其主控动力学因素. 石油与天然气地质, 28(5): 634-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200705017.htm
      [48] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114.
      [49] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      [50] 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      [51] 施和生, 柳保军, 颜承志, 等, 2010. 珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力. 中国海上油气, 22(6): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201006004.htm
      [52] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      [53] 孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm
      [54] 孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504024.htm
      [55] 田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006001.htm
      [56] 曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123
      [57] 张光亚, 马锋, 梁英波, 等, 2015. 全球深层油气勘探领域及理论技术进展. 石油学报, 36(9): 1156-1166.
      [58] 张丽, 陈淑慧, 2017. 珠江口盆地东部地区不同地温梯度下储层特征响应关系. 中国海上油气, 29(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201701004.htm
    • 加载中
    图(13)
    计量
    • 文章访问数:  236
    • HTML全文浏览量:  144
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-30
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回