Provenance and Tectonic Environment of Lower Devonian Apadalkan Formation in Southwest Tianshan
-
摘要: 晚古生代是南天山洋盆演化的关键时段,通过对南天山晚古生代沉积记录进行研究,对于恢复南天山晚古生代构造古地理,揭示南天山晚古生代构造演化具有十分重要的意义.西南天山别迭里地区泥盆系出露齐全,是研究南天山晚古生代构造演化的有效载体.对西南天山下泥盆统阿帕达尔坎组砂岩进行了岩石地球化学、重矿物特征,以及碎屑锆石U-Pb年代学研究,探讨了其沉积物质来源及地质意义.结果表明,砂岩以石英砂岩与岩屑砂岩为主,其岩屑组分以中酸性火山岩为主.砂岩CIA值和ICV值平均为63.1和1.19,属于中等程度风化作用,经历了一定的分选再旋回过程.重矿物以锆石、磷灰石、金红石等为主,分选磨圆较差.ATi指数为20.0~47.2,ZTR指数为20~60,反映阿帕达尔坎组物源区的火山岩较为发育,且搬运距离近.地球化学物源分析图解及重矿物特征均指示母岩以长英质岩浆岩为主,其次为再循环古老沉积物组分.砂岩碎屑锆石U-Pb年龄分5期:主要为397~486 Ma、669~959 Ma,其次为1 190~1 476 Ma、1 782~2 094 Ma、2 300~3 660 Ma.表明物源区地质体主要为早古生代、新元古代,其次为新太古代、古元古代、中元古代,与塔里木克拉通北缘岩浆岩带和前寒武基底岩浆活动事件比较吻合,指示物源来自塔里木北缘.构造判别图解显示阿帕达尔坎组为活动大陆边缘环境下的产物.Abstract: The Late Paleozoic is the key period of ocean basin evolution in South Tianshan. By studying the Late Paleozoic sedimentary records, we can restore Late Paleozoic paleogeography and reveal tectonic evolution history of the South Tianshan. The Devonian strata are well preserved in the Biedieli area of Southwest Tianshan, as an important carrier for the study of the early Late Paleozoic tectonic evolution of the South Tianshan. In this paper, in order to reveal their source and geological significance, we study the geochemical characteristics, heavy mineral characteristics and geochronological data of sandstone in Lower Devonian Apadalkan Formation. The CIA and ICV of sandstone are 63.1 and 1.19, respectively, showing that the sandstone belongs to intermediate weathering and has experienced sorting and recycling. The heavy minerals are mainly zircon, apatite, rutile, etc., and their sorting and roundness are poor. The ATi and ZTR index is 20.0-47.2 and 20-60, respectively, indicating the volcanic rocks in the source area of the Apadalkan Formation were abundant, and their transportation distance was relatively short. The geochemical provenance analysis diagram and heavy mineral characteristics indicate that the source rock is mainly felsic magmatic rocks, followed by recycled ancient sediment components. According to the LA-ICP-MS U-Pb ages of detrital zircon grains, the source rocks of Apadalkan Formation are derived from terrains with five different geological periods, mostly 407-486 Ma and 669-959 Ma, and subordinately 1 190-1 476 Ma, 1 782-2 094 Ma and 2 300-3 660 Ma, indicating that source rocks are mostly derived from Early Paleozoic and Neoproterozoic, followed by Neoarchean, Paleoproterozoic and Mesoproterozoic. They are equivalent to magmatic event on the northern margin and the Precambrian basement of the Tarim. It also indicates that the materials of Apadalkan Formation are mainly derived from the northern margin of Tarim. The Tectonic discriminant diagrams show that the Apadalkan Formation is a product of an active continental margin environment.
-
Key words:
- southwest Tianshan /
- Biedieli /
- Lower Devonian /
- chronology of detrital zircon /
- provenance /
- tectonics /
- geochemistry
-
图 1 南天山地质简图
据钟凌林(2019)修改. STS.南天山; CTS.中天山; NTS.南天山; NLF.那拉提断裂
Fig. 1. Regional geology of South Tianshan
图 2 西南天山区域地质简图与剖面位置
据王超等(2009)和Alexeiev et al. (2016)修改
Fig. 2. Regional geology of the study area and profile locations
图 5 碎屑岩的lg(Fe2O3/K2O)-lg(SiO2/Al2O3)变异图(据Herron, 1988)
Fig. 5. Geochemical plot for lithic sandstone from Apadalkan Formation (after Herron, 1988)
图 8 阿帕达尔坎组砂岩风化程度A-CN-K图解(据Nesbitt and Young, 1982)
Fig. 8. A-CN-K of lithic sandstone from Apadalkan Formation (Nesbitt and Young, 1982)
图 9 阿帕达尔坎组砂岩成分分选与再旋回Th/Sc-Zr/Sc图解(据李晨等,2021)
Fig. 9. The Th/Sc-Zr/Sc diagram(Li et al., 2021)of lithic sandstone from Apadalkan Formation
图 10 阿帕达尔坎组砂岩物源判别图
a.据Roser and Korsch, 1988;b.据王金贵等,2020;c.据Floyd and Leveridge, 1987
Fig. 10. Provenance discrimination diagrams for lithic sandstone from Apadalkan Formation
图 11 阿帕达尔坎组砂岩碎屑锆石年龄频谱图(据Zhang et al., 2013)
Fig. 11. Detrital zircon age frequency histogram of lithic sandstone from Apadalkan Formation (Zhang et al., 2013)
图 12 阿帕达尔坎组砂岩主量元素构造环境判别
a、b、c. 据Bhatia,1983;d. 据Roser and Korsch, 1986. PM.被动大陆边缘;ACM.活动大陆边缘;CIA.大陆岛弧;OIA.大洋岛弧
Fig. 12. The major element discrimination diagrams of tectonic settings for lithic sandstone from Apadalkan Formation
图 13 阿帕达尔坎组砂岩微量元素构造环境判别
据Bhatia and Crook(1986). PM.被动大陆边缘;ACM.活动大陆边缘;CIA.大陆岛弧;OIA.大洋岛弧
Fig. 13. The trace element discrimination diagrams of tectonic settings for lithic sandstone from Apadalkan Formation
表 1 不同构造背景砂岩稀土元素(10-6)特征比较
Table 1. REE (10-6) characteristics of sandstone from different tectonic environments
构造背景 La Ce ∑REE La/Yb (La/Yb)N LREE/HREE Eu/Eu* 大洋岛弧(Ma) 8.0±1.7 19.0±3.7 58±10 4.2±1.3 2.8±0.9 8.8±0.9 1.04±0.11 大陆岛弧(Ma) 27.0±4.5 59.0±8.2 146±20 11.0±3.6 7.5±2.5 7.7±1.7 0.79±0.13 安第斯型活动大陆边缘 37.0 78.0 185 12.5 8.5 9.1 0.60 被动大陆边缘 39.0 85.0 210 15.9 10.8 8.5 0.56 阿帕达尔坎组 31.0 55.3 147.8 13.7 9.2 8.3 0.64 注:大洋岛弧、大陆岛弧、活动大陆边缘、被动大陆边缘数据据Bhatia and Crook(1986). -
Alexeiev, D. V., Kröner, A., Hegner, E., et al., 2016. Middle to Late Ordovician Arc System in the Kyrgyz Middle Tianshan: From Arc-Continent Collision to Subsequent Evolution of a Palaeozoic Continental Margin. Gondwana Research, 39: 261-291. https://doi.org/10.1016/j.gr.2016.02.003 Bhatia, M. R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815 Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/BF00375292 Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 Dong, Y. P., Zhou, D. W., Zhang, G. W., et al., 2005. Tectonic Setting of the Wuwamen Ophiolite at the Southern Margin of Middle Tianshan Belt. Acta Petrologica Sinica, 21(1): 37-44 (in Chinese with English abstract). Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. Gao, J., Qian, Q., Long, L. L., et al., 2009. Accretionary Orogenic Process of Western Tianshan, China. Geological Bulletin of China, 28(12): 1804-1816 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.12.013 Girty, G. H., Ridge, D. L., Knaack, C., et al., 1996. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66(1): 107-118. Guo, R. Q., Nijiati, A., Qin, Q., et al., 2013. Geological Characteristics and Tectonic Significance of Silurian Granitic Intrusions in the Northern Tarim Craton, Xinjiang. Geological Bulletin of China, 32(S1): 220-238 (in Chinese with English abstract). He, J. W., Zhu, W. B., Zheng, B. H., et al., 2015. Provenance of Sinian Sugetbrak Sedimentary Rocks in the Aksu Area, NW Tarim: Evidence from Detrital Zircon Geochronology. Acta Geologica Sinica, 89(1): 149-162 (in Chinese with English abstract). Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58: 820-829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d Hu, A. Q., Zhang, G. X., Chen, Y. B., et al., 2001. A Model of Division of the Continental Crust Basement and the Time Scales of the Major Geological Events in the Xinjiang-Based on Studies of Isotopic Geochronology and Geochemistry. Xinjiang Geology, 19(1): 12-19 (in Chinese with English abstract). Huang, H., 2013. Paleozoic Granitoids in the Chinese South Tianshan and Its Implications for Geological Evolution of the Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Jia, X. L., Zhai, M. G., Guo, R. Q., et al., 2017. Geochronology and Geochemistry Characteristics of the Devonian Calcium-Alkaline Intrusive Rocks in Southern Tianshan and Their Tectonic Implications. Acta Petrologica Sinica, 33(10): 3057-3075 (in Chinese with English abstract). Jiang, C. Y., Mu, Y. M., Zhao, X. N., et al., 2001. Petrology and Geochemistry of an Active Continental-Margin Intrusive Rock Belt on the Northern Margin of the Tarim Plate. Regional Geology of China, 20(2): 158-163 (in Chinese with English abstract). Li, C., Chen, S. Y., Lou, D., et al., 2021. Geochemical Characteristics and Signatures of Mesozoic Sandstones from Huanghua Depression. Earth Science, 46(8): 2903-2918 (in Chinese with English abstract). Li, J. Y., Wang, K. Z., Li, Y. P., et al., 2006. Geomorphological Features, Crustal Composition and Geological Evolution of the Tianshan Mountains. Geological Bulletin of China, 25(8): 895-909 (in Chinese with English abstract). Li, S. Y., Yang, D. D., Wang, S., et al., 2014. Characteristics of Petrology, Geochemistry, Heavy Minerals and Isotope Chronology of Upper Carboniferous Detrital Rocks in the Middle Segment of South Tianshan and Constraints to the Provenance and Tectonic Evolution. Acta Geologica Sinica, 88(2): 167-184 (in Chinese with English abstract). Long, L. L., Gao, J., Xiong, X. M., et al., 2007. Geochemistry and Geochronology of Granitoids in Bikai Region, Southern Central-Tianshan Mountains, Xinjiang. Acta Petrologica Sinica, 23(4): 719-732 (in Chinese with English abstract). McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: Johnsson, M. J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Papers, 284: 21-40. _ext_link_paichu__ Morton, A. C., Hallsworth, C., 1994. Identifying Provenance-Specific Features of Detrital Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 90(3/4): 241-256. https://doi.org/10.1016/0037-0738(94)90041-8 Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. https://doi.org/10.1086/629071 Roser, B. P., Korsch, J., 1988. Provenance Signatures of Sandstone. Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67: 119-139. Shu, L. S., Deng, X. L., Ma, X. X., et al., 2019. Tectonic Affinity between Central Tianshan Basement and Tarim Block Craton. Earth Science, 44(5): 1584-1601 (in Chinese with English abstract). Su, Z. G., Pei, X. Z., Li, R. B., et al., 2019. Detrital Zircon U-Pb Ages and Geological Significance of Metasedimentary Rocks from Guanjiagou Formation in Huoshenmiao Area, Mianlue Tectonic Belt of South Qinling. Earth Science, 44(4): 1424-1438 (in Chinese with English abstract). Wang, C., Luo, J. H., Che, Z. C., et al., 2009. Geochemical Characteristics and U-Pb LA-ICP-MS Zircon Dating of the Oxidaban Pluton from Xinjiang, China: Implications for a Paleozoic Oceanic Subduction Process in Southwestern Tianshan. Acta Geologica Sinica, 83(2): 272-283 (in Chinese with English abstract). Wang, J. G., Zhang, X. Q., Wei, W. T., et al., 2020. Paleontology, Geochemistry and Provenance of Sedimentary Rocks from the Triassic Langjiexue Group in the Yarlung Zangbo Suture Zone, Tibet and Their Tectonic Setting. Acta Geologica Sinica, 94(4): 1208-1226 (in Chinese with English abstract). Wu, G. H., Zhang, B. S., Guo, C. L., et al., 2009. Detrital Zircon U-Pb Dating for the Silurian in Northern Tarim Basin and Its Significance. Geotectonica et Metallogenia, 33(3): 418-426 (in Chinese with English abstract). Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007. Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 Xu, X. Y., Ma, Z. P., Xia, Z. C., et al., 2006. TIMS U-Pb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middle-Western Section of Tianshan. Northwestern Geology, 39(1): 50-75 (in Chinese with English abstract). Yan, Z., Bian, Q. T., Korchagin, O., et al., 2008. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains: Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry. Acta Petrologica Sinica, 24(5): 1068-1078 (in Chinese with English abstract). Yan, Z., Wang, Z. Q., Yan, Q. R., et al., 2018. Identification and Reconstruction of Tectonic Arche Type of the Sedimentary Basin within the Orogenic Belt Developed along Convergent Margin. Acta Petrologica Sinica, 34(7): 1943-1958 (in Chinese with English abstract). Zhang, B., Chen, W., Yu, S., et al., 2014. Subduction Process of South Tianshan Ocean during Paleozoic. Acta Petrologica Sinica, 30(8): 2351-2362 (in Chinese with English abstract). Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009 Zhong, L. L., 2019. Paleozoic Accretionary Orogeny and Crustal Evolution of the Western Segment of Chinese Central Tianshan (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Zhu, Z. X., Li, J. Y., Dong, L. H., et al., 2008. Age Determination and Geological Significance of Devonian Granitic Intrusions in Seriyakeyilake Region, Northern Margin of Tarim Basin, Xinjiang. Acta Petrologica Sinica, 24(5): 971-976 (in Chinese with English abstract). 董云鹏, 周鼎武, 张国伟, 等, 2005. 中天山南缘乌瓦门蛇绿岩形成构造环境. 岩石学报, 21(1): 37-44. 高俊, 钱青, 龙灵利, 等, 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804-1816. 郭瑞清, 尼加提·阿布都逊, 秦切, 等, 2013. 新疆塔里木北缘志留纪花岗岩类侵入岩的地质特征及构造意义. 地质通报, 32(S1): 220-238. 何景文, 朱文斌, 郑碧海, 等, 2015. 塔里木西北缘阿克苏地区震旦系苏盖特布拉克组沉积物源分析: 碎屑锆石年代学证据. 地质学报, 89(1): 149-162. 胡霭琴, 张国新, 陈义兵, 等, 2001. 新疆大陆基底分区模式和主要地质事件的划分. 新疆地质, 19(1): 12-19. 黄河, 2013. 中国南天山地区古生代花岗岩与区域地质演化(博士学位论文). 北京: 中国地质大学. 贾晓亮, 翟明国, 郭瑞清, 等, 2017. 新疆南天山泥盆纪钙碱性侵入岩的形成时代、地球化学特征及构造意义. 岩石学报, 33(10): 3057-3075. 姜常义, 穆艳梅, 赵晓宁, 等, 2001. 塔里木板块北缘活动陆缘型侵入岩带的岩石学与地球化学. 中国区域地质, 20(2): 158-163. 李晨, 陈世悦, 楼达, 等, 2021. 黄骅坳陷中生界砂岩地球化学特征及意义. 地球科学, 46(8): 2903-2918. doi: 10.3799/dqkx.2020.325 李锦轶, 王克卓, 李亚萍, 等, 2006. 天山山脉地貌特征、地壳组成与地质演化. 地质通报, 25(8): 895-909. 李双应, 杨栋栋, 王松, 等, 2014. 南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束. 地质学报, 88(2): 167-184. 龙灵利, 高俊, 熊贤明, 等, 2007. 新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究. 岩石学报, 23(4): 719-732. 舒良树, 邓兴梁, 马绪宣, 2019. 中天山基底与塔里木克拉通的构造亲缘性. 地球科学, 44(5): 1584-1601. doi: 10.3799/dqkx.2019.977 苏朕国, 裴先治, 李瑞保, 等, 2019. 南秦岭勉略构造带火神庙地区关家沟组变质沉积岩系碎屑锆石U-Pb年龄及地质意义. 地球科学, 44(4): 1424-1442. doi: 10.3799/dqkx.2018.127 王超, 罗金海, 车自成, 等, 2009. 新疆欧西达坂花岗质岩体地球化学特征和锆石LA-ICP-MS定年: 西南天山古生代洋盆俯冲作用过程的启示. 地质学报, 83(2): 272-283. 王金贵, 张鑫全, 魏文通, 等, 2020. 西藏雅鲁藏布缝合带三叠系朗杰学群沉积岩古生物、地球化学特征及其物源区和构造背景分析. 地质学报, 94(4): 1208-1226. 邬光辉, 张宝收, 郭春利, 等, 2009. 塔里木盆地北部志留系碎屑锆石测年及其地质意义. 大地构造与成矿学, 33(3): 418-426. 徐学义, 马中平, 夏祖春, 等, 2006. 天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究. 西北地质, 39(1): 50-75. 闫臻, 边千韬, Korchagin, O. A., 等, 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据. 岩石学报, 24(5): 1068-1078. 闫臻, 王宗起, 闫全人, 等, 2008. 造山带汇聚板块边缘沉积盆地的鉴别与恢复. 岩石学报, 34(7): 1943-1958. 张斌, 陈文, 喻顺, 等, 2014. 南天山洋古生代期间俯冲作用过程探讨. 岩石学报, 30(8): 2351-2362. 钟凌林, 2019. 中天山西段古生代增生造山作用与地壳演化(博士学位论文). 南京: 南京大学. 朱志新, 李锦轶, 董连慧, 等, 2008. 新疆塔里木北缘色日牙克依拉克一带泥盆纪花岗质侵入体的确定及其地质意义. 岩石学报, 24(5): 971-976. -