• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铁还原菌Shewanella oneidensis MR-1在H2O2扰动下的响应及机制

    赵雨溪 孙群群 童曼 袁松虎

    赵雨溪, 孙群群, 童曼, 袁松虎, 2023. 铁还原菌Shewanella oneidensis MR-1在H2O2扰动下的响应及机制. 地球科学, 48(4): 1649-1656. doi: 10.3799/dqkx.2022.115
    引用本文: 赵雨溪, 孙群群, 童曼, 袁松虎, 2023. 铁还原菌Shewanella oneidensis MR-1在H2O2扰动下的响应及机制. 地球科学, 48(4): 1649-1656. doi: 10.3799/dqkx.2022.115
    Zhao Yuxi, Sun Qunqun, Tong Man, Yuan Songhu, 2023. Response and Mechanism of Iron-Reducing Bacterium Shewanella oneidensis MR-1 to Perturbance of H2O2. Earth Science, 48(4): 1649-1656. doi: 10.3799/dqkx.2022.115
    Citation: Zhao Yuxi, Sun Qunqun, Tong Man, Yuan Songhu, 2023. Response and Mechanism of Iron-Reducing Bacterium Shewanella oneidensis MR-1 to Perturbance of H2O2. Earth Science, 48(4): 1649-1656. doi: 10.3799/dqkx.2022.115

    铁还原菌Shewanella oneidensis MR-1在H2O2扰动下的响应及机制

    doi: 10.3799/dqkx.2022.115
    基金项目: 

    国家自然科学基金项目 41703113

    国家自然科学基金项目 42025703

    详细信息
      作者简介:

      赵雨溪(1997—),女,硕士研究生,主要从事锰生物氧化研究. ORCID:0000-0002-7801-1602. E-mail:824813080@qq.com

      通讯作者:

      童曼,ORCID:0000-0002-0286-0608. E-mail:tongman@cug.edu.cn

    • 中图分类号: P69

    Response and Mechanism of Iron-Reducing Bacterium Shewanella oneidensis MR-1 to Perturbance of H2O2

    • 摘要: 铁还原菌参与的铁循环是地表系统中物质循环的重要驱动力,自然生成和人工注入地下环境的H2O2可能通过氧化胁迫影响铁还原菌的活性和功能,但铁还原菌在H2O2扰动下的响应及机制仍不清楚.以铁还原模式菌株Shewanella oneidensis MR-1作为研究对象,结合批实验和转录组测序研究了不同浓度水平H2O2扰动下MR-1活性和功能的变化及其调控机制.结果表明,MR-1能够有效抵御H2O2的胁迫,且H2O2扰动使MR-1的铁还原能力增强.转录组测序表明,H2O2使MR-1处于抗应激状态,通过积极氧化有机物供能、促进过氧化氢酶的合成抵御H2O2的负面影响.

       

    • 图  1  不同浓度H2O2扰动下MR-1的生长曲线

      Fig.  1.  Effects of different concentrations of H2O2 on the viability of MR-1

      图  2  有菌和无菌体系中H2O2浓度变化

      Fig.  2.  Variations of H2O2 concentration in the presence and absence of MR-1

      图  3  H2O2对CAT活性的影响

      Fig.  3.  Effect of H2O2 on the activity of CAT

      图  4  H2O2对MR-1铁还原能力的影响

      与空白组相比,***P < 0.001,****P < 0.000 1

      Fig.  4.  Effect of H2O2 on Fe(Ⅲ) reduction capacity of MR-1

      图  5  关键差异基因表达火山图

      Fig.  5.  Volcano plot of key differential gene expression

      表  1  差异基因表达情况

      Table  1.   Differential gene expression results

      基因ID log2(变化倍数) P值 描述
      SO_RS10090 -5.67 4.44×10-93 海洋变形菌分选酶靶蛋白
      SO_RS10085 -6.46 7.06×10-81 分选酶相关ompa样蛋白PdsO
      SO_RS10095 -3.96 1.36×10-58 GN分选酶
      SO_RS03930 -3.77 8.98×10-54 OXA-48家族水解酶
      SO_RS06920 3.39 1.25×10-45 苏氨酸脱氢酶基因
      SO_RS07720 3.10 7.72×10-37 外膜蛋白OmpW
      SO_RS15335 3.00 1.64×10-35 细胞色素d泛醇氧化酶亚基Ⅱ
      SO_RS17985 3.92 6.21×10-33 钼酸盐ABC转运蛋白底物结合蛋白
      SO_RS15340 2.82 6.21×10-33 细胞色素泛醇氧化酶亚基Ⅰ
      SO_RS10080 -3.28 4.57×10-28 变形菌分选酶系统反应调节器
      SO_RS18135 2.50 8.75×10-28 孔蛋白
      SO_RS13090 2.25 1.56×10-18 碳饥饿蛋白A
      SO_RS06640 2.20 1.34×10-17 钼喋呤支撑的氧化还原酶
      SO_RS09405 1.97 2.17×10-17 蛋白-蛋氨酸-亚砜还原酶催化亚基MsrP
      SO_RS01505 3.27 6.67×10-17 鸟氨酸脱羧酶
      SO_RS14360 2.08 2.56×10-15 Sigma70家族RNA聚合酶因子
      SO_RS21580 2.04 2.98×10-15 H家族蛋白
      SO_RS19750 -2.79 4.06×10-15 ISSod4家族转座酶
      SO_RS03335 1.89 4.38×10-15 分子伴侣GroEL
      SO_RS10010 2.51 5.15×10-15 细胞色素C氧化酶
      SO_RS10075 -2.83 1.57×10-14 变形杆菌专用分选酶系统组氨酸激酶
      SO_RS20140 -2.92 2.08×10-14 细胞包膜完整性蛋白CreD
      SO_RS04535 -1.76 2.08×10-14 ISSod2家族转座酶
      SO_RS09350 -1.76 2.08×10-14 ISSod2家族转座酶
      SO_RS09940 -1.76 2.08×10-14 ISSod2家族转座酶
      SO_RS19795 -1.76 2.08×10-14 ISSod2家族转座酶
      SO_RS21600 1.75 1.49×10-12 含有DUF3300结构域的蛋白
      SO_RS08155 1.63 3.25×10-12 OmcA/MtrC家族血红素c型细胞色素
      SO_RS14365 1.80 6.92×10-12 含有DUF3379结构域的蛋白
      SO_RS07745 1.70 1.60×10-11 辅酶a酰化甲基丙二酸半醛脱氢酶
      下载: 导出CSV

      表  2  GO富集分析结果

      Table  2.   GO enrichment analysis results

      GO ID 描述 P 分类 差异基因数量
      GO: 1901606 α-氨基酸分解代谢过程 6.13×10-5 BP 8
      GO: 0009063 细胞氨基酸分解代谢过程 1.18×10-4 BP 8
      GO: 0016054 有机酸分解代谢过程 1.11×10-3 BP 8
      GO: 0046395 羧酸分解代谢过程 1.11×10-3 BP 8
      GO: 0055114 氧化还原过程 3.00×10-3 BP 25
      GO: 0006091 前体代谢产物和能量的产生 3.36×10-3 BP 14
      GO: 0044282 小分子分解代谢过程 3.51×10-3 BP 8
      GO: 1901565 有机氮化合物分解代谢过程 3.56×10-3 BP 8
      GO: 0016491 氧化还原酶 8.02×10-3 MF 24
      GO: 0006536 谷氨酸代谢过程 1.15×10-2 BP 4
      GO: 0009056 分解代谢过程 1.27×10-2 BP 11
      GO: 0044248 细胞分解代谢过程 1.94×10-2 BP 9
      GO: 0022900 电子传递链 1.94×10-2 BP 10
      GO: 0006574 缬氨酸分解代谢过程 2.60×10-2 BP 2
      GO: 1901575 有机物分解代谢过程 2.60×10-2 BP 10
      GO: 0015980 由有机化合物氧化产生的能量 2.74×10-2 BP 6
      GO: 0045333 细胞呼吸 3.34×10-2 BP 5
      GO: 0009259 核糖核苷酸代谢过程 3.34×10-2 BP 7
      GO: 0009156 磷酸核糖核苷生物合成过程 3.34×10-2 BP 5
      GO: 1901564 有机氮化合物代谢过程 3.34×10-2 BP 33
      下载: 导出CSV
    • [1] Bendouz, M., Tran, L. H., Coudert, L., et al., 2017. Degradation of Polycyclic Aromatic Hydrocarbons in Different Synthetic Solutions by Fenton's Oxidation. Environmental Technology, 38(1): 116-127. https://doi. org/10.1080/09593330.2016.1188161 doi: 10.1080/09593330.2016.1188161
      [2] Borch, T., Kretzschmar, R., Kappler, A., et al., 2010. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environmental Science & Technology, 44(1): 15-23. https://doi. org/10.1021/es9026248 doi: 10.1021/es9026248
      [3] Brandi, G., Cattabeni, F., Albano, A., et al., 1989. Role of Hydroxyl Radicals in escherichia-coli Killing Induced by Hydrogen-Peroxide. Free Radical Research Communications, 6(1): 47-55. https://doi. org/10.3109/10715768909073427 doi: 10.3109/10715768909073427
      [4] Chen, R., Liu, H., Tong, M., et al., 2018. Impact of Fe(Ⅱ) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(Ⅲ) Bioreduction. Science of the Total Environment, 639: 1007-1014. https://doi. org/10.1016/j.scitotenv.2018.05.241 doi: 10.1016/j.scitotenv.2018.05.241
      [5] Du, Y. C., Dou, J. F., Ding, A. Z., et al., 2011. Study on Characteristics and Influencing Factors of PAHs Degradation in Soil by Fenton-Like Reagent. Chinese Journal of Environmental Engineering, 5(8): 1882-1886 (in Chinese with English abstract).
      [6] Esther, J., Sukla, L. B., Pradhan, N., et al., 2015. Fe (Ⅲ) Reduction Strategies of Dissimilatory Iron Reducing Bacteria. Korean Journal of Chemical Engineering, 32(1): 1-14. https://doi. org/10.1007/s11814-014-0286-x doi: 10.1007/s11814-014-0286-x
      [7] Hu, M., Li, F. B., 2014. Soil Microbe Mediated Iron Cycling and Its Environmental Implication. Acta Pedologica Sinica, 51(4): 683-698 (in Chinese with English abstract).
      [8] Kumar, A. R., Riyazuddin, P., 2012. Seasonal Variation of Redox Species and Redox Potentials in Shallow Groundwater: A Comparison of Measured and Calculated Redox Potentials. Journal of Hydrology, 444: 187-198. https://doi. org/10.1016/j.jhdrol.2012.04.018 doi: 10.1016/j.jhdrol.2012.04.018
      [9] Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the "Fe-Ⅲ-Fe-Ⅱ Redox Wheel" in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi. org/10.1007/s11368-012-0507-z doi: 10.1007/s11368-012-0507-z
      [10] Ma, C., Zhou, S., Zhuang, L., Wu, C., 2011. Electron Transfer Mechanism of Extracellular Respiration: A Review. Acta Ecologica Sinica, 31: 2008-2018.
      [11] Mao, H., Qu, D., Zhou, L. N., 2005. Effect of Variant Chromate and Ferrihydrite on Dissimilatory Fe (Ⅲ) Reduction in Paddy Soil. Chinese Agricultural Science Bulletin, 21(6): 235-237 (in Chinese with English abstract).
      [12] Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi. org/10.1038/nrmicro3347 doi: 10.1038/nrmicro3347
      [13] Pan, Y. L., 2014. The Oxidative Degradation of Polycyclic Aromatic Hydrocarbons in Water and Soil by Fenton's Reagent (Dissertation). Nanjing Agricultural University, Nanjing (in Chinese with English abstract).
      [14] Pitts, K. E., Dobbin, P. S., Reyes-Ramirez, F., et al., 2003. Characterization of the Shewanella Oneidensis MR-1 Decaheme Cytochrome MtrA. Journal of Biological Chemistry, 278(30): 27758-27765. https://doi. org/10.1074/jbc.M302582200 doi: 10.1074/jbc.M302582200
      [15] Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract).
      [16] Schuetz, B., Schicklberger, M., Kuermann, J., et al., 2009. Periplasmic Electron Transfer via the c-Type Cytochromes MtrA and FccA of Shewanellaoneidensis MR-1. Applied and Environmental Microbiology, 75(24): 7789-7796. https://doi. org/10.1128/aem.01834-09 doi: 10.1128/aem.01834-09
      [17] Vermilyea, A. W., Hansard, S. P., Voelker, B. M., 2010. Dark Production of Hydrogen Peroxide in the Gulf of Alaska. Limnology and Oceanography, 55(2): 580-588. https://doi. org/10.4319/lo.2009.55.2.0580 doi: 10.4319/lo.2009.55.2.0580
      [18] Wong, A. Y. L., Wong, G. T. F., 2001. The Effect of Spectral Composition on the Photochemical Production of Hydrogen Peroxide in Lake Water. Terrestrial Atmospheric and Oceanic Sciences, 12(4): 695-704. https://doi. org/10.3319/tao.2001.12.4.695(o) doi: 10.3319/tao.2001.12.4.695(o
      [19] Yuan, X., Nico, P. S., Huang, X., et al., 2017. Production of Hydrogen Peroxide in Groundwater at Rifle, Colorado. Environmental Science & Technology, 51(14): 7881-7891. https://doi. org/10.1021/acs.est.6b04803 doi: 10.1021/acs.est.6b04803
      [20] Zhang, N., 2021. Distribution and Production Mechanisms of Hydrogen Peroxide in Riparian Unconfined Aquifers (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [21] Zhang, T., Hansel, C. M., Voelker, B. M., et al., 2016. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds. Environmental Science & Technology, 50(6): 2983-2993. https://doi. org/10.1021/acs.est.5b03906 doi: 10.1021/acs.est.5b03906
      [22] Zhang, Y., Tong, M., Yuan, S., et al., 2020. Interplay between Iron Species Transformation and Hydroxyl Radicals Production in Soils and Sediments during Anoxic-Oxic Cycles. Geoderma, 370. https://doi. org/10.1016/j.geoderma.2020.114351 doi: 10.1016/j.geoderma.2020.114351
      [23] Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, (4): 1481-1489 (in Chinese with English abstract).
      [24] Zhou, G., Yin, J., Chen, H., et al., 2013. Combined Effect of Loss of the caa3 Oxidase and Crp Regulation Drives Shewanella to Thrive in Redox-Stratified Environments. ISME Journal, 7(9): 1752-1763. https://doi. org/10.1038/ismej.2013.62 doi: 10.1038/ismej.2013.62
      [25] 杜勇超, 豆俊峰, 丁爱中, 等, 2011. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究. 环境工程学报, 5(8): 1882-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201108039.htm
      [26] 胡敏, 李芳柏, 2014. 土壤微生物铁循环及其环境意义. 土壤学报, 51(4): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404002.htm
      [27] 毛晖, 曲东, 周莉娜, 2005. 稻田土壤中添加不同浓度铬对异化铁还原和铬还原的影响. 中国农学通报, 21(6): 235-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200506069.htm
      [28] 潘玉兰, 2014. Fenton试剂氧化降解水和土壤中多环芳烃(硕士学位论文). 南京: 南京农业大学.
      [29] 屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
      [30] 张娜, 2021. 河岸带潜水含水层过氧化氢的分布规律和产生机制(博士学位论文). 武汉: 中国地质大学.
      [31] 赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  95
    • HTML全文浏览量:  41
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-30
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回