Response and Mechanism of Iron-Reducing Bacterium Shewanella oneidensis MR-1 to Perturbance of H2O2
-
摘要: 铁还原菌参与的铁循环是地表系统中物质循环的重要驱动力,自然生成和人工注入地下环境的H2O2可能通过氧化胁迫影响铁还原菌的活性和功能,但铁还原菌在H2O2扰动下的响应及机制仍不清楚.以铁还原模式菌株Shewanella oneidensis MR-1作为研究对象,结合批实验和转录组测序研究了不同浓度水平H2O2扰动下MR-1活性和功能的变化及其调控机制.结果表明,MR-1能够有效抵御H2O2的胁迫,且H2O2扰动使MR-1的铁还原能力增强.转录组测序表明,H2O2使MR-1处于抗应激状态,通过积极氧化有机物供能、促进过氧化氢酶的合成抵御H2O2的负面影响.Abstract: Iron cycling mediated by iron-reducing bacteria is an important factor driving material cycle in the surface system of earth. H2O2 naturally generated and artificially injected into the subsurface environment may affect the activity and function of iron-reducing bacteria through oxidative stress, but the response and mechanism of iron-reducing bacteria to H2O2 disturbance is still unclear. In this study, Shewanella oneidensis MR-1 was chosen as a representative iron-reducing bacterium. In combination with batch experiments and RNA-seq analysis, the changes of MR-1 activity and function under different concentrations of H2O2 and its regulatory mechanism were investigated. Results show that MR-1 could resist H2O2 stress effectively, and H2O2 enhanced the Fe(Ⅲ)-reducing ability of MR-1. RNA-seq results show that MR-1 maintained in an anti-stress state infacing to H2O2 disturbance, which could resist the negative effects of H2O2 by actively oxidizing organic matter to provide energy and promoting the synthesis of catalase.
-
表 1 差异基因表达情况
Table 1. Differential gene expression results
基因ID log2(变化倍数) P值 描述 SO_RS10090 -5.67 4.44×10-93 海洋变形菌分选酶靶蛋白 SO_RS10085 -6.46 7.06×10-81 分选酶相关ompa样蛋白PdsO SO_RS10095 -3.96 1.36×10-58 GN分选酶 SO_RS03930 -3.77 8.98×10-54 OXA-48家族水解酶 SO_RS06920 3.39 1.25×10-45 苏氨酸脱氢酶基因 SO_RS07720 3.10 7.72×10-37 外膜蛋白OmpW SO_RS15335 3.00 1.64×10-35 细胞色素d泛醇氧化酶亚基Ⅱ SO_RS17985 3.92 6.21×10-33 钼酸盐ABC转运蛋白底物结合蛋白 SO_RS15340 2.82 6.21×10-33 细胞色素泛醇氧化酶亚基Ⅰ SO_RS10080 -3.28 4.57×10-28 变形菌分选酶系统反应调节器 SO_RS18135 2.50 8.75×10-28 孔蛋白 SO_RS13090 2.25 1.56×10-18 碳饥饿蛋白A SO_RS06640 2.20 1.34×10-17 钼喋呤支撑的氧化还原酶 SO_RS09405 1.97 2.17×10-17 蛋白-蛋氨酸-亚砜还原酶催化亚基MsrP SO_RS01505 3.27 6.67×10-17 鸟氨酸脱羧酶 SO_RS14360 2.08 2.56×10-15 Sigma70家族RNA聚合酶因子 SO_RS21580 2.04 2.98×10-15 H家族蛋白 SO_RS19750 -2.79 4.06×10-15 ISSod4家族转座酶 SO_RS03335 1.89 4.38×10-15 分子伴侣GroEL SO_RS10010 2.51 5.15×10-15 细胞色素C氧化酶 SO_RS10075 -2.83 1.57×10-14 变形杆菌专用分选酶系统组氨酸激酶 SO_RS20140 -2.92 2.08×10-14 细胞包膜完整性蛋白CreD SO_RS04535 -1.76 2.08×10-14 ISSod2家族转座酶 SO_RS09350 -1.76 2.08×10-14 ISSod2家族转座酶 SO_RS09940 -1.76 2.08×10-14 ISSod2家族转座酶 SO_RS19795 -1.76 2.08×10-14 ISSod2家族转座酶 SO_RS21600 1.75 1.49×10-12 含有DUF3300结构域的蛋白 SO_RS08155 1.63 3.25×10-12 OmcA/MtrC家族血红素c型细胞色素 SO_RS14365 1.80 6.92×10-12 含有DUF3379结构域的蛋白 SO_RS07745 1.70 1.60×10-11 辅酶a酰化甲基丙二酸半醛脱氢酶 表 2 GO富集分析结果
Table 2. GO enrichment analysis results
GO ID 描述 P值 分类 差异基因数量 GO: 1901606 α-氨基酸分解代谢过程 6.13×10-5 BP 8 GO: 0009063 细胞氨基酸分解代谢过程 1.18×10-4 BP 8 GO: 0016054 有机酸分解代谢过程 1.11×10-3 BP 8 GO: 0046395 羧酸分解代谢过程 1.11×10-3 BP 8 GO: 0055114 氧化还原过程 3.00×10-3 BP 25 GO: 0006091 前体代谢产物和能量的产生 3.36×10-3 BP 14 GO: 0044282 小分子分解代谢过程 3.51×10-3 BP 8 GO: 1901565 有机氮化合物分解代谢过程 3.56×10-3 BP 8 GO: 0016491 氧化还原酶 8.02×10-3 MF 24 GO: 0006536 谷氨酸代谢过程 1.15×10-2 BP 4 GO: 0009056 分解代谢过程 1.27×10-2 BP 11 GO: 0044248 细胞分解代谢过程 1.94×10-2 BP 9 GO: 0022900 电子传递链 1.94×10-2 BP 10 GO: 0006574 缬氨酸分解代谢过程 2.60×10-2 BP 2 GO: 1901575 有机物分解代谢过程 2.60×10-2 BP 10 GO: 0015980 由有机化合物氧化产生的能量 2.74×10-2 BP 6 GO: 0045333 细胞呼吸 3.34×10-2 BP 5 GO: 0009259 核糖核苷酸代谢过程 3.34×10-2 BP 7 GO: 0009156 磷酸核糖核苷生物合成过程 3.34×10-2 BP 5 GO: 1901564 有机氮化合物代谢过程 3.34×10-2 BP 33 -
Bendouz, M., Tran, L. H., Coudert, L., et al., 2017. Degradation of Polycyclic Aromatic Hydrocarbons in Different Synthetic Solutions by Fenton's Oxidation. Environmental Technology, 38(1): 116-127. https://doi. org/10.1080/09593330.2016.1188161 doi: 10.1080/09593330.2016.1188161 Borch, T., Kretzschmar, R., Kappler, A., et al., 2010. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environmental Science & Technology, 44(1): 15-23. https://doi. org/10.1021/es9026248 doi: 10.1021/es9026248 Brandi, G., Cattabeni, F., Albano, A., et al., 1989. Role of Hydroxyl Radicals in escherichia-coli Killing Induced by Hydrogen-Peroxide. Free Radical Research Communications, 6(1): 47-55. https://doi. org/10.3109/10715768909073427 doi: 10.3109/10715768909073427 Chen, R., Liu, H., Tong, M., et al., 2018. Impact of Fe(Ⅱ) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(Ⅲ) Bioreduction. Science of the Total Environment, 639: 1007-1014. https://doi. org/10.1016/j.scitotenv.2018.05.241 doi: 10.1016/j.scitotenv.2018.05.241 Du, Y. C., Dou, J. F., Ding, A. Z., et al., 2011. Study on Characteristics and Influencing Factors of PAHs Degradation in Soil by Fenton-Like Reagent. Chinese Journal of Environmental Engineering, 5(8): 1882-1886 (in Chinese with English abstract). Esther, J., Sukla, L. B., Pradhan, N., et al., 2015. Fe (Ⅲ) Reduction Strategies of Dissimilatory Iron Reducing Bacteria. Korean Journal of Chemical Engineering, 32(1): 1-14. https://doi. org/10.1007/s11814-014-0286-x doi: 10.1007/s11814-014-0286-x Hu, M., Li, F. B., 2014. Soil Microbe Mediated Iron Cycling and Its Environmental Implication. Acta Pedologica Sinica, 51(4): 683-698 (in Chinese with English abstract). Kumar, A. R., Riyazuddin, P., 2012. Seasonal Variation of Redox Species and Redox Potentials in Shallow Groundwater: A Comparison of Measured and Calculated Redox Potentials. Journal of Hydrology, 444: 187-198. https://doi. org/10.1016/j.jhdrol.2012.04.018 doi: 10.1016/j.jhdrol.2012.04.018 Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the "Fe-Ⅲ-Fe-Ⅱ Redox Wheel" in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi. org/10.1007/s11368-012-0507-z doi: 10.1007/s11368-012-0507-z Ma, C., Zhou, S., Zhuang, L., Wu, C., 2011. Electron Transfer Mechanism of Extracellular Respiration: A Review. Acta Ecologica Sinica, 31: 2008-2018. Mao, H., Qu, D., Zhou, L. N., 2005. Effect of Variant Chromate and Ferrihydrite on Dissimilatory Fe (Ⅲ) Reduction in Paddy Soil. Chinese Agricultural Science Bulletin, 21(6): 235-237 (in Chinese with English abstract). Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi. org/10.1038/nrmicro3347 doi: 10.1038/nrmicro3347 Pan, Y. L., 2014. The Oxidative Degradation of Polycyclic Aromatic Hydrocarbons in Water and Soil by Fenton's Reagent (Dissertation). Nanjing Agricultural University, Nanjing (in Chinese with English abstract). Pitts, K. E., Dobbin, P. S., Reyes-Ramirez, F., et al., 2003. Characterization of the Shewanella Oneidensis MR-1 Decaheme Cytochrome MtrA. Journal of Biological Chemistry, 278(30): 27758-27765. https://doi. org/10.1074/jbc.M302582200 doi: 10.1074/jbc.M302582200 Qu, J. Y., Tong, M., Yuan, S. H., 2021. Effect and Mechanism of Fe(Ⅱ) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641 (in Chinese with English abstract). Schuetz, B., Schicklberger, M., Kuermann, J., et al., 2009. Periplasmic Electron Transfer via the c-Type Cytochromes MtrA and FccA of Shewanellaoneidensis MR-1. Applied and Environmental Microbiology, 75(24): 7789-7796. https://doi. org/10.1128/aem.01834-09 doi: 10.1128/aem.01834-09 Vermilyea, A. W., Hansard, S. P., Voelker, B. M., 2010. Dark Production of Hydrogen Peroxide in the Gulf of Alaska. Limnology and Oceanography, 55(2): 580-588. https://doi. org/10.4319/lo.2009.55.2.0580 doi: 10.4319/lo.2009.55.2.0580 Wong, A. Y. L., Wong, G. T. F., 2001. The Effect of Spectral Composition on the Photochemical Production of Hydrogen Peroxide in Lake Water. Terrestrial Atmospheric and Oceanic Sciences, 12(4): 695-704. https://doi. org/10.3319/tao.2001.12.4.695(o) doi: 10.3319/tao.2001.12.4.695(o Yuan, X., Nico, P. S., Huang, X., et al., 2017. Production of Hydrogen Peroxide in Groundwater at Rifle, Colorado. Environmental Science & Technology, 51(14): 7881-7891. https://doi. org/10.1021/acs.est.6b04803 doi: 10.1021/acs.est.6b04803 Zhang, N., 2021. Distribution and Production Mechanisms of Hydrogen Peroxide in Riparian Unconfined Aquifers (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Zhang, T., Hansel, C. M., Voelker, B. M., et al., 2016. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds. Environmental Science & Technology, 50(6): 2983-2993. https://doi. org/10.1021/acs.est.5b03906 doi: 10.1021/acs.est.5b03906 Zhang, Y., Tong, M., Yuan, S., et al., 2020. Interplay between Iron Species Transformation and Hydroxyl Radicals Production in Soils and Sediments during Anoxic-Oxic Cycles. Geoderma, 370. https://doi. org/10.1016/j.geoderma.2020.114351 doi: 10.1016/j.geoderma.2020.114351 Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, (4): 1481-1489 (in Chinese with English abstract). Zhou, G., Yin, J., Chen, H., et al., 2013. Combined Effect of Loss of the caa3 Oxidase and Crp Regulation Drives Shewanella to Thrive in Redox-Stratified Environments. ISME Journal, 7(9): 1752-1763. https://doi. org/10.1038/ismej.2013.62 doi: 10.1038/ismej.2013.62 杜勇超, 豆俊峰, 丁爱中, 等, 2011. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究. 环境工程学报, 5(8): 1882-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201108039.htm 胡敏, 李芳柏, 2014. 土壤微生物铁循环及其环境意义. 土壤学报, 51(4): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404002.htm 毛晖, 曲东, 周莉娜, 2005. 稻田土壤中添加不同浓度铬对异化铁还原和铬还原的影响. 中国农学通报, 21(6): 235-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200506069.htm 潘玉兰, 2014. Fenton试剂氧化降解水和土壤中多环芳烃(硕士学位论文). 南京: 南京农业大学. 屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029 张娜, 2021. 河岸带潜水含水层过氧化氢的分布规律和产生机制(博士学位论文). 武汉: 中国地质大学. 赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131