Geochronology and Sources of the Giant Xiaokeng Kaolin Deposit in Southern Jiangxi Province: Insight from U-Pb Ages of Zircon and Monazite, and Hf Isotopic Compositions
-
摘要: 华南是我国风化型高岭土矿床的重要分布区,但鲜有三叠纪岩浆岩形成的风化型高岭土矿床的报道. 小坑高岭土矿床是赣南地区新近发现的超大型风化型高岭土矿床,远景资源量超30 Mt. 本文以该矿床为研究对象,开展了高岭土矿LA-ICPMS锆石和独居石U-Pb定年及Hf同位素研究,精确限定其原岩形成时代和岩浆源区. 锆石U-Pb法厘定该矿床成矿原岩年龄为231~230 Ma. 独居石为岩浆成因,其U-Pb年龄为230±1 Ma. 晚三叠世锆石εHf(t)=‒19.9~‒1.2,二阶段Hf模式年龄TDM2=2 228~1 198 Ma. Hf同位素及1 018~987 Ma的继承锆石表明小坑矿床成矿原岩来源于中‒新元古代基底物质的熔融,且有部分幔源物质加入. 小坑高岭土矿床的发现表明华南地区晚三叠世含电气石白云母(二云母)花岗岩可形成优质高岭土,拓展了高岭土矿找矿方向.Abstract: Weathering-type kaolin deposits are widespread in South China, and they are associated with the intense intermediate-acid magmatism of granitic rocks and dikes. Ore-related magmatism were dominantly formed during the Caledonian and Yanshanian. However, no Kaolin mineralization associated with Triassic magmatism has been reported in South China so far. The Xiaokeng kaolin deposit, which has been discovered and explored recently, is a giant deposit with mineral resources more than 30 Mt in southern Jiangxi Province. The kaolin ore-bodies distribute on the surface of a muscovite granite as stratoid or crescent in shapes. It is a weathering-type kaolin deposit associated with granite and is characterized by low contents of iron and titanium. In this paper, the U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon and monazite, and Lu-Hf isotopes of zircon on kaolin ore are documented, in order to study the age and magmatic sources of ore-related granite. Mean ages of 231±2 to 230±2 Ma were obtained for two samples of zircon with intercept ages of 232±5 to 231±3 Ma. Based on micro-textures, and contents and ratios of trace and rare earth elements, a magmatic origin was proposed for monazite from kaolin ore at Xiaokeng. A yielded age of 230±1 Ma was obtained using U-Pb dating at monazite grains. These ages indicate that the ore-related granite was formed during the Late Triassic. Late Triassic zircon grains have εHf(t) values ranging from -19.9 to -1.2 with two-stages Hf model ages (TDM2) of 2 228-1 198 Ma. These Hf isotopic values, together with the presence of two Meso- to Neoproterozoic inherited zircon grains (1 018-987 Ma), indicate that the ore-related granite in the Xiaokeng deposit was originated from partial melting of Meso- to Neoproterozoic basement beneath South China, with minor contribution of mantle sources. This study on ages and sources of kaolin ore at Xiaokeng, not only suggests that Late Triassic tourmaline bearing muscovite or two-mica granites in South China can form high-quality weathering-type kaolin, but also expands the prospecting direction of kaolin deposits.
-
图 1 华南地区三叠纪岩浆分布简图(a)(修改自Zhao et al., 2013和Xia and Xu, 2020)和小坑高岭土矿床地质图(b)
PJSF. Pingxiang-Jiangshan-Shaoxing Fault;BLF. Binxian-Linwu Fault;ZDF. Zhenghe-Dapu Fault. 三叠纪花岗岩数据来源: 浦北、旧州、台马和锡田S型花岗岩据邓希光等(2004)、Wang et al. (2013)和刘飚等(2022);蔡江、高溪、翁山、大爽、大银厂、富城、邓阜仙等A型花岗岩据Sun et al. (2011)、Wang et al. (2013)、Zhao et al. (2013)、Gao et al. (2014)、Cai et al. (2015)和Xia and Xu (2020);罗古岩I型花岗岩据向庭富等(2013)
Fig. 1. Simplified map showing the distribution of Triassic magmatism in South China (a) (modified from Zhao et al., 2013, and Xia and Xu, 2020), and geological map of the Xiaokeng kaolin deposit (b)
图 6 小坑高岭土矿独居石成因判别图解(底图修改自梁晓等, 2022)
Fig. 6. Discrimination diagrams of monazite from the Xiaokeng kaolin deposit (base map modified from Liang et al. 2022)
图 7 小坑高岭土矿锆石Hf同位素组成图解
数据来源: 华南基底据周雪瑶等(2015);晚三叠世S型花岗岩据邓希光等(2004);晚三叠世A型花岗岩据Zhao et al. (2013);晚三叠世I型花岗岩据向庭富等(2013)
Fig. 7. Diagrams of Hf isotopic compositions of zircon grains from the Xiaokeng kaolin deposit
-
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X Cai, Y., Lu, J. J., Ma, D. S., et al., 2015. The Late Triassic Dengfuxian A-Type Granite, Hunan Province: Age, Petrogenesis, and Implications for Understanding the Late Indosinian Tectonic Transition in South China. International Geology Review, 57(4): 428-445. https://doi.org/10.1080/00206814.2015.1012565 Chen, Z. H., Wang, D. H., Qu, W. J., et al., 2006. Geological Characteristics and Mineralization Age of the Taoxikeng Tungsten Deposit in Chongyi County, Southern Jiangxi Province, China. Geological Bulletin of China, 25(4): 496-501 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.04.013 Deng, X. G., Chen, Z. G., Li, X. H., et al., 2004. SHRIMP U-Pb Zircon Dating of the Darongshan—Shiwandashan Granitoid Belt in Southeastern Guangxi, China. Geological Review, 50(4): 426-432 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.04.014 Fisher, C. M., Vervoort, J. D., Hanchar, J. M., 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of these Data. Chemical Geology, 363: 125-133. https://doi.org/10.1016/j.chemgeo.2013.10.019 Gao, W. L., Wang, Z. X., Song, W. J., et al., 2014. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites from Southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96: 255-268. https://doi.org/10.1016/j.jseaes.2014.09.024 Guo, C. L., Wang, D. H., Chen, Y. C., et al., 2007. Precise Zircon SHRIMP U-Pb and Quartz Vein Rb-Sr Dating of Mesozoic Taoxikeng Tungsten Polymetallic Deposit in Southern Jiangxi. Mineral Deposits, 26(4): 432-442 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2007.04.007 Guo, N. X., Liu, S. B., Zhao, Z., 2021. Geochronology, Geochemistry and Geological Implications of Diabase Porphyrite in Tiemuli W-Fe Deposit, Chongyi County, Jiangxi Province. Earth Science, 46(2): 460-473 (in Chinese with English abstract). Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/C2JA30078H Jian, P., Zhu, R. C., 2019. Geological Characteristics and Genesis Analysis of Dagangshan Kaolin Deposit in Fenyi County. World Nonferrous Metals, 42(18): 297-298 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2019.18.172 Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. China Science Bulletin, 65(33): 3730-3745 (in Chinese). Jiang, Z. D., Li, C. L., Rao, Y. B., 2019. Metallogenic Geological Characteristics and Prospecting Potential of Tangyin Rock Mass Tourmaline Kaolin. Jiangxi Coal Science & Technology, (4): 117-120 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-2572.2019.04.030 Li, X. Z., 1991. Discussion on the Ore-Formation Conditions and Its Mechanism of the Donggongxia Kaolin Deposit in Longyan, Fujian Province. Geology of Fujian, 10(4): 247-269 (in Chinese with English abstract). Li, Y. J., Wei, J. H., Santosh, M., et al., 2016. Geochronology and Petrogenesis of Middle Permian S-Type Granitoid in Southeastern Guangxi Province, South China: Implications for Closure of the Eastern Paleo-Tethys. Tectonophysics, 682: 1-16. https://doi.org/10.1016/j.tecto.2016.05.048 Liang, X., Xu, Y. J., Zi, J. W., et al., 2022. Genetic Mineralogy of Monazite and Constraints on Interpretation of U-Th-Pb Ages. Earth Science, 47(4): 1383-1398 (in Chinese with English abstract). Liu, B., Wu, Q. H., Kong, H., et al., 2022. Spatiotemporal Distribution of Granites in Xitian Ore Field in Hunan and Its Tungsten-Tin Mineralization: Constraints from Zircon U-Pb Dating and Geochemical Characteristics. Earth Science, 47(1): 240-258 (in Chinese with English abstract). Liu, M. H., Shi, Y., Tang, Y. L., et al., 2021. Petrogenesis and Tectonic Significance of Caledonian I-Type Granitoids in Southeast Guangxi, South China. Earth Science, 46(11): 3965-3992 (in Chinese with English abstract). Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Luo, Q., 2017. Economic Geologic and Metallogenicand Mineralogic Characteristics of the Chongyi Kaolin Deposit from Jiangxi Province (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Luo, Q., Cai, X. Y., Shi, G. Z., 2017. The Study of Occurrence and Elimination of Iron in Kaolinite Deposit of Chongyi, Jiangxi. World Nonferrous Metals, 40(2): 156-159 (in Chinese with English abstract). Qi, C. S., Deng, X. G., Li, W. X., et al., 2007. Origin of the Darongshan-Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi: Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 23(2): 403-412 (in Chinese with English abstract). Su, H. M., Jiang, S. Y., 2017. A Comparison Study of Tungsten-Bearing Granite and Related Mineralization in the Northern Jiangxi-Southern Anhui Provinces and Southern Jiangxi Province in South China. Science in China (Series D), 47(11): 1292-1308 (in Chinese). Sun, Y., Ma, C. Q., Liu, Y. Y., et al., 2011. Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China. Journal of Asian Earth Sciences, 42(6): 1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007 Wang, K. X., Sun, T., Chen, P. R., et al., 2013. The Geochronological and Geochemical Constraints on the Petrogenesis of the Early Mesozoic A-Type Granite and Diabase in Northwestern Fujian Province. Lithos, 179: 364-381. https://doi.org/10.1016/j.lithos.2013.07.016 Wang, R. D., Xu, Q. S., 1992. Study on the Composition of Shangzhu Porcelain Stone Ore and Its Physical Properties of Porcelain Making. Non-Metallic Mines, 15(3): 2-4 (in Chinese). Wu, Q. H., Cao, J. Y., Kong, H., et al., 2016. Petrogenesis and Tectonic Setting of the Early Mesozoic Xitian Granitic Pluton in the Middle Qin-Hang Belt, South China: Constraints from Zircon U-Pb Ages and Bulk-Rock Trace Element and Sr-Nd-Pb Isotopic Compositions. Journal of Asian Earth Sciences, 128: 130-148. https://doi.org/10.1016/j.jseaes.2016.07.002 Wu, Y. J., Chen, C. X., Yuan, F., 2021. Temporal-Spatial Distribution Regularities of Kaolin Deposits in China. Acta Geoscientia Sinica, 42(5): 628-640 (in Chinese with English abstract). Xia, Y., Xu, X. S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129 Xiang, T. F., Sun, T., Chen, P. R., et al., 2013. Discovery of an Indosinian Granite: Luoguyan Pluton in Northwestern Fujian Province, South China, and Its Petrogenesis and Tectonic Significance. Geological Journal of China Universities, 19(2): 274-292 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.02.011 Xiong, P. W., 1991. The Geoioglcal Characteristics of the weathering-Crust Type Coating Kaolin Deposit of Shizilu of Hepu of Guangxi and Its Prospect of Exploration. Geology of Guangxi, 4 (1): 1-11, 95 (in Chinese with English abstract). Ye, Z. H., Yan, Q., Wang, A. J., et al., 2016. Geological Characteristics and Ore Genesis of Yaokang Kaoline Deposit in Hepu, Guangxi. Journal of Guilin University of Technology, 36(2): 207-213 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2016.02.002 Yin, J. N., Ding, J. H., Chen, B. H., et al., 2021. Metallogenic Geological Characteristics and Mineral Resources Assessment of Kaolin in China. Geology in China, 49(1): 121-134 (in Chinese with English abstract). Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. https://doi.org/10.1016/j.lithos.2012.11.001 Zheng, X., Ren, G. G., Zhang, D. Z., et al., 2018. Geological Characteristics and Genesis of Kaolin Deposit in Shangyou Xiaozhaibei of Jiangxi. Resources Environment & Engineering, 32(1): 41-47 (in Chinese with English abstract). Zhong, X. B., 2020. Deposit Characteristics and Prospecting Potential of Danyuan Kaolin Ore in Xingan County, Jiangxi Province. Modern Mining, 36(12): 44-46, 67 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-6082.2020.12.012 Zhou, G. P., 1990. A Study of a Weathering Crust Kaolin Deposit in Guangdong Province. Mineral Deposits, 9(2): 167-175 (in Chinese with English abstract). Zhou, X. G., Sha, M., Gong, M., et al., 2017b. Ore Dressing Experiment Study of Kaolin Deposits from Xiaokeng. Non-Metallic Mines, 40(3): 64-67 (in Chinese with English abstract). Zhou, X. G., Wang, S. L., Gong, M., et al., 2017a. Research Advances of the Xiaokeng Kaolin Deposit in Chongyi County, Jiangxi Province. Acta Mineralogica Sinica, 37(Suppl.): 153 (in Chinese). Zhou, X. Y., Yu, J. H., Wang, L. J., et al., 2015. Compositions and Formation of the Basement Metamorphic Rocks in Yunkai Terrane, Western Guangdong Province, South China. Acta Petrologica Sinica, 31(3): 855-882 (in Chinese with English abstract). Zhou, Y., Zhao, Y. S., Du, Y. J., et al., 2021. Identification of Early Paleozoic Andesite in Northwestern Hainan Island and Its Geotectonic Significances. Earth Science, 46(11): 3850-3860 (in Chinese with English abstract). Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 陈郑辉, 王登红, 屈文俊, 等, 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代. 地质通报, 25(4): 496-501. doi: 10.3969/j.issn.1671-2552.2006.04.013 邓希光, 陈志刚, 李献华, 等, 2004. 桂东南地区大容山‒十万大山花岗岩带SHRIMP锆石U-Pb定年. 地质论评, 50(4): 426-432. doi: 10.3321/j.issn:0371-5736.2004.04.014 郭春丽, 王登红, 陈毓川, 等, 2007. 赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定. 矿床地质, 26(4): 432-442. doi: 10.3969/j.issn.0258-7106.2007.04.007 郭娜欣, 刘善宝, 赵正, 2021. 江西崇义铁木里钨铁矿区内辉绿玢岩的年代学、地球化学特征及地质意义. 地球科学, 46(2): 460-473. doi: 10.3799/dqkx.2020.087 简平, 朱瑞辰, 2019. 分宜县大岗山高岭土矿地质特征及成因分析. 世界有色金属, 42(18): 297-298. doi: 10.3969/j.issn.1002-5065.2019.18.172 蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展, 科学通报, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm 姜智东, 李昌龙, 饶玉彬, 2019. 棠阴岩体电气石型高岭土成矿地质特征与找矿前景. 江西煤炭科技, (4): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXMT201904035.htm 李绪章, 1991. 福建龙岩东宫下高岭土矿成矿地质条件及矿床形成机理的探讨. 福建地质, 10(4): 247-269. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199104000.htm 梁晓, 徐亚军, 訾建威, 等, 2022. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约. 地球科学, 47(4): 1383-1398. doi: 10.3799/dqkx.2021.157 刘飚, 吴堑虹, 孔华, 等, 2022. 湖南锡田矿田花岗岩时空分布与钨锡成矿关系: 来自锆石U-Pb年代学与岩石地球化学的约束. 地球科学, 47(1): 240-258. doi: 10.3799/dqkx.2021.200 刘明辉, 时毓, 唐远兰, 等, 2021. 华南桂东南地区加里东期I型花岗岩类的岩石成因及构造意义. 地球科学, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035 罗青, 2017. 江西崇义高岭土矿的矿床学和工艺矿物学初探(硕士学位论文). 南京: 南京大学. 罗青, 蔡小勇, 史冠中, 2017. 江西崇义某高岭土矿床矿石中铁的赋存状态及剔除研究. 世界有色金属, 40(2): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201702069.htm 祁昌实, 邓希光, 李武显, 等, 2007. 桂东南大容山‒十万大山S型花岗岩带的成因: 地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 23(2): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201912018.htm 苏慧敏, 蒋少涌, 2017. 赣南和赣北‒皖南钨成矿带含钨花岗岩及其成矿作用特征对比研究. 中国科学(D辑), 47(11): 1292-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711003.htm 王仁德, 徐庆胜, 1992. 上祝瓷石矿石物质组分及其制瓷物理性能研究. 非金属矿, 15(3): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK199203000.htm 吴宇杰, 陈从喜, 袁峰, 2021. 中国高岭土矿床时空分布规律. 地球学报, 42(5): 628-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202105005.htm 向庭富, 孙涛, 陈培荣, 等, 2013. 闽西北罗古岩岩体印支期年龄的厘定及其岩石成因和构造意义. 高校地质学报, 19(2): 274-292. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302011.htm 熊培文, 1991. 广西合浦十字路风化壳型刮刀涂布高岭土矿床地质特征及找矿方向. 广西地质, 4(1): 1-11, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199101000.htm 叶张煌, 闫强, 王安建, 等, 2016. 广西合浦县耀康高岭土矿地质特征和矿床成因. 桂林理工大学学报, 36(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201602002.htm 阴江宁, 丁建华, 陈炳翰, 等, 2022. 中国高岭土矿成矿地质特征与资源潜力评价. 中国地质, 49(1): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201008.htm 郑翔, 任国刚, 张德志, 等, 2018. 江西上犹小寨背高岭土矿矿床地质特征及矿床成因. 资源环境与工程, 32(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201801011.htm 钟学斌, 2020. 江西省新干县丹元高岭土矿矿床特征及找矿前景. 现代矿业, 36(12): 44-46, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202012014.htm 周国平, 1990. 沙尾风化壳高岭土矿床的研究. 矿床地质, 9(2): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199002008.htm 周雪桂, 沙明, 龚敏, 等, 2017b. 小坑优质高岭土矿选矿实验研究. 非金属矿, 40(3): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201703018.htm 周雪桂, 王水龙, 龚敏, 等, 2017a. 江西崇义小坑高岭土矿床研究进展. 矿物学报, 37(增刊): 153. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-KWXB201712001093.htm 周雪瑶, 于津海, 王丽娟, 等, 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503018.htm 周云, 赵永山, 杜宇晶, 等, 2021. 海南岛西北部早古生代安山岩的识别及其大地构造意义. 地球科学, 46(11): 3850-3860. doi: 10.3799/dqkx.2021.012 -
dqkxzx-48-9-3245-附表1-4.docx
-