• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程

    李乐广 王连训 朱煜翔 马昌前 佘振兵 曹亮 冷双梁 闫育荞

    李乐广, 王连训, 朱煜翔, 马昌前, 佘振兵, 曹亮, 冷双梁, 闫育荞, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
    引用本文: 李乐广, 王连训, 朱煜翔, 马昌前, 佘振兵, 曹亮, 冷双梁, 闫育荞, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
    Li Leguang, Wang Lianxun, Zhu Yuxiang, Ma Changqian, She Zhenbing, Cao Liang, Leng Shuangliang, Yan Yuqiao, 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
    Citation: Li Leguang, Wang Lianxun, Zhu Yuxiang, Ma Changqian, She Zhenbing, Cao Liang, Leng Shuangliang, Yan Yuqiao, 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141

    华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程

    doi: 10.3799/dqkx.2022.141
    基金项目: 

    湖北省自然资源厅科技项目 ZRZY2020KJ04

    国家自然科学基金面上项目 42072082

    中国地质调查局花岗岩成岩成矿中心开放基金项目 PMGR202001

    详细信息
      作者简介:

      李乐广(1995-),男,博士研究生,地质学专业.ORCID:0000-0002-3166-8332.E-mail:leguangli@cug.edu.cn

      通讯作者:

      王连训,ORCID: 0000-0002-5389-6782. E-mail: lianxunwang@cug.edu.cn

    • 中图分类号: P611;P618

    Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China

    • 摘要: 华南晚中生代幕阜山复式岩体是我国重要的稀有金属成矿区,人们在该岩体南缘已发现仁里‒传梓源等超大型稀有金属矿床,但对其北缘广泛发育的含稀有金属伟晶岩的成矿时代和成矿作用研究较为有限. 以幕阜山北缘4个主要的伟晶岩密集区:断峰山、北港镇、麦市镇和黄泥洞含稀有金属伟晶岩为研究对象,通过详细的野外地质调查、岩相学、矿物化学和铌钽铁矿U-Pb年代学研究工作,探讨了幕阜山北缘稀有金属(Li-Be-Nb-Ta)的成矿时代、赋存状态和成矿过程. 年代学研究表明幕阜山北缘含稀有金属伟晶岩成矿于136~138 Ma,略滞后于幕阜山花岗岩类的侵位年龄,从而与其构成连续的花岗岩类侵位序列,代表了高演化末期的岩浆产物. 岩相学及矿物化学研究表明,Li主要赋存于锂云母、透锂长石和锂电气石中,Be赋存于绿柱石中,Nb主要赋存于铌铁矿和铌锰矿中,Ta赋存于细晶石和铌锰矿中. 矿物化学特征记录了熔体的演化过程,分离结晶作用是控制稀有金属不断富集的主要因素. 幕阜山南、北缘在锂赋存矿物方面存在差异,成矿温压条件的不同可能是造成锂成矿差异的原因. 华南幕阜山大规模含稀有金属伟晶岩成矿作用表明幕阜山地区在早白垩世处于伸展背景.

       

    • 图  1  幕阜山复式岩体地质图及伟晶岩脉分布

      Wang et al. (2014)李乐广等(2019)

      Fig.  1.  Geological map of Mufushan complex and the distribution of pegmatites

      图  2  幕阜山北缘伟晶岩脉分布

      图a,b. 断峰山伟晶岩密集区;c~e. 北港镇伟晶岩密集区;f. 麦市镇伟晶岩密集区;g. 黄泥洞伟晶岩密集区;图中绿色虚线框为主要矿化点和采样位置(修改自地质部701地质队, 1965, 1∶5万幕阜山花岗岩区稀有金属矿产普查报告)

      Fig.  2.  Distribution map of pegmatites in the northern part of Mufushan complex

      图  3  幕阜山北缘含稀有金属伟晶岩野外照片

      图a~f为断峰山伟晶岩密集区:a. 伟晶岩脉侵入冷家溪群变质围岩;b. 绿柱石与白云母和钠长石共生;c. 绿柱石巨晶;d. 铌铁矿族矿物巨晶;e. 锂云母和透锂长石共生;f. 石英核中生长锂电气石;图g~i为北港镇伟晶岩密集区:g. 伟晶岩脉侵位于黑云母花岗岩中;h. 绿柱石与钾长石和石英共生;i. 绿柱石与白云母和钠长石共生;图j~l为麦市镇伟晶岩密集区:j. 富锂晶洞伟晶岩;k. 绿柱石;l. 锂电气石‒锂云母‒透锂长石共生;图m~o为黄泥洞伟晶岩密集区:m. 黄泥洞采矿坑洞;n. 锂云母‒透锂长石共生;o. 石英核中生长锂电气石

      Fig.  3.  Field photographs of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  4  幕阜山北缘含稀有金属伟晶岩脉中代表性含矿矿物显微镜下照片

      a. 绿柱石‒单偏光‒断峰山Be矿化伟晶岩;b. 细晶石‒单偏光‒黄泥洞Li-Nb-Ta矿化伟晶岩;c. 铌钽铁矿族矿物‒单偏光‒麦市镇里和洞Li-Nb-Ta矿化伟晶岩;d. 透锂长石,已蚀变‒正交‒黄泥洞Li-Nb-Ta矿化伟晶岩;e. 锂云母‒正交‒断峰山Li-Nb-Ta矿化伟晶岩;f. 锂电气石‒正交‒黄泥洞Li-Nb-Ta矿化伟晶岩. Brl. 绿柱石;Mic. 细晶石;CGM. 铌铁矿族矿物;Ptl. 透锂长石;Elb. 锂电气石;Lpd. 锂云母

      Fig.  4.  Photomicrographs for ore-bearing minerals of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  5  幕阜山北缘含稀有金属伟晶岩铌钽铁矿U-Pb年代学分析结果

      a~b. 断峰山伟晶岩密集带中姜家垄(20MFS30-5)铌铁矿年龄协和图与加权平均年龄;c~d. 断峰山伟晶岩密集带中七家山(17QJS07-1A)铌铁矿年龄协和图与加权平均年龄

      Fig.  5.  U-Pb dating results for columbites of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  6  幕阜山北缘含稀有金属伟晶岩绿柱石主微量成分特征

      a. MgO-FeO图解;b. Cs2O-Na2O图解;c. Be-Li图解;d. Cs-Rb图解

      Fig.  6.  Component characteristics of major and trace elements for beryl of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  7  幕阜山北缘含稀有金属伟晶岩铌锰矿‒细晶石背散射(BSE)电子图像

      a~c. 环带铌锰矿BSE照片;d. 无环带铌锰矿BSE照片;e~f. 细晶石BSE照片

      Fig.  7.  BSE image for manganocolumbite and microlite of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  8  幕阜山北缘含稀有金属伟晶岩铌钽氧化物主量成分特征

      a. 铌钽氧化物Nb2O5与Ta2O5协变图解;b. 铌钽铁矿族矿物分类命名图解,底图据Selway et al.(2005),Mn#=Mn/(Mn+Fe),Ta#=Ta/(Ta+Fe);幕阜山南缘仁里铌铁矿数据参考自Li et al.(2020)

      Fig.  8.  Component characteristics of major elements for Nb-Ta oxide of rare metal-bearing pegmatites in the northern part ofMufushan complex

      图  9  幕阜山北缘含稀有金属伟晶岩锂电气石主微量成分特征

      a~b. 电气石分类命名图解,底图据Henry et al.(2011);c. Zn-Li图解;d. Sn-Pb图解. 断峰山地区铁电气石和仁里地区锂电气石数据参考自李乐广等(2019)

      Fig.  9.  Component characteristics of major and trace elements for elbaite of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  10  幕阜山北缘含稀有金属伟晶岩锂云母主微量成分特征

      a~b. 云母化学成分演化图解,底图据Tischendorf et al. (1997);c. Zn-Li图解;d. Cs-Rb图解. 云母数据参考自李乐广等(2019)王臻等(2019)杨晗等(2019)

      Fig.  10.  Component characteristics of major and trace elements for lepidolite of rare metal-bearing pegmatites in the northern part of Mufushan complex

      图  11  幕阜山花岗岩类及伟晶岩年龄分布直方图

      Fig.  11.  Histogram of age distribution of granitoids and pegmatites in Mufushan complex

      图  12  幕阜山北缘伟晶岩电气石演化图解

      a. [YAl/(YAl+Fe)-Na/(Na+X-空位)]图解,底图据Selway et al.(2005);b. YAl/(YAl+Fe)-YLi图解;c. B/Li-Li图解

      Fig.  12.  Evolution diagrams for tourmaline of pegmatites in the northern part of Mufushan complex

      图  13  幕阜山北缘伟晶岩云母演化图解

      a. K/Rb-Li图解;b. K/Rb-Rb图解;c. K/Rb-Cs图解;d. K/Rb-Ta图解;e. K/Rb-Sn图解;f. K/Rb-Zn图解;g. K/Rb-Nb图解;h. K/Rb-Ga图解

      Fig.  13.  Evolution diagram for mica of pegmatites in the northern part of Mufushan complex

      表  1  幕阜山复式岩体各岩性单元年龄数据结果

      Table  1.   Age data of each lithologic unit of Mufushan complex

      岩性 年龄(Ma) 分析方法 分析矿物 参考文献
      北缘 白云母‒微斜长石‒钠长石伟晶岩 136.0±2.0 U-Pb 铌钽铁矿 本文
      白云母‒钠长石型伟晶岩 138.4±1.6 U-Pb 铌钽铁矿 本文
      南缘 白云母钠长石伟晶岩 127.7±0.9 40Ar/39Ar 白云母 李鹏等,2017
      白云母钠长石伟晶岩 130.5±0.9 40Ar/39Ar 白云母 李鹏等,2017
      锂辉石钠长石伟晶岩 125.0±1.4 40Ar/39Ar 锂云母 李鹏等,2019
      锂辉石伟晶岩 130.75±0.84 40Ar/39Ar 白云母 刘翔等,2019
      伟晶岩 130.5±1.1 Re-Os 辉钼矿 周芳春等,2020
      微斜长石‒钠长伟晶岩 131.2±2.4 U-Pb 锆石 Li et al., 2020
      微斜长石‒钠长伟晶岩 133.3±2.6 U-Pb 铌钽铁矿 Li et al., 2020
      含铌钽铁矿伟晶岩 140.2±2.3 U-Pb 铌钽铁矿 Xiong et al., 2020
      东部 绿柱石伟晶岩 124.90±0.34 U-Pb 锆石 姜鹏飞等,2021
      白云母二长花岗岩 142.6±2.6 U-Pb 锆石 李安邦等,2021
      电气石白云母二长花岗岩 130.4±3.7 U-Pb 锆石 李安邦等,2021
      石榴子石白云母二长花岗岩 134.8±3.1 U-Pb 锆石 李安邦等,2021
      二云母二长花岗岩 139.30±0.16 U-Pb 锆石 刘翔等,2019
      二云母二长花岗岩 132.7±1.6 U-Pb 锆石 李安邦等,2021
      二云母二长花岗岩 145.8±0.9 U-Pb 锆石 Wang et al., 2014
      二云母二长花岗岩 131.8±1.5 U-Pb 锆石 Ji et al., 2017
      二云母二长花岗岩 127.0±1.6 U-Pb 锆石 Ji et al., 2017
      二云母二长花岗岩 143.5±1.8 U-Pb 锆石 Ji et al., 2017
      二云母二长花岗岩 138.3±0.3 U-Pb 锆石 Li et al., 2020
      二云母二长花岗岩 140.7±2.2 Th-Pb 独居石 Xiong et al., 2020
      二云母二长花岗岩 141.0±2.4 LA-ICP-MS 锆石 Xiong et al., 2020
      黑云母二长花岗岩 142.9±0.9 U-Pb 锆石 许畅等,2019
      黑云母二长花岗岩 146.2±0.2 U-Pb 锆石 李鹏等,2020
      黑云母二长花岗岩 151.0±2.7 U-Pb 锆石 李安邦等,2021
      黑云母二长花岗岩 148.3±1.4 U-Pb 锆石 Wang et al., 2014
      黑云母二长花岗岩 151.2±1.1 U-Pb 锆石 Ji et al., 2017
      黑云母二长花岗岩 151.4±1.1 U-Pb 锆石 Ji et al., 2017
      黑云母二长花岗岩 147.8±3.4 Th-Pb 独居石 Ji et al., 2018
      黑云母二长花岗岩 140.7±0.7 U-Pb 锆石 Li et al., 2020
      黑云母二长花岗岩 140.3±0.7 U-Pb 锆石 Li et al., 2020
      黑云母二长花岗岩 154.0±2.5 U-Pb 锆石 Xiong et al., 2020
      花岗闪长岩 151.5±1.3 U-Pb 锆石 Wang et al., 2014
      花岗闪长岩 149.0±1.0 U-Pb 锆石 Ji et al., 2017
      闪长岩 154.0±1.9 U-Pb 锆石 Wang et al., 2014
      下载: 导出CSV
    • Agangi, A., Kamenetsky, V. S., McPhie, J., 2010. The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in Felsic Magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3-4): 314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008
      Bartels, A., Holtz, F., Linnen, R. L., 2010. Solubility of Manganotantalite and Manganocolumbite in Pegmatitic Melts. American Mineralogist, 95(4): 537-544. https://doi.org/10.2138/am.2010.3157
      Charoy, B., Noronha, F., Lima, A., 2001. Spodumene Petalite Eucryptite: Mutual Relationships and Pattern of Alteration in Li-Rich Aplite Pegmatite Dykes from Northern Portugal. The Canadian Mineralogist, 39(3): 729-746. https://doi.org/10.2113/gscanmin.39.3.729
      Che, X. D., Wang, R. C., Wu, F. Y., et al., 2019. Episodic Nb-Ta Mineralisation in South China: Constraints from in Situ LA-ICP-MS Columbite-Tantalite U-Pb Dating. Ore Geology Reviews, 105: 71-85. https://doi.org/10.1016/j.oregeorev.2018.11.023
      Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U-Pb Isotopic Dating of Columbite-Tantalite by LA- ICP-MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008
      Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral-An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15.
      Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636
      Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
      Ji, W. B., Faure, M., Lin., W., et al., 2018. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research: Solid Earth, 123(1): 689-710. https://doi.org/10.1002/2017jb014597
      Jiang, P. F., Li, P., Li, J. K., et al., 2021. Zircon U-Pb Geochronology and Hf Isotopic Composition of Be-Pegmatites in Maiguo Deposit, Eastern Mufushan, and Their Geological Implications. Mineral Deposits, 40 (4): 723-739 (in Chinese with English abstract).
      Leng, S. L., Tan, C., Huang, J. M., et al., 2018. Metallogenic Law of Rare Metals in the Mufushan Granite Area. Resources Environment & Engineering, 32(3): 351-357 (in Chinese with English abstract).
      Li, A. B., Huang, Q., Feng, C., et al., 2021. Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith. Earth Science, 46(12): 4517-4532 (in Chinese with English abstract). doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112019
      Li, J. K., Liu, C. Y., Liu, X., et al., 2019. Tantalum and Niobium Mineralization from F- and Cl-Rich Fluid in the Lepidolite-Rich Pegmatite from the Renli Deposit in Northern Hunan, China: Constraints of Fluid Inclusions and Lepidolite Crystallization Experiments. Ore Geology Reviews, 115: 103187. https://doi.org/10.1016/j.oregeorev.2019.103187
      Li, J. K., Zou, T. R., Wang, D. H., et al., 2017. A Review of Beryllium Metallogenic Regularity in China. Mineral Deposits, 36 (4): 951-978 (in Chinese with English abstract).
      Li, J., Huang, X. L., He, P. L., et al., 2015. In Situ Analyses of Micas in the Yashan Granite, South China: Constraints on Magmatic and Hydrothermal Evolutions of W and Ta-Nb Bearing Granites. Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028
      Li, L. G., Wang, L. X., Tian, Y., et al., 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from in Situ Mineral Analysis. Earth Science, 44(7): 2532-2550 (in Chinese with English abstract).
      Li, P., Li, J. K., Chen, Z. Y., et al., 2021. Compositional Evolution of the Muscovite of Renli Pegmatite-Type Rare-Metal Deposit, Northeast Hunan, China: Implications for Its Petrogenesis and Mineralization Potential. Ore Geology Reviews, 138: 104380. https://doi.org/10.1016/j.oregeorev.2021.104380
      Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237
      Li, P., Li, J. K., Pei, R. F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence. Earth Science, 42(10): 1684-1696 (in Chinese with English abstract).
      Li, P, Liu, X., Li, J. K., et al., 2019. Petrographic and Geochemical Characteristics of Renli-Chuanziyuan No. 5 Pegmatite, NE Hunan, and Its Metallogenic Age. Acta Geologica Sinica, 93(6): 1374-1391 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.016
      Li, P., Zhou, F. C., Li, J. K., et al., 2020. Zircon U-Pb Ages and Hf Isotopic Compositions of the Concealed Granite of Renli-Chuanziyuan Deposit, NE Hunan and Geological Significance. Geotectonica et Metallogenia, 44(3): 486-500 (in Chinese with English abstract).
      Liu, X., Zhou, F. C., Li, P., et al., 2019. Geological Characteristics and Metallogenic Age of Renli Rare Metal Orefield in Hunan and Its Prospecting Significance. Mineral Deposits, 38(4): 771-791 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      London, D., 2018. Ore-Forming Processes within Granitic Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
      Lü, Z. H., Zhang, H., Tang, Y., 2021. Anatexis Origin of Rare Metal/Earth Pegmatites: Evidences from the Permian Pegmatites in the Chinese Altai. Lithos, 380-381: 105865. https://doi.org/10.1016/j.lithos.2020.105865
      Ludwig, K., 2010. Isoplot/Ex Version 4.1: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
      Monier, G., Robert, J. L., 1986. Evolution of the Miscibility Gap between Muscovite and Biotite Solid Solutions with Increasing Lithium Content: An Experimental Study in the System K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600 ℃, 2 kbar PH2O: Comparison with Natural Lithium Micas. Mineralogical Magazine, 50(358): 641-651. https://doi.org/10.1180/minmag.1986.050.358.09
      Robles, E. R., Pesquera, A., Crespo, P. G., et al., 2012. From Granite to Highly Evolved Pegmatite: A Case Study of the Pinilla de Fermoselle Granite-Pegmatite System (Zamora, Spain). Lithos, 153: 192-207. https://doi.org/10.1016/j.lithos.2012.04.027
      Romer, R. L., Lehmann, B., 1995. U-Pb Columbite Age of Neoproterozoic Ta-Nb Mineralization in Burundi. Economic Geology, 90(8): 2303-2309. https://doi.org/10.2113/gsecongeo.90.8.2303
      Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009. https://doi.org/10.1007/s00410-014-1009-3
      Stewart, D. B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63: 970-980.
      Tindle, A. G., Webb, P. C., 1990. Estimation of Lithium Contents in Trioctahedral Micas Using Microprobe Data: Application to Micas from Granitic Rocks. European Journal of Mineralogy, 2(5): 595-610. https://doi.org/10.1127/ejm/2/5/0595
      Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(408): 809-834.
      Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.003
      Wang, D. H., Zou, T. R., Xu, Z. G., et al., 2004. Advance in the Study of Using Pegmatite Deposits as the Tracer of Orogenic Process. Advance in Earth Sciences, 19(4): 614-620 (in Chinese with English abstract).
      Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206-207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026
      Wang, R. C., Che, X. D., Wu, B., et al., 2020. Critical Mineral Resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763-3777 (in Chinese). doi: 10.1360/TB-2020-0271
      Wang, R. C., Che, X. D., Zhang, W. L., et al., 2009. Geochemical Evolution and Late Re-Equilibration of Na-Cs-Rich Beryl from the Koktokay #3 Pegmatite (Altai, NW China). European Journal of Mineralogy, 21(4): 795-809. https://doi.org/10.1127/0935-1221/2009/0021-1936
      Wang, R. C., Wu, B., Xie, L., et al., 2021. Global Tempo-Spatial Distribution of Rare-Metal Mineralization and Continental Evolution. Acta Geologica Sinica, 95(1): 182-193 (in Chinese with English abstract).
      Wang, Z., Chen, Z. Y., Li, J. K., et al., 2019. Indication of Mica Minerals for Magmatic-Hydrothermal Evolution of Renli Rare Metal Pegmatite Deposit. Mineral Deposits, 38(5): 1039-1052 (in Chinese with English abstract).
      Xiong, Y. Q., Jiang, S. Y., Wen, C. H., et al., 2020. Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China: Constraints from U-Th-Pb Geochronology of Coltan, Monazite, and Zircon. Lithos, 358-359: 105422. https://doi.org/10.1016/j.lithos.2020.105422
      Xu, C., Li, J. K., Shi, G. H., et al., 2019. Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications. Mineral Deposits, 38(5): 1053-1068 (in Chinese with English abstract).
      Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
      Yang, H., Chen, Z. Y., Li, J. K., et al., 2019. Relationship between the Mineralization and the Evolution of Mica and Feldspar Components of Renli-Chuanziyuan No. 5 Pegmatite, Northeast Hunan. Mineral Deposits, 38(4): 851-866 (in Chinese with English abstract).
      Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41
      Zhang, R. B., 1985. Petalite was Found in Lithium Pegmatite in Hubei Province. Chinese Science Bulletin, 30(11): 852-854 (in Chinese). doi: 10.1360/csb1985-30-11-852
      Zhang, Y. Y., Zhang, R. B., 2008. The Discovery of Spodumene in Petalite Pegmatite, Tongcheng, Hubei China. Journal of Mineralogy and Petrology, 28(3): 37-40 (in Chinese with English abstract).
      Zhou, F. C., Huang, Z. B., Liu, X., et al., 2020. Re-Os Dating of Molybdenite from the Renli Nb-Ta Deposit, Hunan Province, and Its Geological Significance. Geotectonica et Metallogenia, 44(3): 476-485 (in Chinese with English abstract).
      Zhou, F. C., Li, J. K., Liu, X., et al., 2019. Geochemical Characteristics and Genetic Significance of Ore Bodies in Renli Nb-Ta Deposit, Hunan Province. Acta Geologica Sinica, 93(6): 1392-1404 (in Chinese with English abstract).
      Zhou, F. C., Li, P., Liu, X., et al., 2021. Petrographic and Mineralogical Characteristics of Renli Rare Metal Deposit in Hunan Province and Their Geological Implications: A Case Study of Drill Hole ZK708 of the No. 5 Vein. Mineral Deposits, 40(4): 753-775 (in Chinese with English abstract).
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      姜鹏飞, 李鹏, 李健康, 等, 2021. 幕阜山东部麦埚铍矿床伟晶岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 40 (4): 723-739. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104005.htm
      冷双梁, 谭超, 黄景孟, 等, 2018. 幕阜山花岗岩地区稀有金属成矿规律初探. 资源环境与工程, 32(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201803005.htm
      李安邦, 黄勤, 冯超, 等, 2021. 幕阜山复式花岗岩体锆石年代与微量元素对伟晶岩矿床成因的限定. 地球科学, 46(12): 4517-4532. doi: 10.3799/dqkx.2021.065
      李建康, 邹天人, 王登红, 等, 2017. 中国铍矿成矿规律. 矿床地质, 36(4): 951-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202302003.htm
      李乐广, 王连训, 田洋, 等, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550. doi: 10.3799/dqkx.2018.378
      李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696. doi: 10.3799/dqkx.2017.114
      李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里‒传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代. 地质学报, 93(6): 1374-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906016.htm
      李鹏, 周芳春, 李建康, 等, 2020. 湘东北仁里‒传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 大地构造与成矿学, 44(3): 486-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003013.htm
      刘翔, 周芳春, 李鹏, 等, 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771-791. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htm
      毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
      王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906003.htm
      王登红, 邹天人, 徐志刚, 等, 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404019.htm
      王汝成, 车旭东, 邬斌, 等, 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763-3777. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033011.htm
      王汝成, 邬斌, 谢磊, 等, 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101013.htm
      王臻, 陈振宇, 李建康, 等, 2019. 云母矿物对仁里稀有金属伟晶岩矿床岩浆‒热液演化过程的指示. 矿床地质, 38(5): 1039-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905006.htm
      许畅, 李建康, 施光海, 等, 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905007.htm
      徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      杨晗, 陈振宇, 李建康, 等, 2019. 湘东北仁里‒传梓源5号伟晶岩脉云母和长石成分的演化与成矿作用的关系. 矿床地质, 38(4): 851-866. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904011.htm
      张如柏, 1985. 湖北锂伟晶岩中发现透锂长石. 科学通报, 30(11): 852-854. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198511015.htm
      张玉玉, 张如柏, 2008. 湖北通城透锂长石伟晶岩中锂辉石的发现. 矿物岩石, 28(3): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200803007.htm
      周芳春, 黄志飚, 刘翔, 等, 2020. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义. 大地构造与成矿学, 44(3): 476-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003012.htm
      周芳春, 李建康, 刘翔, 等, 2019. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义. 地质学报, 93(6): 1392-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906017.htm
      周芳春, 李鹏, 刘翔, 等, 2021. 湖南仁里稀有金属矿床岩相学和矿物学特征及其地质意义: 以5号脉ZK708号钻孔为例. 矿床地质, 40(4): 753-775. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202104007.htm
    • dqkxzx-48-9-3221-附表.xlsx
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  798
    • HTML全文浏览量:  565
    • PDF下载量:  152
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-25
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回