• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温地热生产井碳酸钙结垢定量评价:水文地球化学——以西藏羊八井为例

    雷宏武 白冰 崔银祥 谢迎春 李进 侯学文

    雷宏武, 白冰, 崔银祥, 谢迎春, 李进, 侯学文, 2023. 高温地热生产井碳酸钙结垢定量评价:水文地球化学——以西藏羊八井为例. 地球科学, 48(3): 935-945. doi: 10.3799/dqkx.2022.163
    引用本文: 雷宏武, 白冰, 崔银祥, 谢迎春, 李进, 侯学文, 2023. 高温地热生产井碳酸钙结垢定量评价:水文地球化学——以西藏羊八井为例. 地球科学, 48(3): 935-945. doi: 10.3799/dqkx.2022.163
    Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945. doi: 10.3799/dqkx.2022.163
    Citation: Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945. doi: 10.3799/dqkx.2022.163

    高温地热生产井碳酸钙结垢定量评价:水文地球化学——以西藏羊八井为例

    doi: 10.3799/dqkx.2022.163
    基金项目: 

    国家自然科学基金项目 41972316

    四川省科技创新人才项目 2022JDRC0027

    详细信息
      作者简介:

      雷宏武(1985-),男,助理研究员,博士,从事地热和CO2地质封存方面研究.ORCID:0000-0002-8489-3437. E-mail:hongwulei2008@aliyun.com

    • 中图分类号: P314;P641;P592

    Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet

    • 摘要: 高温地热井井筒结垢是地热开发遇到的突出问题之一,其中涉及到复杂的水文地球化学过程.本文首先联合井筒两相流动、水‒气‒结垢物水文地球化学和井壁粘附模型,建立了井筒碳酸钙结垢定量评价的耦合模型.针对西藏羊八井地热田典型井开展了井口取样和分析,结果显示井筒结垢物为碳酸钙,地热流体中碳酸盐矿物过饱和,非凝结气体主要成分是CO2.利用建立的耦合模型及实测流体数据,定量评价了井筒碳酸钙的结垢位置和速率,并给出了其在井筒中的结垢形状.CO2分压对碳酸钙的析出有控制性的作用,最大结垢厚度位置发生在闪蒸面以上10~20 m位置,持续1年的开采最大结垢厚度在考虑井筒粘附动力学时为14~25 mm,假设完全粘附条件下为200 mm.流体中CO2含量越高,结垢厚度也越大.

       

    • 图  1  井筒碳酸钙结垢概念图

      Fig.  1.  Conceptual map for calcite scaling in wellbores

      图  2  井筒碳酸钙结垢计算流程

      Fig.  2.  Calculated flowchart for wellbore calcite scaling

      图  3  羊八井地热田井筒结垢:(a)井口结垢物,(b)分离器中获取的结垢物

      Fig.  3.  Wellbore scaling in the Yangbajing geothermal field: (a) wellhead scaling, (b) scaled mineral from the separator

      图  4  不同CO2分压条件下井底Ca浓度和pH

      Fig.  4.  Calculated Ca concentration and pH at different CO2 partial pressures

      图  5  水中Ca浓度沿井筒分布

      Fig.  5.  Profile of Ca concentration along the wellbore

      图  6  水中pH沿井筒分布

      Fig.  6.  Profile of pH along the wellbore

      图  7  井底CO2质量含量为0.04%情况下的结垢厚度:(a)采用结垢粘附模型,(b)析出的结垢物假设全粘附

      Fig.  7.  Scaling thickness with 0.04% CO2 content: (a) with the adhesion model, (b) with completed adhesion

      图  8  井底CO2质量含量为0.08%情况下的结垢厚度:(a)采用结垢粘附模型,(b)析出的结垢物假设全粘附

      Fig.  8.  Scaling thickness with 0.08% CO2 content: (a) with the adhesion model, (b) with completed adhesion

      表  1  水样测试和分析结果

      Table  1.   Water samples test and analysis results

      项目 ZK304 ZK303 ZK324
      现场测量
      T(oC) 85.6 84.7 85.0
      EC (mS/cm) 2.32 2.38 2.35
      Ca (mg/L) 1.80 1.44 1.76
      pHa 8.55 8.63 8.56
      HCO3- (mg/L) 190.3(258.49b) 248.9(347.73 b) 249.3(345.39 b)
      CO32- (mg/L) 163.2(8.30 b) 124.8(11.16 b) 105.6(11.09 b)
      水中主要成分(mg/L)
      Na 347.8 400.9 389.8
      K 43.2 50.0 48.0
      Ca 1.52 1.52 1.57
      Mg 0.28 0.10 0.13
      Cl 406.5 441.7 422.4
      SO4 48.3 52.0 51.3
      SiO2 193.3 225.9 214.3
      Li 8.87 10.3 9.81
      F 11.5 12.5 12.3
      Br 1.62 1.16 2.02
      TDS 1 200.42 1 381.06 1 335.40
      非凝结气体体积含量(%)
      CO2 97.72 99.35 94.77
      N2 1.52 0.01 5.08
      H2S 0.71 0.59 0.07
      CH4 0.05 0.05 0.08
      典型矿物饱和指数(SI)
      碳酸钙 0.23 0.38 0.36
      白云石 1.41 1.32 1.36
      石膏 -3.69 -3.75 -3.71
      水化学分类
      Cl·HCO3-Na Cl·HCO3-Na Cl·HCO3-Na
      注:a在现场采样温度下测量;b理论计算.室内实测在中国地质大学(武汉)生物地质与环境地质国家重点实验室进行.
      下载: 导出CSV

      表  2  井下流体样品的基本测试结果

      Table  2.   Basic analysis results of downhole fluid samples

      井号 取样时间 井下深度
      (m)
      温度(℃) pH Ca浓度
      (mg/L)
      ZK319 1983/08/21 100 5.74 15.2
      ZK323 1984/06/07 140 141 5.73 14.0
      ZK303 1984/07/07 260 161 6.54 24.4
      ZK306 1983/09/08 153 6.30 10.3
      ZK321 1984/07/07 120 152 6.17 13.0
      ZK313 1984/08/06 60 139 6.35 13.2
      ZK327 1984/08/11 70 154 6.11 14.5
      ZK335 1984/08/16 90 158 6.26 14.0
      ZK325 1984/08/21 90 160 6.07 12.7
      ZK328 1984/09/05 70 158 5.98 13.6
      平均值 152.9 6.13 14.49
      下载: 导出CSV

      表  3  井底流体化学组分计算结果

      Table  3.   Calculated results of chemical composition of the downhole fluid

      组分 CO2分压为1 bar CO2分压为2 bar
      浓度(mol/kg) 元素占比(%) 浓度(mol/kg) 元素占比(%)
      Na
      Na+ 1.50×10-2 99.2 1.50×10-2 99.2
      NaCl(aq) 7.50×10-5 0.5 7.48×10-5 0.5
      NaHCO3(aq) 1.17×10-5 0.1 1.21×10-5 0.1
      NaSO4- 3.74×10-5 0.2 3.66×10-5 0.2
      K
      K+ 1.09×10-3 99.1 1.09×10-3 99.1
      KCl(aq) 2.42×10-6 0.2 2.41×10-6 0.2
      KSO4- 8.21×10-6 0.7 8.04×10-6 0.7
      Ca
      Ca2+ 9.82×10-5 70.7 1.85×10-4 71.4
      CaCO3(aq) 4.09×10-6 2.9 4.09×10-6 1.6
      CaHCO3+ 2.72×10-5 19.6 5.29×10-5 20.4
      CaSO4(aq) 8.64×10-6 6.2 1.59×10-5 6.1
      CaCl+ 6.29×10-7 0.5 1.18×10-6 0.5
      Mg
      Mg2+ 4.37×10-6 38.0 4.42×10-6 38.5
      MgCl+ 1.04×10-7 0.9 1.04×10-7 0.9
      MgHCO3+ 1.27×10-6 11.0 1.32×10-6 11.5
      MgCO3(aq) 3.24×10-8 0.3 1.74×10-8 0.2
      MgSO4(aq) 5.69×10-6 49.5 5.62×10-6 48.9
      Li
      Li+ 1.28×10-3 99.9 1.27×10-3 99.9
      LiCl(aq) 1.41×10-6 0.1 1.40×10-6 0.1
      C
      CO2(aq) 8.94×10-3 54.6 1.79×10-2 69.9
      HCO3- 7.38×10-3 45.1 7.63×10-3 29.8
      CaHCO3+ 2.72×10-5 0.2 5.29×10-5 0.2
      S
      SO42- 4.42×10-4 87.9 4.35×10-4 86.6
      CaSO4(aq) 8.64×10-6 1.7 1.59×10-5 3.2
      KSO4- 8.21×10-6 1.6 8.04×10-6 1.6
      MgSO4(aq) 5.69×10-6 1.1 5.62×10-6 1.1
      NaSO4- 3.74×10-5 7.4 3.66×10-5 7.3
      Cl
      Cl- 1.14×10-2 100 1.14×10-2 100
      Si
      SiO2(aq) 3.18×10-3 98.8 3.20×10-3 99.4
      H3SiO4- 1.15×10-5 0.4 5.99×10-6 0.2
      HSiO3- 2.19×10-5 0.7 1.14×10-5 0.4
      下载: 导出CSV
    • Abouie, A., Korrani, A. K., Shirdel, M., et al., 2017. Comprehensive Modeling of Scale Deposition by Use of a Coupled Geochemical and Compositional Wellbore Simulator. SPE Journal, 22(4): 1225-1241. https://doi.org/10.2118/185942-pa
      Akın, T., Kargı, H., 2019. Modeling the Geochemical Evolution of Fluids in Geothermal Wells and Its Implication for Sustainable Energy Production. Geothermics, 77: 115-129. https://doi.org/10.1016/j.geothermics.2018.09.003
      Alhosani, A., Daraboina, N., 2020. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels, 34(2): 1720-1727. https://doi.org/10.1021/acs.energyfuels.9b04287
      Benoit, W. R., 1989. Carbonate Scaling Characteristics in Dixie Valley, Nevada Geothermal Wellbores. Geothermics, 18(1-2): 41-48. https://doi.org/10.1016/0375-6505(89)90008-4
      Björnsson, G., 1987. A Multi-Feedzone Geothermal Wellbore Simulator (Dissertation). Lawrence Berkeley Laboratory, Berkeley.
      Charlton, S. R., Parkhurst, D. L., 2011. Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages. Computers & Geosciences, 37(10): 1653-1663. https://doi.org/10.1016/j.cageo.2011.02.005
      Cleaver, J. W., Yates, B., 1975. A Sub Layer Model for the Deposition of Particles from a Turbulent Flow. Chemical Engineering Science, 30(8): 983-992. https://doi.org/10.1016/0009-2509(75)80065-0
      Coelho, F. M. C., Sepehrnoori, K., Ezekoye, O. A., 2021. Coupled Geochemical and Compositional Wellbore Simulators: A Case Study on Scaling Tendencies under Water Evaporation and CO2 Dissolution. Journal of Petroleum Science and Engineering, 202: 108569. https://doi.org/10.1016/j.petrol.2021.108569
      Demir, M. M., Baba, A., Atilla, V., et al., 2014. Types of the Scaling in Hyper Saline Geothermal System in Northwest Turkey. Geothermics, 50: 1-9. https://doi.org/10.1016/j.geothermics.2013.08.003
      Dobson, P. F., Salah, S., Spycher, N., et al., 2004. Simulation of Water-Rock Interaction in the Yellowstone Geothermal System Using TOUGHREACT. Geothermics, 33(4): 493-502. https://doi.org/10.1016/j.geothermics.2003.10.002
      Fukuyama, M., Chen, F. Y., 2021. Geochemical Characteristics of Silica Scales Precipitated from the Geothermal Fluid at the Onuma Geothermal Power Plant in Japan. Journal of Mineralogical and Petrological Sciences, 116(3): 159-169. https://doi.org/10.2465/jmps.201130b
      Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop, Auckland.
      Guo, Q. H., Yang, C., 2021. Tungsten Anomaly of the High-Temperature Hot Springs in the Daggyai Hydrothermal Area, Tibet, China. Earth Science, 46(7): 2544-2554 (in Chinese with English abstract).
      Iceland Water Chemistry Group, 2010. The Chemical Speciation Program WATCH, Version 2.4. website: ÍSOR - Iceland GeoSurvey, Reykjavik. www.geothermal.is/software.
      Jamialahmadi, M., Soltani, B., Müller-Steinhagen, H., et al., 2009. Measurement and Prediction of the Rate of Deposition of Flocculated Asphaltene Particles from Oil. International Journal of Heat and Mass Transfer, 52(19-20): 4624-4634. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.049
      Jones, B., Renaut, R. W., 1998. Origin of Platy Calcite Crystals in Hot-Spring Deposits in the Kenya Rift Valley. Journal of Sedimentary Research, 68(5): 913-927. https://doi.org/10.2110/jsr.68.913
      Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934 (in Chinese with English abstract).
      Li, Y. M., Pang, Z. H., 2018. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System. Advances in New and Renewable Energy, 6(4): 274-281 (in Chinese with English abstract).
      Li, Y. M., Pang, Z. H., Galeczka, I. M., 2020. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Well in the Kangding Geothermal Field of Eastern Himalayan Syntax. Geothermics, 87: 101844. https://doi.org/10.1016/j.geothermics.2020.101844
      McLin, K. S., Moore, J. N., Bowman, J. R., et al., 2012. Mineralogy and Fluid Inclusion Gas Chemistry of Production Well Mineral Scale Deposits at the Dixie Valley Geothermal Field, USA. Geofluids, 12(3): 216-227. https://doi.org/10.1111/j.1468-8123.2012.00363.x
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U. S. Geological Survey, Denver.
      Sun, B. D., Yuan, Y. F., 1987. Study on Preventing Scaling and Descaling of Geothermal Fluid. Thermal Power Generation, 16(4): 15-19 (in Chinese).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Wang, Y. X., Liu, S. L., Bian, Q. Y., et al., 2015. Scaling Analysis of Geothermal Well from Ganzi and Countermeasures for Anti-Scale. Advances in New and Renewable Energy, 3(3): 202-206 (in Chinese with English abstract).
      Wanner, C., Eichinger, F., Jahrfeld, T., et al., 2017. Causes of Abundant Calcite Scaling in Geothermal Wells in the Bavarian Molasse Basin, Southern Germany. Geothermics, 70: 324-338. https://doi.org/10.1016/j.geothermics.2017.05.001
      Watkinson, A. P., 1970. Particulate Fouling of Sensible Heat Exchangers. University of British Columbia, Vancouver.
      Wei, M. H., Tian, T. S., Sun, Y. D., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding County of Sichuan. Hydrogeology & Engineering Geology, 39(5): 132-138 (in Chinese with English abstract).
      Xu, T. F., Feng, G. H., Shi, Y., 2014. On Fluid-Rock Chemical Interaction in CO2-Based Geothermal Systems. Journal of Geochemical Exploration, 144: 179-193. https://doi.org/10.1016/j.gexplo.2014.02.002
      Xu, T. F., Ontoy, Y., Molling, P., et al., 2004. Reactive Transport Modeling of Injection Well Scaling and Acidizing at Tiwi Field, Philippines. Geothermics, 33(4): 477-491. https://doi.org/10.1016/j.geothermics.2003.09.012
      Xu, T. F., Sonnenthal, E., Spycher, N., et al., 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
      Xu, T. F., Spycher, N., Sonnenthal, E., et al., 2011. TOUGHREACT Version 2.0: A Simulator for Subsurface Reactive Transport under Non-Isothermal Multiphase Flow Conditions. Computers & Geosciences, 37(6): 763-774. https://doi.org/10.1016/j.cageo.2010.10.007
      Yu, Y., Zhou, X., Fang, B., 2007. Judgement and Analysis of the Scaling Trend of Thermal Groundwater in Beijing's Urban Geothermal Fields. City Geology, 2(2): 14-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-1903.2007.02.003
      Zhang, H., Hu, Y. Z., Yun, Z. H., et al., 2016. Applying Hydro-Geochemistry Simulating Technology to Study Scaling of the High-Temperature Geothermal Well in Kangding County. Advances in New and Renewable Energy, 4(2): 111-117 (in Chinese with English abstract).
      Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7229.2003.10.001
      Zolfagharroshan, M., Khamehchi, E., 2020. A Rigorous Approach to Scale Formation and Deposition Modelling in Geothermal Wellbores. Geothermics, 87: 101841. https://doi.org/10.1016/j.geothermics.2020.101841
      郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常. 地球科学, 46(7): 2544-2554. doi: 10.3799/dqkx.2020.287
      雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934.
      李义曼, 庞忠和, 2018. 地热系统碳酸钙垢形成原因及定量化评价. 新能源进展, 6(4): 274-281. doi: 10.3969/j.issn.2095-560X.2018.04.004
      孙本达, 袁义方, 1987. 防止地热流体结垢和除垢的研究. 热力发电, 16(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD198704002.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      王延欣, 刘世良, 边庆玉, 等, 2015. 甘孜地热井结垢分析及防垢对策. 新能源进展, 3(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201503007.htm
      韦梅华, 田廷山, 孙燕冬, 等, 2012. 四川省康定地区地热水结垢趋势分析. 水文地质工程地质, 39(5): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205025.htm
      于湲, 周训, 方斌, 2007. 北京城区地下热水结垢趋势的判断和分析. 城市地质, 2(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ200702005.htm
      张恒, 胡亚召, 云智汉, 等, 2016. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用. 新能源进展, 4(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201602006.htm
      周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS200310001.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  731
    • HTML全文浏览量:  738
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-25
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回