• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温地热生产井碳酸钙结垢定量评价:两相流动——以西藏羊八井为例

    雷宏武 白冰 崔银祥 谢迎春 李进 侯学文

    雷宏武, 白冰, 崔银祥, 谢迎春, 李进, 侯学文, 2023. 高温地热生产井碳酸钙结垢定量评价:两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934. doi: 10.3799/dqkx.2022.164
    引用本文: 雷宏武, 白冰, 崔银祥, 谢迎春, 李进, 侯学文, 2023. 高温地热生产井碳酸钙结垢定量评价:两相流动——以西藏羊八井为例. 地球科学, 48(3): 923-934. doi: 10.3799/dqkx.2022.164
    Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934. doi: 10.3799/dqkx.2022.164
    Citation: Lei Hongwu, Bai Bing, Cui Yinxiang, Xie Yingchun, Li Jin, Hou Xuewen, 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 923-934. doi: 10.3799/dqkx.2022.164

    高温地热生产井碳酸钙结垢定量评价:两相流动——以西藏羊八井为例

    doi: 10.3799/dqkx.2022.164
    基金项目: 

    国家自然科学基金项目 41972316

    四川省科技创新人才项目 2022JDRC0027

    详细信息
      作者简介:

      雷宏武(1985-),男,助理研究员,博士,从事地热和CO2地质封存方面研究. ORCID:0000-0002-8489-3437.E-mail:hongwulei2008@aliyun.com

      通讯作者:

      谢迎春, ORCID:0000-0001-8484-8495. E-mail: xieyc01@cnnp.com.cn

    • 中图分类号: P314;P641

    Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Two-Phase Flow—Application to the Yangbajing Geothermal Fields, Tibet

    • 摘要: 高温地热生产井碳酸钙结垢定量评价涉及到复杂的物理和化学过程,其中井筒中的两相流研究是评价的基础.本文首先基于质量守恒、能量守恒和动量守恒方程,建立了CO2-H2O体系井筒两相相变稳定流动模型,提出了稳健的求解方法,并验证了其计算结果的可靠性.然后,在西藏羊八井地热田典型井开展了静止和放喷状态下的井筒中的温度和压力测试,并结合放喷试验,采用开发的模型成功评价了高温地热生产井筒两相流动过程.结果显示:气相和液相之间的速度差对井筒中温度和压力的分布有决定性的影响,不考虑气相和液体之间的速度差,会使模型计算结果远远偏离测量值.在开采速率19.10 kg/s的条件下,计算的井口温度和压力分别约为128 ℃和2.6 bar;井口的气相质量分数在6%~7%之间,对应的井口气相饱和度约为0.84;从闪蒸点往上大概20~30 m气相和液相中CO2质量分数变化较为剧烈,也是碳酸钙结垢严重井段.

       

    • 图  1  计算流程

      Fig.  1.  Flowchart of calculation

      图  2  程序可靠性验证:(a)、(b)和(c)为与Khasani et al.(2021)的对比,(d)和(e)为与T2Well-EWASG(Vasini et al., 2018)的对比

      Fig.  2.  Verification of the code: comparison (a, b and c) with Khasani et al.(2021) and comparison (d and e) with T2Well-EWASG(Vasini et al., 2018)

      图  3  研究区位置和地质概况:(a)平面,(b)剖面

      根据许多龙等(2018)多吉(2003)修改

      Fig.  3.  The location and geological profile of the study area: (a) plan, (b) cross section

      图  4  温度和压力测试结果:(a)压力,(b)温度

      Fig.  4.  Temperature and pressure measured results: (a) pressure, (b) temperature

      图  5  测试条件下井筒相态特征

      Fig.  5.  Phase state along the wellbore under test condition

      图  6  模型计算与测试结果对比: 均质速度模型(a)压力,(b)温度,漂移流(DFM)模型(c)压力,(d)温度

      Fig.  6.  Comparison of calculation and measurement: (a) pressure and (b) temperature with homogeneous model, (c) pressure and (d) temperature with DFM model

      图  7  模型计算结果:(a)气相质量分数,(b)气相体积分数,(c)气相中CO2的质量分数,(d)液相中CO2的质量分数,(e)气体速度,(f)液体速度

      Fig.  7.  Calculated results: (a) gas mass fraction, (b) gas volume fraction, (c) CO2 mass fraction in the gas phase, (d) CO2 mass fraction in the liquid phase, (e) gas velocity, (f) liquid velocity

      表  1  井口蒸汽组分特征(Zhao et al., 1998)

      Table  1.   Wellhead steam composition characteristics (Zhao et al., 1998)

      井名 蒸汽中CO2含量
      (mmol/kg)
      非凝析气体体积含量(%)
      CO2 N2 O2 H2S H2 Ar
      ZK303 66.1 (0.29%)a 92.7 5.02 0.92 0.23 0.034 0.14
      ZK304 26.4 (0.12%) a 93.8 4.67 0.47 0.33 0.041 0.47
      ZK309 34.0 (0.15%) a 85.7 11.7 2.28 0.27 0.028 0.21
      ZK313 21.6 (0.10%) a 81.3 15.6 1.96 0.43 0.035 0.23
      ZK325 21.4 (0.10%) a 92.5 6.17 0.59 0.22 0.035 0.16
      注:数据在一个大气压下测量;a括号中的数值为换算的CO2质量分数.
      下载: 导出CSV

      表  2  流动模型参数

      Table  2.   Model parameters for flow

      参数 取值
      井筒套管长度(m) 120
      井筒直径(m) 0.34
      套管底部位置压力(bar) 7.31
      套管底部位置温度(℃) 154.3
      质量速率(kg/s) 19.10
      套管底部位置CO2质量分数 三种情况:饱和CO2含量,饱和CO2含量的一半和没有CO2
      套管摩擦系数(m) 4.5×10-5
      下载: 导出CSV
    • Barelli, A., Corsi, R., Del Pizzo, G., et al., 1982. A Two-Phase Flow Model for Geothermal Wells in the Presence of Non-Condensable Gas. Geothermics, 11(3): 175-191. https://doi.org/10.1016/0375-6505(82)90026-8
      Battistelli, A., Calore, C., Pruess, K., 1997. The Simulator TOUGH2/EWASG for Modelling Geothermal Reservoirs with Brines and Non-Condensible Gas. Geothermics, 26(4): 437-464. https://doi.org/10.1016/S0375-6505(97)00007-2
      Bertani, R., 2012. Geothermal Power Generation in the World 2005-2010 Update Report. Geothermics, 41: 1-29. https://doi.org/10.1016/j.geothermics.2011.10.001
      Bu, X. B., Guo, Z. P., Wang, L. B., 2021. Process Simulation of Geothermal Fluid Flow in Wellbore and Calcium Carbonate Scaling. Advances in New and Renewable Enengy, 9(5): 434-442 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-560X.2021.05.010
      China Geological Survey of Natural Resources Ministry, Department of New and Renewable Energy of National Energy Administration, Chinese Academy of Science and Technolgy for Development, et al., 2018. China Geothermal Energy Development Report (2018). China Petrochemical Press, Beijing (in Chinese).
      Duo, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field: A Typical High Temperature Geothermal System. Engineering Science, 5(1): 42-47 (in Chinese with English abstract).
      Gunn, C., Freeston, D., 1991. An Integrated Steady-State Wellbore Simulation and Analysis Package. The 13th New Zealand Geothermal Workshop. Auckland.
      Guo, Q. H., Wang, Y. X., 2009. Trace Element Hydrochemistry Indicating Water Contamination in and around the Yangbajing Geothermal Field, Tibet, China. Bulletin of Environmental Contamination and Toxicology, 83(4): 608-613. https://doi.org/10.1007/s00128-009-9812-7
      He, Y. J., Liu, X., Xing, L. X., et al., 2021. Scaling Process Simulation and Anti-Scaling Measures of Karst Geothermal Field in Baoding of Hebei. Earth Science Frontiers, 29(4): 430-437 (in Chinese with English abstract).
      Khasani, Deendarlianto, Itoi, R., 2021. Numerical Study of the Effects of CO2 Gas in Geothermal Water on the Fluid-Flow Characteristics in Production Wells. Engineering Applications of Computational Fluid Mechanics, 15(1): 111-129. https://doi.org/10.1080/19942060.2020.1862709
      Lei, H. W., Bai, B., Cui, Y. X., et al., 2023. Quantitative Assessment of Calcite Scaling of a High Temperature Geothermal Production Well: Hydrogeochemistry—Application to the Yangbajing Geothermal Fields, Tibet. Earth Science, 48(3): 935-945 (in Chinese with English abstract).
      Lei, H. W., Cai, Y. N., Lu, M., et al., 2020. A Study on the Thermal-Hydrodynamical-Coupled CO2 Flow Process in the Ordos CCS-Geological-Formation. International Journal of Greenhouse Gas Control, 95: 102999. https://doi.org/10.1016/j.ijggc.2020.102999
      Lu, M., Connell, L. D., 2014a. The Transient Behaviour of CO2 Flow with Phase Transition in Injection Wells during Geological Storage-Application to a Case Study. Journal of Petroleum Science and Engineering, 124: 7-18. https://doi.org/10.1016/j.petrol.2014.09.024
      Lu, M., Connell, L. D., 2014b. Transient, Thermal Wellbore Flow of Multispecies Carbon Dioxide Mixtures with Phase Transition during Geological Storage. International Journal of Multiphase Flow, 63: 82-92. https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.002
      Lund, J. W., 2008. Development and Utilization of Geothermal Resources. In: Goswami, D. Y., Zhao, Y., eds., Proceedings of ISES World Congress 2007 (Vol. I-Vol. V). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75997-3_13
      Lund, J. W., Freeston, D. H., Boyd, T. L., 2011. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics, 40(3): 159-180. https://doi.org/10.1016/j.geothermics.2011.07.004
      Pan, L. H., Oldenburg, C. M., 2014. T2Well—An Integrated Wellbore-Reservoir Simulator. Computers & Geosciences, 65: 46-55. https://doi.org/10.1016/j.cageo.2013.06.005
      Shi, H., Holmes, J. A., Durlofsky, L. J., et al., 2005. Drift-Flux Modeling of Two-Phase Flow in Wellbores. SPE Journal, 10(1): 24-33. https://doi.org/10.2118/84228-pa
      Vasini, E. M., Battistelli, A., Berry, P., et al., 2018. Interpretation of Production Tests in Geothermal Wells with T2Well-EWASG. Geothermics, 73: 158-167. https://doi.org/10.1016/j.geothermics.2017.06.005
      Wang, G. L., Zhang, W., Liang, J. Y., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resource along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Xu, D. L., Jing, T. Y., Tan, J. Q., 2018. Analysis of Production Wells Monitoring and Its Impacts in Yangbajing Geothermal Field. Sino-Global Energy, 23(12): 22-28 (In Chinese with English abstract).
      Zhang, L., Chen, S., Zhang, C., 2019. Geothermal Power Generation in China: Status and Prospects. Energy Science & Engineering, 7(5): 1428-1450. https://doi.org/10.1002/ese3.365
      Zhao, P., Duo, J., Liang, T. L., et al., 1998. Characteristics of Gas Geochemistry in Yangbajing Geothermal Field, Tibet. Chinese Science Bulletin, 43(21): 1770-1777. https://doi.org/10.1007/BF02883369
      Zhou, D. J., 2003. Operation, Problems and Countermeasures of Yangbajing Geothermal Power Station in Tibet. Electric Power Construction, 24(10): 1-3, 9 (In Chinese with English abstract).
      Zuber, N., Findlay, J. A., 1965. Average Volumetric Concentration in Two-Phase Flow Systems. Journal of Heat Transfer, 87(4): 453-468. https://doi.org/10.1115/1.3689137
      卜宪标, 郭志鹏, 王令宝, 2021. 地热流体在井筒中的流动及碳酸钙结垢过程模拟. 新能源进展, 9(5): 434-442. doi: 10.3969/j.issn.2095-560X.2021.05.010
      自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等, 2018. 中国地热能发展报告(2018). 北京: 中国石化出版社.
      多吉, 2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学, 5(1): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200301007.htm
      何雨江, 刘肖, 邢林啸, 等, 2021. 河北保定岩溶地热结垢过程模拟及防垢对策. 地学前缘, 29(4): 430-437. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204035.htm
      雷宏武, 白冰, 崔银祥, 等, 2023. 高温地热生产井碳酸钙结垢定量评价: 水文地球化学——以西藏羊八井为例. 地球科学, 48(3): 935-945.
      王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力, 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      许多龙, 荆铁亚, 谭金群, 2018. 羊八井热田生产井监测及变化影响分析. 中外能源, 23(12): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201812004.htm
      周大吉, 2003. 西藏羊八井地热发电站的运行、问题及对策. 电力建设, 24(10): 1-3, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS200310001.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  702
    • HTML全文浏览量:  656
    • PDF下载量:  80
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-05
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回