Petrogenesis and Geodynamic Processes of the Mamba Granodiorite, Central Lhasa Block, Xizang
-
摘要: 为了探讨拉萨地块晚白垩世岩浆作用的深部动力学机制,对中拉萨地块南缘门巴花岗闪长岩开展了岩相学、年代学、岩石地球化学及矿物化学研究. LA-ICP-MS锆石U-Pb定年表明门巴花岗闪长岩侵位于晚白垩世(83.2 Ma±0.9 Ma). 岩石地球化学特征显示门巴花岗闪长岩为埃达克质岩石,电子探针数据揭示斜长石属于中-奥长石(An:16.2~34.7). 综合分析本文认为门巴花岗闪长岩的母岩浆为幔源镁铁质岩浆底侵诱发加厚下地壳熔融并与之发生混合作用的结果. 结合晚白垩世岩浆岩成岩环境及时空分布特征,认为拉萨地块南部晚白垩世岩浆作用主要受新特提斯洋脊俯冲控制,软流圈地幔沿洋中脊裂隙板片窗上涌诱引了南拉萨地块南缘晚白垩世大规模岩浆作用,而软流圈物质沿切割洋中脊的转换断层撕裂板片窗上涌诱发了近似垂直前者分布的小规模板内岩浆作用.Abstract: In order to discuss thedynamic mechanism of Late Cretaceous magmatism in the Lhasa block, this paper carried out petrographic, chronological, geochemical and mineral chemistry studies on the Menba granodiorites in the southern margin of the central Lhasa block. LA-ICP-MS zircon U-Pb dating indicates that the Menba granodiorites emplaced in the Late Cretaceous (83.2 Ma±0.9 Ma). The geochemical characteristics show that the Menba granodiorites are adakitic rocks. Electron microprobe data reveal that plagioclase belongs to andesine and oligoclase (An=16.2-34.7). This paper believes that the parent magmas of the Menba granodiorites may be a result of magma mixing between mantle- and crust-derived magmas and the mantle-derived magma underplating may have led to partial melting of the thickened lower crust and then reactions between them. Combined with the diagenetic environment and spatial distribution characteristics of the Late Cretaceous magmatic rocks. This paper concludes that the Late Cretaceous magmatism in the southern Lhasa block was mainly controlled by the ridge subduction of the Neo-Tethys. The upwelling of asthenosphere mantle along the slab window of the mid-ocean ridge induced the Late Cretaceous large-scale magmatism in the southern margin of the south Lhasa block, while the upwelling of asthenosphere material along the tear slab window of transition fault that cuts the mid-ocean ridge induced the small-scale intraplate magmatic belt, which approximately perpendicular to the large-scale magmatism in the southern margin of the south Lhasa block.
-
Key words:
- Lhasa block /
- Late Cretaceous /
- adakitic rock /
- magma mixing /
- ridge subduction /
- slab window /
- petrology
-
图 1 (a)青藏高原构造单元划分示意图;(b)拉萨地块南部冈底斯岩浆带展布图,文献年龄数据来源见表 1;(c)门巴研究区地质图
BNS. 班公湖-怒江缝合带;SNM. 狮泉河-纳木错蛇绿岩带;LMF. 洛巴堆-米拉山断裂带;IYS. 雅鲁藏布江缝合带
Fig. 1. (a) Tectonic framework of Xizang an Plateau; (b) distribution of Gangdese magmatic belt in the southern Lhasa block, andthe age data from literature are shown in the Table 1; (c) geological map of Menba area
图 4 门巴花岗闪长岩(Na2O+K2O)-SiO2(a)、(K2O+Na2O-CaO)-SiO2(b)、Sr/Y-Y(c)图解
文献数据来源 Meng et al.(2014)和
Liu et al.(2019) Fig. 4. (Na2O+K2O)-SiO2 (a), (K2O+Na2O-CaO)-SiO2(b), and Sr/Y-Y (c) diagrams for the Menba granodiorites
图 5 门巴花岗闪长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石标准化值和原始地幔标准化值据 Sun and McDonough(1989);文献数据来源 Meng et al.(2014)和Liu et al.(2019)
Fig. 5. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spidergrams (b) for the Menba granodiorites
图 8 门巴花岗闪长岩Th/Nd-Th(a)、1/V-Rb/V(b)、Dy/Yb-SiO2(c)、Zr/Sm-SiO2(d)图解
文献数据来源 Meng et al.(2014)和Liu et al.(2019)
Fig. 8. Th/Nd-Th (a), 1/V-Rb/V(b), Dy/Yb-SiO2 (c), and Zr/Sm-SiO2 (d) diagrams for the Menba granodiorites
表 1 拉萨地块南部晚白垩世岩浆岩年龄统计表
Table 1. Age compilation of Late Cretaceous magmatic rocks in southern Lhasa block
样品编号 岩性 位置 定年方法 年龄(Ma) 误差 参考文献 7-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 89.5 / Zhang et al. (2010) 8-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 86.6 / Zhang et al. (2010) 8-2 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 87.8 / Zhang et al. (2010) 8-4 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 86.0 / Zhang et al. (2010) 43-1 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 87.1 / Zhang et al. (2010) 43-8 紫苏花岗岩 里龙 锆石LA-ICP-MS U-Pb 88.3 / Zhang et al. (2010) T024 花岗闪长岩 里龙-朗县 锆石SHRIMP U-Pb 80.4 1.1 Wen et al. (2008) T027 花岗闪长岩 里龙-朗县 锆石SHRIMP U-Pb 82.7 1.6 Wen et al. (2008) T368 花岗闪长岩 尼木 锆石LA-ICP-MS U-Pb 87.7 1.4 Xu et al. (2015) T372 闪长岩 尼木 锆石LA-ICP-MS U-Pb 88.4 1.1 Xu et al. (2015) T321 辉长闪长岩 尼木 锆石LA-ICP-MS U-Pb 90.8 1.0 Xu et al. (2015) T433 辉长岩 日喀则 锆石LA-ICP-MS U-Pb 94.0 0.5 Xu et al. (2015) 09TB21-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 91.6 1.0 Ma et al. (2013a) 09TB42-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 93.6 1.2 Ma et al. (2013a) 09TB47-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 88.7 1.5 Ma et al. (2013a) 09TB46-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 92.0 1.1 Ma et al. (2013a) 09TB51-2 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 91.2 1.4 Ma et al. (2013a) 09TB36 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 99.5 1.1 Ma et al. (2013a) 09TB45-1 紫苏花岗岩 米林 锆石LA-ICP-MS U-Pb 94.7 1.0 Ma et al. (2013a) 07TB33a-1 石英二长岩 克鲁 锆石LA-ICP-MS U-Pb 91.3 1.6 Jiang et al. (2012) 07TB33b-2 石英二长岩 克鲁 锆石LA-ICP-MS U-Pb 93.3 2.0 Jiang et al. (2012) 07TB33d 闪长岩 克鲁 锆石LA-ICP-MS U-Pb 90.3 2.1 Jiang et al. (2012) BB–45 镁铁质包体 朗县 锆石LA-ICP-MS U-Pb 106.4 2.6 Zheng et al. (2014) BB–112 花岗闪长岩 朗县 锆石LA-ICP-MS U-Pb 103.1 1.8 Zheng et al. (2014) BB–112 煌斑岩 朗县 锆石LA-ICP-MS U-Pb 96.8 0.7 Zheng et al. (2014) BB–55 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 78.1 0.9 Zheng et al. (2014) BB–113 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 76.3 1.9 Zheng et al. (2014) BB–114 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 79.7 1.8 Zheng et al. (2014) BB–116 二云母花岗岩 努日 锆石LA-ICP-MS U-Pb 76.1 2.1 Zheng et al. (2014) NR–14 石英闪长岩 努日 锆石LA-ICP-MS U-Pb 95.9 0.9 Zheng et al. (2014) T10-95-4 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 93.2 0.8 Zhang et al. (2014) T10-95-1 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 90.9 0.9 Zhang et al. (2014) T10-94-4 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 82.2 0.8 Zhang et al. (2014) T10-94-10 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 77.3 2.5 Zhang et al. (2014) T10-94-2 变辉长岩 里龙 锆石LA-ICP-MS U-Pb 74.5 4.7 Zhang et al. (2014) 09TB21-1 苏长岩 米林 锆石LA-ICP-MS U-Pb 92.8 1.1 Ma et al. (2013b) 09TB30-1 苏长岩 米林 锆石LA-ICP-MS U-Pb 91.8 2.1 Ma et al. (2013b) 09TB44-5 苏长岩 米林 锆石LA-ICP-MS U-Pb 93.6 1.2 Ma et al. (2013b) SY04 英安岩 桑日 锆石SIMS U-Pb 95.0 1.0 Zhang et al. (2019) SR02 英安岩 桑日 锆石LA-ICP-MS U-Pb 95.0 1.0 Zhang et al. (2019) SK1303 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 95.0 0.5 Wang et al. (2021) SK1308 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 96.2 0.6 Wang et al. (2021) SK1310 花岗岩 措杰林 锆石LA-ICP-MS U-Pb 98.7 1.0 Wang et al. (2021) SK1314 石英正长岩 措杰林 锆石LA-ICP-MS U-Pb 92.1 1.1 Wang et al. (2021) 09TB160-1 辉绿岩 达孜 锆石LA-ICP-MS U-Pb 92.3 2.4 Ma et al. (2015) S16T89 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 87.9 0.5 Liu et al. (2019) S16T90 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 88.5 0.5 Liu et al. (2019) MB14-4 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 83.7 0.5 Meng et al. (2014) MB14-2 闪长质包体 门巴 锆石LA-ICP-MS U-Pb 85.2 0.4 Meng et al. (2014) SD05 花岗闪长岩 门巴 锆石LA-ICP-MS U-Pb 83.2 0.9 本文研究 表 2 门巴花岗闪长岩锆石LA-ICP-MS U-Pb同位素分析结果
Table 2. LA-ICP-MS zircon U-Pb analysis data for the Menba granodiorites
测试点 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 样品:SD05(花岗闪长岩) SD05-1 597 2 804 1 518 1.85 0.049 7 0.001 9 0.085 3 0.002 6 0.012 5 0.000 3 83.1 2.4 80.3 1.7 SD05-2 881 3 965 1 801 2.20 0.049 5 0.001 6 0.089 4 0.002 7 0.013 3 0.000 4 87.0 2.5 84.9 2.4 SD05-3 410 1 891 1 162 1.63 0.047 9 0.001 2 0.085 1 0.002 6 0.012 8 0.000 3 83.0 2.4 82.3 1.6 SD05-4 715 3 302 1 582 2.09 0.049 4 0.001 2 0.088 7 0.002 4 0.013 0 0.000 3 86.3 2.3 83.6 1.8 SD05-5 486 2 208 1 420 1.56 0.047 6 0.002 2 0.087 9 0.002 8 0.013 4 0.000 3 85.5 2.6 86.1 1.9 SD05-7 721 3 420 1 680 2.04 0.049 2 0.001 4 0.086 9 0.003 0 0.012 8 0.000 4 84.6 2.8 81.8 2.2 SD05-8 559 2 629 1 695 1.55 0.048 8 0.001 0 0.090 6 0.003 2 0.013 4 0.000 4 88.1 2.9 85.8 2.3 SD05-9 746 3 517 1 527 2.30 0.047 4 0.001 6 0.087 0 0.002 8 0.013 2 0.000 3 84.7 2.6 84.8 2.0 SD05-10 487 2 178 1 563 1.39 0.048 2 0.001 0 0.088 2 0.002 4 0.013 2 0.000 3 85.8 2.3 84.7 1.9 SD05-12 538 2 524 1 389 1.82 0.048 6 0.001 0 0.088 1 0.002 4 0.013 1 0.000 3 85.8 2.2 84.1 1.9 SD05-13 531 2 377 1 388 1.71 0.048 5 0.001 0 0.087 0 0.002 7 0.013 0 0.000 4 84.7 2.5 83.2 2.3 SD05-15 584 2 777 1 448 1.92 0.048 6 0.001 1 0.084 1 0.002 6 0.012 5 0.000 3 82.0 2.4 80.3 1.9 SD05-16 622 2 714 1 425 1.90 0.048 9 0.003 3 0.088 7 0.005 8 0.013 1 0.000 4 86.2 5.4 84.1 2.7 SD05-17 700 3 146 1 581 1.99 0.049 3 0.001 9 0.086 5 0.002 8 0.012 7 0.000 3 84.3 2.6 81.2 2.0 SD05-18 902 4 176 1 904 2.19 0.049 4 0.001 1 0.086 0 0.003 0 0.012 6 0.000 3 83.8 2.8 80.7 2.1 SD05-19 696 3 206 1 564 2.05 0.048 8 0.002 4 0.089 5 0.004 1 0.013 2 0.000 4 87.0 3.8 84.7 2.3 SD05-20 522 2 341 1 387 1.69 0.049 7 0.001 4 0.092 5 0.003 1 0.013 5 0.000 3 89.9 2.9 86.6 2.0 SD05-21 402 1 873 1 236 1.52 0.046 7 0.001 3 0.083 4 0.002 6 0.013 1 0.000 4 81.3 2.4 83.9 2.4 SD05-22 636 2 897 1 541 1.88 0.049 3 0.002 3 0.087 1 0.003 2 0.013 0 0.000 3 84.8 3.0 83.0 2.2 SD05-23 506 2 248 1 265 1.78 0.048 2 0.001 9 0.083 9 0.003 0 0.012 6 0.000 3 81.8 2.8 80.9 2.1 SD05-24 673 3 044 1 529 1.99 0.048 5 0.001 9 0.086 8 0.003 0 0.012 9 0.000 3 84.5 2.8 82.8 2.0 表 3 门巴花岗闪长岩主量元素(%)和微量元素(×10-6)分析结果
Table 3. Major (%) and trace (×10-6) element concentrations of the Menba granodiorites
样品号 SD05-1 SD05-2 SD05-3 SD05-4 SD05-5 SD05-6 SD05-7 SD05-8 SiO2 65.83 61.71 65.86 66.46 66.04 67.02 65.76 66.03 TiO2 0.58 0.96 0.63 0.51 0.49 0.40 0.57 0.54 Al2O3 15.46 15.05 14.90 15.00 15.69 15.77 15.34 15.30 TFe2O3 4.52 6.14 4.21 4.12 3.49 3.24 4.32 4.25 MnO 0.08 0.11 0.08 0.07 0.06 0.06 0.08 0.07 MgO 1.68 2.87 1.88 1.53 1.51 1.24 1.75 1.65 CaO 3.33 3.88 3.12 2.97 3.12 2.83 3.49 2.72 Na2O 3.76 3.18 3.56 3.66 3.87 3.57 3.76 3.89 K2O 3.64 4.29 4.07 4.10 4.00 5.13 3.54 3.81 P2O5 0.25 0.37 0.29 0.23 0.22 0.19 0.26 0.26 LOI 0.50 1.04 0.88 0.84 0.94 0.35 0.52 0.98 Total 99.62 99.60 99.48 99.49 99.43 99.79 99.41 99.50 Mg# 43 48 47 43 46 43 45 44 A/CNK 0.95 0.89 0.93 0.94 0.96 0.95 0.94 0.99 Be 2.14 2.04 2.03 1.90 2.15 1.90 2.30 2.17 Sc 6.76 10.77 7.68 5.98 5.52 5.00 7.08 6.48 V 65.03 106.12 71.13 59.92 54.97 47.02 64.82 60.61 Cr 34.99 47.94 31.34 29.90 23.35 20.87 33.13 28.28 Co 8.71 14.27 9.43 8.03 7.15 6.61 8.99 8.74 Ni 13.03 19.92 13.41 10.85 9.78 9.17 12.56 12.41 Cu 6.26 4.15 4.60 5.94 3.78 4.66 4.72 4.48 Zn 50.51 82.46 58.72 52.88 44.29 41.93 52.28 52.08 Ga 21.31 24.46 20.76 19.63 20.03 18.84 20.98 20.61 Rb 128.11 161.73 154.58 129.64 129.42 160.39 125.57 147.65 Sr 789.14 766.95 819.83 734.77 798.26 849.91 788.66 715.89 Y 12.32 18.47 13.01 10.10 9.98 8.82 11.08 10.63 Zr 171.98 264.87 174.80 153.77 139.44 130.51 159.32 148.94 Nb 13.30 21.33 14.18 11.26 11.13 9.68 12.35 11.93 Cs 2.42 2.38 2.92 2.27 2.54 3.30 2.41 2.49 Ba 827.23 965.60 922.65 969.42 999.14 1520.99 585.44 638.95 La 63.05 66.74 50.21 39.62 40.41 34.66 44.29 49.12 Ce 105.17 129.47 93.71 73.80 74.26 63.93 81.24 83.92 Pr 10.66 14.22 10.21 7.89 7.93 6.86 8.66 8.60 Nd 36.66 51.06 36.39 28.19 28.21 23.94 30.60 30.30 Sm 5.46 7.79 5.57 4.33 4.36 3.83 4.71 4.54 Eu 1.29 1.75 1.31 1.09 1.10 1.03 1.16 1.13 Gd 3.74 5.50 3.90 3.00 2.96 2.65 3.32 3.18 Tb 0.51 0.73 0.52 0.40 0.40 0.35 0.44 0.43 Dy 2.49 3.64 2.56 1.99 2.02 1.77 2.19 2.09 Ho 0.45 0.66 0.46 0.36 0.36 0.32 0.40 0.38 Er 1.25 1.84 1.31 1.02 1.02 0.91 1.12 1.07 Tm 0.17 0.25 0.18 0.14 0.14 0.12 0.15 0.14 Yb 1.14 1.68 1.19 0.96 0.93 0.81 1.04 0.99 Lu 0.16 0.24 0.17 0.14 0.13 0.12 0.15 0.14 Hf 4.44 6.61 4.46 3.93 3.58 3.34 4.05 3.87 Ta 0.97 1.46 1.00 0.80 0.79 0.69 0.85 0.84 Pb 20.61 21.11 22.31 35.42 22.69 27.14 20.68 37.13 Th 31.27 33.23 26.84 27.47 23.86 16.76 17.54 24.55 U 3.68 4.69 2.91 4.10 4.13 2.69 2.84 3.56 Sr/Y 64.06 41.53 63.02 72.77 80.02 96.37 71.16 67.35 表 4 门巴花岗闪长岩斜长石电子探针数据(%)
Table 4. Electron microprobe data (%) of plagioclases from the Menba granodiorites
测试点 K2O CaO TiO2 Na2O MgO Al2O3 SiO2 Cr2O3 MnO FeO P2O5 Total An Ab Or SD05a-1 0.28 4.29 0.00 9.38 0.00 23.54 62.82 0.00 0.00 0.11 0.00 100.43 19.9 78.6 1.6 SD05a-2 0.36 6.32 0.00 7.97 0.00 25.47 59.13 0.00 0.00 0.17 0.04 99.46 29.9 68.1 2.0 SD05a-3 0.50 5.83 0.02 8.23 0.00 24.82 60.18 0.01 0.00 0.21 0.00 99.80 27.4 69.9 2.8 SD05a-4 0.47 6.88 0.02 7.49 0.00 25.81 58.65 0.02 0.00 0.22 0.00 99.56 32.8 64.6 2.7 SD05a-5 0.57 5.79 0.00 8.19 0.03 25.00 60.02 0.02 0.02 0.19 0.00 99.82 27.2 69.6 3.2 SD05a-6 0.59 5.97 0.00 7.93 0.00 25.05 60.24 0.00 0.00 0.21 0.00 100.01 28.4 68.3 3.4 SD05a-7 0.65 5.64 0.02 8.17 0.01 24.82 60.39 0.00 0.00 0.21 0.00 99.91 26.6 69.8 3.6 SD05a-8 0.65 6.21 0.02 7.84 0.01 25.07 59.56 0.00 0.01 0.19 0.00 99.58 29.3 67.0 3.7 SD05a-9 0.56 6.17 0.00 7.88 0.01 25.29 59.20 0.00 0.00 0.21 0.00 99.33 29.3 67.6 3.2 SD05a-10 0.49 6.18 0.00 7.87 0.00 25.46 59.56 0.00 0.00 0.23 0.01 99.79 29.4 67.8 2.8 SD05a-11 0.55 5.88 0.03 8.15 0.00 24.83 60.03 0.01 0.01 0.20 0.00 99.68 27.6 69.3 3.1 SD05a-12 0.61 5.80 0.02 8.18 0.00 24.81 59.96 0.00 0.03 0.22 0.01 99.63 27.2 69.4 3.4 SD05b-1 0.38 3.42 0.00 9.56 0.00 23.07 64.70 0.00 0.00 0.15 0.01 101.28 16.2 81.7 2.1 SD05b-2 0.33 3.61 0.05 9.56 0.00 23.43 64.21 0.00 0.00 0.09 0.00 101.29 17.0 81.2 1.8 SD05b-3 0.48 7.24 0.03 7.21 0.02 26.15 57.71 0.01 0.01 0.16 0.01 99.03 34.7 62.6 2.8 SD05b-4 0.60 6.45 0.02 7.62 0.01 25.39 59.32 0.01 0.01 0.23 0.00 99.67 30.8 65.8 3.4 SD05b-5 0.51 5.87 0.03 8.00 0.02 25.13 60.51 0.01 0.00 0.18 0.00 100.26 28.0 69.1 2.9 SD05b-6 0.39 5.89 0.00 8.06 0.00 25.07 60.91 0.00 0.00 0.16 0.00 100.48 28.1 69.7 2.2 SD05b-7 0.34 6.40 0.00 7.94 0.01 25.49 60.08 0.02 0.01 0.17 0.01 100.46 30.2 67.9 1.9 SD05b-8 0.46 6.17 0.00 7.98 0.00 25.17 60.23 0.00 0.00 0.20 0.00 100.22 29.1 68.3 2.6 SD05b-9 0.46 5.79 0.00 8.22 0.00 25.33 61.22 0.01 0.00 0.20 0.00 101.25 27.3 70.1 2.6 SD05b-10 0.40 6.18 0.01 7.93 0.01 25.22 59.57 0.00 0.00 0.21 0.00 99.51 29.4 68.3 2.2 SD05b-11 0.34 6.16 0.00 8.13 0.00 25.24 60.15 0.00 0.01 0.20 0.00 100.23 29.0 69.1 1.9 SD05b-12 0.29 6.01 0.05 8.08 0.00 25.57 61.10 0.01 0.01 0.24 0.00 101.37 28.7 69.7 1.7 SD05b-13 0.33 6.08 0.01 8.00 0.01 25.41 59.85 0.00 0.00 0.16 0.00 99.84 29.0 69.1 1.9 SD05b-14 0.38 5.87 0.00 8.26 0.00 24.94 60.00 0.01 0.00 0.22 0.01 99.69 27.6 70.3 2.1 SD05b-15 0.35 5.06 0.00 8.91 0.01 24.21 61.99 0.00 0.01 0.18 0.00 100.71 23.4 74.6 1.9 SD05c-1 0.41 3.71 0.00 9.47 0.00 23.55 64.37 0.00 0.00 0.16 0.00 101.66 17.4 80.4 2.3 SD05c-2 0.42 5.85 0.01 8.09 0.00 25.01 60.31 0.02 0.00 0.20 0.00 99.91 27.9 69.8 2.4 SD05c-3 0.32 6.43 0.01 7.62 0.01 25.43 58.46 0.00 0.01 0.17 0.02 98.48 31.2 66.9 1.8 SD05c-4 0.61 5.55 0.03 8.07 0.01 24.65 60.22 0.00 0.00 0.22 0.00 99.35 26.6 70.0 3.5 SD05c-5 0.62 5.84 0.01 7.96 0.00 24.83 59.99 0.00 0.01 0.21 0.00 99.47 27.9 68.6 3.5 SD05c-6 0.64 5.99 0.00 7.91 0.01 25.04 59.54 0.00 0.00 0.21 0.01 99.34 28.4 68.0 3.6 SD05c-7 0.63 6.07 0.00 7.94 0.01 25.00 60.42 0.00 0.00 0.19 0.02 100.27 28.7 67.8 3.5 SD05c-8 0.37 6.01 0.00 7.94 0.02 24.96 59.92 0.00 0.00 0.22 0.01 99.45 28.9 69.0 2.1 SD05c-9 0.32 6.46 0.02 7.86 0.01 25.39 58.86 0.00 0.00 0.26 0.01 99.18 30.7 67.5 1.8 SD05c-10 0.44 5.88 0.00 8.11 0.00 24.75 59.80 0.00 0.00 0.23 0.00 99.21 27.9 69.6 2.5 SD05c-11 0.35 5.57 0.03 8.26 0.00 24.72 60.53 0.00 0.00 0.19 0.01 99.66 26.6 71.4 2.0 SD05c-12 0.32 5.73 0.04 8.42 0.02 24.78 61.38 0.00 0.01 0.17 0.00 100.86 26.8 71.4 1.8 SD05c-13 0.35 5.28 0.00 8.16 0.00 25.03 61.84 0.00 0.00 0.11 0.00 100.78 25.8 72.2 2.0 SD05c-14 0.56 5.47 0.00 8.46 0.00 24.61 60.70 0.01 0.02 0.19 0.01 100.00 25.5 71.4 3.1 SD05c-15 0.38 5.24 0.00 8.29 0.02 24.51 61.55 0.01 0.00 0.20 0.00 100.20 25.3 72.5 2.2 -
Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Xizang. Geology, 34(9): 745. https://doi.org/10.1130/g22725.1 Dai, J. G., Wang, C. S., Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Xizang. Lithos, 172-173: 1-16. https://doi.org/10.1016/j.lithos.2013.03.011 Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4): 835-844 (in Chinese with English abstract) Dong, M., Lang, X. H., Deng, Y. L., et al., 2021. Geochronology and Geochemistry Implications for the Early Eocene Rongma Gabbros in the Southern Margin of the Lhasa Terrane, Xizang. Earth Science, 47: 1349-1370 (in Chinese with English abstract). Dong, X., Zhang, Z. M., Santosh, M., 2010. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Xizangan Plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. The Journal of Geology, 118(6): 677-690. https://doi.org/10.1086/656355 Gianni, G. M., Navarrete, C., Spagnotto, S., 2019. Surface and Mantle Records Reveal an Ancient Slab Tear Beneath Gondwana. Scientific Reports, 9(1): 1-10. https://doi.org/10.1038/s41598-019-56335-9 Gorring, M. L., Kay, S. M., 2001. Mantle Processes and Sources of Neogene Slab Window Magmas from Southern Patagonia, Argentina. Journal of Petrology, 42(6): 1067-1094. https://doi.org/10.1093/petrology/42.6.1067 Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314. 2000.00266.x doi: 10.1046/j.1525-1314.2000.00266.x Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposit, 28(4): 481-492 (in Chinese with English abstract) Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Xizang. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Xizang. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 Jiang, Z. Q., Wang, Q., Li, Z. X., et al., 2012. Late Cretaceous (ca. 90Ma) Adakitic Intrusive Rocks in the Kelu Area, Gangdese Belt (southern Xizang): Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 53(3-4): 67-81. https://doi.org/10.1016/j.jseaes.2012.02.010 Lang, X. H., Deng, Y. L., Wang, X. H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Xizang: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80(B5): 335-349. https://doi.org/10.1016/j.gr.2019.11.005 Lang, X. H., Wang, X. H., Deng, Y. L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Xizang: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340-341(1): 166-180. https://doi.org/10.1016/j.lithos.2019.05.014 Leier, A. L., DeCelles, P. G., Kapp, P., et al., 2007. The Takena Formation of the Lhasa Terrane, Southern Xizang: The Record of a Late Cretaceous Retroarc Foreland Basin. Geological Society of America Bulletin, 119(1/2): 31-48. https://doi.org/10.1130/b25974.1 Liu, J. H., Xie, C. M., Li, C., et al., 2019. Origins and Tectonic Implications of Late Cretaceous Adakite and Primitive High-Mg Andesite in the Songdo Area, Southern Lhasa Subterrane, Xizang. Gondwana Research, 76(10): 185-203. https://doi.org/10.1016/j.gr.2019.06.014 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Liu, L., Xu, X. S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37(1): 397-407. https://doi.org/10.1016/j.gr.2015.09.009 Ludwig, K. R., 2003. Users Manualf or Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71. Ma, B. J., Wu, S. G., Fan, J. K., 2015. An Overview of Slab Window. Marine Geology Frontiers, 31(12): 1-10 (in Chinese with English abstract) Ma, C., Xiao, W. J., Windley, B. F., et al., 2012. Tracing a Subducted Ridge-Transform System in a Late Carboniferous Accretionary Prism of the Southern Altaids: Orthogonal Sanukitoid Dyke Swarms in Western Junggar, NW China. Lithos, 140-141: 152-165. https://doi.org/10.1016/j.lithos.2012.02.005 Ma, L., Wang, Q., Wyman, D. A., et al., 2013a. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Xizang. Lithos, 175-176(5): 315-332. https://doi.org/10.1016/j.lithos.2013.04.006 Ma, L., Wang, Q., Li, Z. X., et al., 2013b. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca. 100-80 Ma) Magmatic "Flare-Up" in Southern Lhasa (Xizang). Lithos, 172-173(8): 17-30. https://doi.org/10.1016/j.lithos.2013.03.007 Ma, L., Wang, Q., Wyman, D. A., et al., 2015. Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Xizang: Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research: Solid Earth, 120(9): 6159-6181. https://doi.org/10.1002/2015jb011966 Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243 (3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034 McLeod, O. E., Brenna, M., Briggs, R. M., et al., 2022. Slab Tear as a Cause of Coeval Arc-Intraplate Volcanism in the Alexandra Volcanic Group, New Zealand. Lithos, 408-409(1-4): 106564. https://doi.org/10.1016/j.lithos.2021.106564 Meng, F. Y., Zhao, Z. D., Zhu, D. C., et al., 2014. Late Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean? Gondwana Research, 26(2): 505-520. https://doi.org/10.1016/j.gr.2013.07.017 Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): 119-134. https://doi.org/10.1029/2007TC002143 Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contribution to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2 Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Xizang: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites. Earth and Planetary Science Letters, 272(1/2): 158-171. https://doi.org/10.1016/j.epsl.2008.04.034 Wang, X. H., Lang, X. H., Deng, Y. L., et al., 2022a. Early Mesozoic Magmatism Records the Tectonic Evolution from Syn- To Post-Collisional Setting in the Central Lhasa Subterrane, Xizang. Lithos, 416-417(6): 106642. https://doi.org/10.1016/j.lithos.2022.106642 Wang, X. H., Lang, X. H., Klemd, R., et al., 2022b. Subduction Initiation of the Neo-Tethys Oceanic Lithosphere by Collision-Induced Subduction Transference. Gondwana Research, 104(1): 54-69. https://doi.org/10.1016/j.gr.2021.08.012 Wang, X. H., Lang, X. H., Tang, J. X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Xizang: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042 Wang, X. H., Lang, X. H., Tang, J. X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Xizang: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237 Wang, Z. Z., Zhao, Z. D., Li, X. P., et al., 2021. Late Cretaceous Adakitic and A-Type Granitoids in Chanang, Southern Xizang: Implications for Neo-Tethyan Slab Rollback. Gondwana Research, 96: 89-104. https://doi.org/10.1016/j.gr.2021.04.007 Wen, D. R., Chung, S. L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Xizang: Petrogenesis and Tectonic Implications. Lithos, 105(1/2): 1-11. https://doi.org/10.1016/j.lithos.2008.02.005 Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 Xu, W. C., Zhang, H. F., Luo, B. J., et al., 2015. Adakite-Like Geochemical Signature Produced by Amphibole-Dominated Fractionation of Arc Magmas: An Example from the Late Cretaceous Magmatism in Gangdese Belt, South Xizang. Lithos, 232: 197-210. https://doi.org/10.1016/j.lithos.2015.07.001 Zhang, L. L., Zhu, D. C., Wang, Q., et al., 2019. Late Cretaceous Volcanic Rocks in the Sangri Area, Southern Lhasa Terrane, Xizang: Evidence for Oceanic Ridge Subduction. Lithos, 326-327(271): 144-157. https://doi.org/10.1016/j.lithos.2018.12.023 Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Xizang: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction? Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007 Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Xizang: Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143(B11): 268-284. https://doi.org/10.1016/j.gca.2014.01.045 Zhang, S., Li, Y., Li, F., et al., 2020. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Miocene Syenite in Chazi Area, Xizang. Earth Science, 45(8): 2882-2893. https://doi.org/10.3799/dqkx.2020.163 Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Xizang: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Xizang. Lithos, 113(1/2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004 Zheng, Y. C., Hou, Z. Q., Gong, Y. L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Xizang: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. Lithos, 190-191(3-4): 240-263. https://doi.org/10.1016/j.lithos.2013.12.013 Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Xizang and India-Asia Convergence since 120 Ma. Geological Society Special Publication, 483(1): 583-604. https://doi.org/10.1144/SP483.14 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Xizangan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 董国臣, 莫宣学, 赵志丹, 等, 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据. 岩石学报, 2006(04): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm 董咪, 郎兴海, 邓煜霖, 等, 2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义. 地球科学, 47: 1349-1370. doi: 10.3799/dqkx.2021.137 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm 马本俊, 吴时国, 范建柯, 2015. 板片窗构造研究综述. 海洋地质前沿, 31(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201512001.htm 张士贞, 李勇, 李奋其, 等, 2020. 西藏查孜地区中新世正长岩的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 45(8): 2882-2893. doi: 10.3799/dqkx.2020.163