• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铲式逆冲断层的地貌约束:以东天山尤路都斯盆地巴音背斜构造为例

    武登云 任治坤 吕红华 刘金瑞 雷惊昊 包国栋 张志亮 哈广浩

    武登云, 任治坤, 吕红华, 刘金瑞, 雷惊昊, 包国栋, 张志亮, 哈广浩, 2023. 铲式逆冲断层的地貌约束:以东天山尤路都斯盆地巴音背斜构造为例. 地球科学, 48(4): 1389-1404. doi: 10.3799/dqkx.2022.169
    引用本文: 武登云, 任治坤, 吕红华, 刘金瑞, 雷惊昊, 包国栋, 张志亮, 哈广浩, 2023. 铲式逆冲断层的地貌约束:以东天山尤路都斯盆地巴音背斜构造为例. 地球科学, 48(4): 1389-1404. doi: 10.3799/dqkx.2022.169
    Wu Dengyun, Ren Zhikun, Lü Honghua, Liu Jinrui, Lei Jinghao, Bao Guodong, Zhang Zhiliang, Ha Guanghao, 2023. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China. Earth Science, 48(4): 1389-1404. doi: 10.3799/dqkx.2022.169
    Citation: Wu Dengyun, Ren Zhikun, Lü Honghua, Liu Jinrui, Lei Jinghao, Bao Guodong, Zhang Zhiliang, Ha Guanghao, 2023. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China. Earth Science, 48(4): 1389-1404. doi: 10.3799/dqkx.2022.169

    铲式逆冲断层的地貌约束:以东天山尤路都斯盆地巴音背斜构造为例

    doi: 10.3799/dqkx.2022.169
    基金项目: 

    中国地震局地质研究所中央级公益性科研院所基本科研业务专项 IGCEA2110

    中国地震局地质研究所中央级公益性科研院所基本科研业务专项 IGCEA2113

    第二次青藏科考项目 2019QZKK0704

    详细信息
      作者简介:

      武登云(1994-),男,博士研究生,主要从事构造地貌与活动构造研究.ORCID:0000-0002-8312-8813. E-mail:wdyecnu@163.com

      通讯作者:

      任治坤,E-mail:rzk@ies.ac.cn

    • 中图分类号: P542

    Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation of Bayan Anticline in Youludusi Basin, East Tianshan, China

    • 摘要: 将地表河流阶地变形特征与运动学模型、地貌年代相结合,可以推测出地下断层几何形态、断层变形量与变形速率.定量限定天山山间盆地不同褶皱冲断带的几何形态、运动学和变形速率是研究天山挤压应变吸收作用的关键.在天山东部的尤路都斯盆地内,开都河横穿巴音背斜构造发育并保存了较为完整的三级河流阶地.通过详细的野外考察发现,处于巴音背斜构造后翼位置的河流阶地具有宽阔、连续和逐渐倾斜的特点,符合通过翼部旋转运动而褶皱变形的铲式逆冲断层模型,其深部根植于平面断层斜坡.基于该运动学模型并结合阶地年代,得到巴音背斜构造下伏断层晚第四纪滑动速率为(0.35-0.06)~(0.35+0.16)mm/a,地壳缩短速率为(0.23-0.04)~(0.23+0.10)mm/a.对比尤路都斯盆地北部那拉提断裂的构造应变和GPS速率揭示的东天山南北向总地壳缩短速率,认为巴音背斜构造的变形作用占尤路都斯盆地总变形作用的15%~20%,进而容纳了~2%的东天山南北向地壳应变.东天山内部的山间盆地在天山变形量分配中占据重要作用.

       

    • 图  1  天山山脉区域构造格局

      红色框线为尤路都斯盆地范围

      Fig.  1.  General geographic and structural framework of the Tianshan Range

      图  2  尤路都斯盆地地质构造图

      地层信息根据1∶20万地质图绘制.下伏地形底图来源于12.5 m ALOS(Advanced Land Observing Satellite)数字高程模型(digital elevation model,DEM)

      Fig.  2.  Geological map of theYouludusi basin

      图  3  巴音背斜区域地貌解译图

      a. 巴音背斜构造区Goole Earth影像;b.地貌解译地层信息来源于1∶20万地质图.图示位置见图 2

      Fig.  3.  Geomorphic interpretations of Bayan anticline

      图  4  巴音背斜构造区地貌图

      a. 巴音背斜构造区Goole Earth影像;b. 沿巴音背斜走向的地形剖面;c. 巴音背斜横向剖面背斜部分表面被河流/冲沟侵蚀.沿巴音背斜走向的地形剖面显示顶部隆起幅度呈弓形,且由于褶皱的生长,水流横穿背斜形成水口或风口.横穿巴音背斜的横向剖面显示背斜的扩展和延伸.背斜西部保存较为完整,东部受侵蚀严重

      Fig.  4.  Geomorphology of Bayan anticline

      图  5  阶地变形示意图

      Fig.  5.  Diagram of terrace deformation

      图  6  断层相关褶皱的翼旋转运动学简化模型(修改自Amos et al., 2007

      a.滑脱褶皱;b.简单剪切断弯褶皱;c.铲式断展褶皱.沿垂直于褶皱方向的横向河流形成连续的阶地面,并随地层缩短而变形

      Fig.  6.  Simplified kinematic models for fault-related folding involving limb rotation (modified from Amos et al., 2007)

      图  7  基于铲型逆冲断层的阶地变形几何学/运动学模型

      a.断层曲率未变化的河流阶地变形模型(修改自Amos et al.,20072010);b.断层曲率半径变大的河流阶地变形模型;c.断层曲率半径变小的河流阶地变形模型.铲型逆冲断层段上的刚性旋转导致褶皱后翼倾斜.移动路径描述变形阶地随断层滑动的运动轨迹.断层逆冲过程中曲率半径增大导致褶皱后翼的变形阶地下凹.断层逆冲过程中曲率半径减小导致褶皱后翼的变形阶地上凸

      Fig.  7.  Geometric/kinematic model for terrace deformation over a listric thrust rooted at depth into a planarramp

      图  8  断层滑动量(S)计算图解(修改自Amos et al., 2007

      Fig.  8.  Calculation diagram of fault slip momentum (S) (modified from Amos et al., 2007)

      图  9  基于下凹形变形阶地的断层滑动量(S)计算图解

      Fig.  9.  Calculation diagram of fault slip (S) based on lower concave deformed terrace

      图  10  基于蒙特卡洛模拟的断层变形速率相关计算参数与输出结果示意图

      后翼线性回归角(α)和地貌面年龄(t)符合正态概率密度分布;后翼宽度(Wm)和变形距离(I)符合均匀概率密度分布;断层倾角(θ)符合梯形概率密度分布

      Fig.  10.  Schematic illustration of inputs for Monte Carlo calculation of fault parameters and associated uncertainties (95% confidence intervals)

      图  11  开都河穿过巴音背斜中部区域的谷歌影像(a)和地貌解译(b)

      Fig.  11.  Google Earth image (a) and the geomorphic interpretation (b) of the area where the Kaidu River crosses the Bayan anticline

      图  12  开都河阶地纵剖面

      a.近似垂直于向斜轴面的原始地形纵剖面;b.去除河床高度的阶地拔河高度纵剖面.阶地纵剖面来源于野外实测差分GPS数据.河床纵剖面则是基于ALOS 12.5 m DEM数据提取.黑色直线为线性拟合线,灰色阴影部分为线性拟合的误差(95%置信区间)

      Fig.  12.  Kaidu River terrace profiles

      图  13  巴音背斜构造滑动速率与缩短速率

      Fig.  13.  Slip (up) and shortening (down) rates calculated from listric thrust model combined with geomorphic age

      图  14  巴音背斜构造区河流阶地演化过程和断层结构

      图中T3T2T1为河流阶地,依次由老到新.随着断层运动(由a~c),地壳逐渐缩短,褶皱翼渐进旋转,河流阶地倾斜程度加大

      Fig.  14.  Evolution of river terraces and fault structure in Bayan anticline

      表  1  蒙特卡洛分析输入参数

      Table  1.   Input parameters for Monte Carlo simulation

      输入参数 θ1(°) Wm(m) 距离I(m) 后翼阶地倾角α(°) 年代(a)
      T3 T2 T1 T2
      50±10 2 000±170 850±150 2.06±0.03 0.70±0.01 0.36±0.01 88±6
      注:T1T2T3为河流阶地;θ1为近地表断层倾角;Wm为测量的后翼宽度.
      下载: 导出CSV

      表  2  蒙特卡洛分析输出结果

      Table  2.   Output results from Monte Carlo simulation

      输出参数 滑动量S(m) 膝折带迁移H (m) θ2 (°) d (m) 滑动速率(mm/a) 缩短速率(mm/a)
      T3 T2 T1 T3 T2 T1
      数值 90.78 30.26 15.60 24.39 8.11 4.26 28.81 442.93 0.35 0.19
      95%置信区间 下限 77.04 25.89 13.24 15.94 5.39 2.76 19.8 344.70 0.29 0.12
      上限 135.38 44.86 22.93 55.61 18.49 9.46 42.61 572.68 0.51 0.42
      注:T1T2T3为河流阶地;θ2为地下断层斜坡倾角;d为地下断层斜坡顶深度.
      下载: 导出CSV

      表  3  东天山山间盆地晚第四纪构造缩短速率

      Table  3.   Late Quaternary shortening rates of intermontane basins in the East Tianshan

      位置 构造单元 变形地貌标志 地壳缩短率(mm/a) 来源
      尤路都斯盆地 巴音背斜 河流阶地 0.19~0.33 本研究
      0.15 ±0.06 Charreau et al., 2017
      那拉提断裂 冲洪积扇 0.8~1.1 吴传勇等, 2014
      吐哈盆地 火焰山背斜 河流阶地 2.0~3.2 Yang et al., 2021
      焉耆盆地 和静逆断裂褶皱带 河流阶地、冲洪积扇 0.4~0.5 Huang et al., 2015
      开都河断裂 冲洪积扇 0.59±0.17 黄伟亮, 2015
      南缘褶皱带 河流阶地、冲洪积扇 0.13±0.1
      库米什盆地 库米什断裂 冲洪积扇 ~0.31 Wang et al., 2020b
      下载: 导出CSV
    • [1] Allmendinger, R. W., 1998. Inverse and Forward Numerical Modeling of Trishear Fault-Propagation Folds. Tectonics, 17(4): 640-656. https://doi.org/10.1029/98tc01907
      [2] Amos, C. B., Burbank, D. W., Nobes, D. C., et al., 2007. Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand. Journal of Geophysical Research, 112(B3): B03S11. https://doi.org/10.1029/2006jb004291
      [3] Amos, C. B., Burbank, D. W., Read, S. A. L, 2010. Along-Strike Growth of the Ostler Fault, New Zealand: Consequences for Drainage Deflection above Active Thrusts. Tectonics, 29(4): 1-33. https://doi.org/10.1029/2009tc002613
      [4] Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93GL00128
      [5] Benedetti, L., Tapponnier, P., King, G. C. P., et al., 2000. Growth Folding and Active Thrusting in the Montello Region, Veneto, Northern Italy. Journal of Geophysical Research: Solid Earth, 105(B1): 739-766. https://doi.org/10.1029/1999jb900222
      [6] Burbank, D. W., Anderson, R. S., 2013. Tectonic Geomorphology, Second Edition. Environmental & Engineering Geoscience, 19: 198-200. https://doi.org/10.2113/GSEEGEOSCI.19.2.198
      [7] Cao, X. L., Hu, X. F., Pan, B. T., et al., 2021. Using Fluvial Terraces as Distributed Deformation Offset Markers: Implications for Deformation Kinematics of the North Qilian Shan Fault. Geomorphology, 386: 107750. https://doi.org/10.1016/j.geomorph.2021.107750
      [8] Cardozo, N., Brandenburg, J. P., 2014. Kinematic Modeling of Folding above Listric Propagating Thrusts. Journal of Structural Geology, 60: 1-12. https://doi.org/10.1016/j.jsg.2013.12.004
      [9] Cardozo, N., Jackson, C. A. L., Whipp, P. S., 2011. Determining the Uniqueness of Best-Fit Trishear Models. Journal of Structural Geology, 33(6): 1063-1078. https://doi.org/10.1016/j.jsg.2011.04.001
      [10] Charreau, J., Avouac, J. P., Chen, Y., et al., 2008. Miocene to Present Kinematics of Fault-Bend Folding across the Huerguosi Anticline, Northern Tianshan (China), Derived from Structural, Seismic, and Magnetostratigraphic Data. Geology, 36(11): 871-874. https://doi.org/10.1130/g25073a.1
      [11] Charreau, J., Saint-Carlier, D., Dominguez, S., et al., 2017. Denudation Outpaced by Crustal Thickening in the Eastern Tianshan. Earth and Planetary Science Letters, 479: 179-191. https://doi.org/10.1016/j.epsl.2017.09.025
      [12] Chen, Y. Y., Li, Y. Q., Wei, D. T., et al., 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436(in Chinese with English abstract).
      [13] Davis, K., Burbank, D. W., Fisher, D., et al., 2005. Thrust-Fault Growth and Segment Linkage in the Active Ostler Fault Zone, New Zealand. Journal of Structural Geology, 27(8): 1528-1546. https://doi.org/10.1016/j.jsg.2005.04.011
      [14] Deng, Q. D., Feng, X. Y., Zhang, P. Z., et al., 2000. Active Tectonics of the Tianshan Mountains. Seismological Press, Beijing (in Chinese).
      [15] Erslev, E. A., 1986. Basement Balancing of Rocky Mountain Foreland Uplifts. Geology, 14(3): 259. https://doi.org/10.1130/0091-7613(1986)14259: bbormf>2.0.co;2 doi: 10.1130/0091-7613(1986)14259:bbormf>2.0.co;2
      [16] Erslev, E. A., 1991. Trishear Fault-Propagation Folding. Geology, 19(6): 617. https://doi.org/10.1130/0091-7613(1991)0190617: tfpf>2.3.co;2 doi: 10.1130/0091-7613(1991)0190617:tfpf>2.3.co;2
      [17] Gold, R. D., Cowgill, E., Wang, X. F., et al., 2006. Application of Trishear Fault-Propagation Folding to Active Reverse Faults: Examples from the Dalong Fault, Gansu Province, NW China. Journal of Structural Geology, 28: 200-219. https://doi.org/10.1016/J.JSG.2005.10.006
      [18] Guo, C., Zhang, Z. Y., Wu, L., et al., 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430(in Chinese with English abstract).
      [19] Hardy, S., Poblet, J., 1994. Geometric and Numerical Model of Progressive Limb Rotation in Detachment Folds. Geology, 22(4): 371-374. https://doi.org/10.1130/0091-7613(1994)0220371: ganmop>2.3.co;2 doi: 10.1130/0091-7613(1994)0220371:ganmop>2.3.co;2
      [20] Huang, W. L., 2015. Crustal Shortening Rate across the Yanqi Basin, Tianshan during Mid-Late Quaternary (Dissertation). Institute of Geology, China Earthquake Administration, Beijing, 91-120(in Chinese with English abstract).
      [21] Huang, W. L., 2015. Late Pleistocene Shortening Rate on the Northern Margin of the Yanqi Basin, Southeastern Tian Shan, NW China. Journal of Asian Earth Sciences, 112: 11-24. https://doi.org/10.1016/j.jseaes.2015.08.024
      [22] Jolivet, M., Dominguez, S., Charreau, J., et al., 2010. Mesozoic and Cenozoic Tectonic History of the Central Chinese Tian Shan: Reactivated Tectonic Structures and Active Deformation. Tectonics, 29(6): 1-30. https://doi.org/10.1029/2010tc002712
      [23] Lavé, J., Avouac, J. P., 2000. Active Folding of Fluvial Terraces across the Siwaliks Hills, Himalayas of Central Nepal. Journal of Geophysical Research: Solid Earth, 105(B3): 5735-5770. https://doi.org/10.1029/1999jb900292
      [24] Liu, Q. R., Zhang, H. P., Li, Y. L., et al., 2021. Effects of Erosion and Deposition on Constraining Vertical Slip Rates of Thrust Faults: A Case Study of the Minle-Damaying Fault in the North Qilian Shan, NE Tibetan Plateau. Frontiers in Earth Science, 9: 635702. https://doi.org/10.3389/feart.2021.635702
      [25] Lu, H. H., Li, B. J., Wu, D. Y., et al., 2019. Spatiotemporal Patterns of the Late Quaternary Deformation across the Northern Chinese Tian Shan Foreland. Earth-Science Reviews, 194: 19-37. https://doi.org/10.1016/j.earscirev.2019.04.026
      [26] Scharer, K. M., Burbank, D. W., Chen, J., et al., 2006. Kinematic Models of Fluvial Terraces over Active Detachment Folds: Constraints on the Growth Mechanism of the Kashi-Atushi Fold System, Chinese Tian Shan. Geological Society of America Bulletin, 118(7/8): 1006-1021. https://doi.org/10.1130/b25835.1
      [27] Seeber, L., Sorlien, C. C., 2000. Listric Thrusts in the Western Transverse Ranges, California. Geological Society of America Bulletin, 112(7): 1067-1079. https://doi.org/10.1130/0016-7606(2000)1121067: ltitwt>2.0.co;2 doi: 10.1130/0016-7606(2000)1121067:ltitwt>2.0.co;2
      [28] Stewart, I. S., Hancock, P. L., 1988. Normal Fault Zone Evolution and Fault Scarp Degradation in the Aegean Region. Basin Research, 1(3): 139-153. https://doi.org/10.1111/j.1365-2117.1988.tb00011.x
      [29] Thompson, S. C., Weldon, R. J., Rubin, C. M., et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): ETG7-1. https://doi.org/10.1029/2001jb000596
      [30] Trexler, C. C., Cowgill, E., Spencer, J. Q. G., et al., 2020. Rate of Active Shortening across the Southern Thrust Front of the Greater Caucasus in Western Georgia from Kinematic Modeling of Folded River Terraces above a Listric Thrust. Earth and Planetary Science Letters, 544: 116362. https://doi.org/10.1016/j.epsl.2020.116362
      [31] Wang, Y. R., Oskin, M. E., Zhang, H. P., et al., 2020a. Deducing Crustal-Scale Reverse-Fault Geometry and Slip Distribution from Folded River Terraces, Qilian Shan, China. Tectonics, 39(1): e2019TC005901. https://doi.org/10.1029/2019tc005901
      [32] Wang, S. Y., Jiao, R. H., Ren, Z. K., et al., 2020b. Active Thrusting in an Intermontane Basin: The Kumysh Fault, Eastern Tian Shan. Tectonics, 39(8): e2019TC006029. https://doi.org/10.1029/2019tc006029
      [33] Wu, C. Y., Wu, G. D., Shen, J., et al., 2016. Late Quaternary Tectonic Activity and Crustal Shortening Rate of the Bogda Mountain Area, Eastern Tian Shan, China. Journal of Asian Earth Sciences, 119: 20-29. https://doi.org/10.1016/j.jseaes.2016.01.001
      [34] Wu, C. Y., Wu, G. D., Shen, J., et al., 2014. The Late Quaternary Activity of the Nalati Fault and Its Implications for the Crustal Deformation in the Interior of the Tianshan Mountains. Quaternary Sciences, 34(2): 269-280(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2014.02.01
      [35] Wu, G., Ran, H. L., Zhou, Q., 2022. Probabilistic Fault Displacement Hazard Analysis Based on Monte Carlo Simulation. Earth Science, 47(3): 844-855(in Chinese with English abstract).
      [36] Yang, X., Wu, C. Y., Li, Z. G., et al., 2021. Late Quaternary Kinematics and Deformation Rate of the Huoyanshan Structure Derived from Deformed River Terraces in the South Piedmont of the Eastern Chinese Tian Shan. Frontiers in Earth Science, 9: 649011. https://doi.org/10.3389/feart.2021.649011
      [37] Zhang, P. Z., 2003. Late Cenozoic Tectonic Deformation of Tianshan Foreland Basin. Chinese Science Bulletin, 48(24): 2499-2500(in Chinese). doi: 10.1360/csb2003-48-24-2499
      [38] Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017jb014465
      [39] Zhou, Z. L., Xiao, J. L., Yuan, S. Q., 2001. The Structure Geology Characteristic of Yultuz Basin in Western Tianshan Mountains. Xinjiang Geology, 19(2): 93-96(in Chinese with English abstract).
      [40] Zubovich, A. V., Wang, X. Q., Scherba, Y. G., et al., 2010. GPS Velocity Field for the Tien Shan and Surrounding Regions. Tectonics, 29(6): 250-272. https://doi.org/10.1029/2010tc002772
      [41] 陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436. doi: 10.3799/dqkx.2021.097
      [42] 邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造. 北京: 地震出版社, 1-20.
      [43] 郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. doi: 10.3799/dqkx.2022.152
      [44] 黄伟亮, 2015. 天山内部焉耆盆地中晚第四纪地壳缩短速率研究(博士学位论文). 北京: 中国地震局地质研究所, 91-120.
      [45] 吴传勇, 吴国栋, 沈军, 等, 2014. 那拉提断裂晚第四纪活动及其反映的天山内部构造变形. 第四纪研究, 34(2): 269-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201402001.htm
      [46] 吴果, 冉洪流, 周庆, 2022. 基于蒙特卡洛模拟的概率断层位错危险性分析. 地球科学, 47(3): 844-855. doi: 10.3799/dqkx.2022.037
      [47] 张培震, 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48(24): 2499-2500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200324000.htm
      [48] 周宗良, 肖建玲, 袁淑琴, 2001. 中国天山西段尤路都斯盆地构造地质特征. 新疆地质, 19(2): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200102003.htm
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  102
    • HTML全文浏览量:  39
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-09
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回