Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance
-
摘要: 为明确川东南地区五峰-龙马溪组深层超压富有机质页岩的微观孔隙结构及其分形特征,以丁山-东溪地区五峰-龙马溪组深层超压富有机质页岩为研究对象,在查明页岩岩矿学和地球化学特征基础上,综合运用高分辨率扫描电镜、低温气体(CO2、N2)吸附以及高压压汞等研究手段,定量表征五峰-龙马溪组深层超压不同岩相富有机质页岩的微观孔隙结构特征.基于分形理论,利用低温CO2、N2吸附实验、高压压汞手段获得页岩不同尺度孔隙的分形维数,揭示页岩孔隙结构特征、矿物组成、TOC含量和分形维数的关系及其地质意义.研究表明,川东南丁山-东溪地区五峰-龙马溪组页岩样品普遍发育有机孔、无机孔(粒间孔和粒内孔)以及微裂缝;孔隙形态主要为楔形、狭缝型以及平行板状等;孔径分布呈多峰型,中孔为总孔隙体积的主要贡献者(约占59%),微孔为总孔隙体积的次要贡献者(约占35%),大孔对总孔隙体积的贡献较小.受矿物类型和含量、TOC含量和成岩作用等因素的共同影响,不同岩相页岩孔隙演化存在差异,最终造成现今储层的强非均质性和复杂的孔隙结构特征.研究区五峰-龙马溪组页岩孔隙具明显多尺度分形特征,不同岩相和不同尺度孔隙分形维数特征均存在差异,反映了页岩孔隙结构具有极强非均质性,其中硅质页岩微孔分形维数D1和中孔分形维数D2最大,发育更为复杂的微孔及中孔孔隙结构网络,可提供大量气体吸附点位和富集空间;而富硅泥质页岩具有最大的大孔分形维数D3,指示大孔孔隙空间结构相对更复杂,可提供更大的孔隙容纳空间,利于游离态页岩气的赋存.Abstract: To clarify the micropore structure and fractal characteristics of deep overpressured organic-rich shale in Wufeng and Longmaxi Formations in Southeast Sichuan basin, in this work it takes the organic-rich shales in Wufeng and Longmaxi Formations from four typical wells in the Dingshan and Dongxi areas as the research object. After ascertaining the mineralogical and geochemical characteristics of shale rocks, high-resolution scanning electron microscope, low-temperature gas (N2, CO2) adsorption, and mercury intrusion porosimetry experiments are used to qualitatively and quantitatively characterize the micropore structure of organic shale from the Wufeng and Longmaxi Formations. Based on gas (CO2 and N2) adsorption, mercury intrusion porosimetry and fractal theory, the fractal dimensions of pores in shale are calculated, and the internal relations between pore structure parameters, mineral composition, total organic carbon (TOC) content and fractal dimension of shale in different lithofacies are discussed. Results show that organic pores, inorganic pores (intergranular pores and intragranular pores) and microfractures are widely developed in these shale samples from Wufeng and Longmaxi Formations in the Dingshan and Dongxi areas. The pore morphology is dominated by wedge-shaped, slit-shaped or some parallel plate pores. The pore size distribution is multimodal. Mesoporeis the main contributor to the total pore volume (accounting for approximately 59%), and micropores are the minor contributor to the total pore volume (accounting for approximately 35%). The contribution of macropore to the total pore volume is relatively small. Influenced by the differences of rock composition, TOC content and diagenesis, the pores of different shale lithofacies show various evolution characteristics, resulting in strong heterogeneity and complex pore structure. The pores of the Wufeng-Longmaxi shale in the study area have obvious multi-scale fractal characteristics, and the pore fractal dimension characteristics between shale lithofacies at different scales are different, reflecting the extremely strong heterogeneous characteristics. Among them, the micropore fractal dimension D1 and mesopore fractal dimension D2 of siliceous shale are the largest, developing a more complex micropore and mesopore pore structure network, which can provide a large number of gas adsorption sites and storage space. In contrast, silicon-rich argillaceous shale has the largest macropore fractal dimension D3, indicating that the macropore pore structure is relatively more complex, which can provide more pore space and facilitate the storage of free shale gas.
-
图 3 丁山地区五峰-龙马溪组深层超压页岩样品高分辨率扫描电镜照片
a,b. DS-1,4 359.98 m,龙马溪组,形变有机孔;c. DS-6,3 809.24 m,龙马溪组,有机孔;d. DS-4,365.57 m,龙马溪组,微裂缝;e,f. DS-5,3 799.28 m,龙马溪组,粒内溶蚀孔;g,h,i. DS-1,4 359.98 m,龙马溪组,扫描电镜、阴极发光、能谱元素面扫联用
Fig. 3. High resolution SEM images of overpressured deep shale samples of Wufeng and Longmaxi Formations in Dingshan area
图 4 东溪地区五峰-龙马溪组深层超压页岩样品高分辨率扫描电镜照片
a,b. DX-2,4 201.44 m,龙马溪组;c. DX-6,4 286.52 m,龙马溪组;d. DX-5,4 224.43 m,五峰组;e. DX-7,4 306.37 m,龙马溪组;f. DX-8,4 321.67 m,龙马溪组;g~i. DX-9,4 331.6 m,五峰组,扫描电镜、阴极发光、能谱元素面扫联用
Fig. 4. High resolution SEM images of overpressured deep shale samples of Wufeng and Longmaxi Formations in Dongxi area
表 1 丁山-东溪地区五峰-龙马溪组深层超压富有机质页岩样品基本参数
Table 1. Basical information for the deep organic-rich shale of Wufeng and Longmaxi Formations in the Dingshan and Dongxi areas
地区 井号 样品
编号深度
(m)层位 TOC含量
(%)石英+长石+
黄铁矿(%)黏土矿物
(%)方解石+
白云石(%)岩相类型 丁山地区 丁页2井 DS-1 4 360.0 S1l 3.94 67.91 22.56 9.54 混合硅质页岩 DS-2 4 363.3 S1l 5.85 72.10 24.30 3.61 混合硅质页岩 DS-3 4 366.9 O3w 4.22 43.20 48.46 8.34 泥/硅混合质页岩 丁页5井 DS-4 3 765.6 S1l 1.26 35.57 59.71 4.73 富硅泥质页岩 DS-5 3 799.3 S1l 2.53 53.69 38.31 6.87 富泥硅质页岩 DS-6 3 809.2 S1l 4.25 64.99 29.16 4.49 富泥硅质页岩 DS-7 3 812.4 S1l 4.79 69.92 26.62 3.47 富泥硅质页岩 DS-8 3 817.3 O3w 5.03 43.99 50.59 5.43 富硅泥质页岩 东溪地区 东页深1井 DX-1 4 141.6 S1l 0.99 26.88 48.92 24.2 富硅泥质页岩 DX-2 4 201.4 S1l 2.28 50.46 45.13 4.41 泥/硅混合质页岩 DX-3 4 207.5 S1l 3.19 64.83 28.89 6.28 富泥硅质页岩 DX-4 4 220.4 S1l 4.31 66.35 25.11 8.54 富泥硅质页岩 DX-5 4 224.4 O3w 6.15 76.79 20.28 2.93 硅质页岩 东页深3井 DX-6 4 286.5 S1l 1.14 45.02 52.15 2.83 富硅泥质页岩 DX-7 4 306.4 S1l 2.83 56.07 39.92 4.02 富泥硅质页岩 DX-8 4 321.7 S1l 4.48 67.45 25.29 7.26 富泥硅质页岩 DX-9 4 331.6 O3w 5.06 78.22 18.39 3.39 硅质页岩 表 2 丁山-东溪地区五峰-龙马溪组深层超压页岩孔隙结构参数
Table 2. Pore structure parameters of overpressured deep shale of Wufeng and Longmaxi Formations in Dingshan and Dongxi areas
岩相类型 微孔体积 中孔体积 大孔体积 微孔体积占比 中孔体积占比 大孔体积占比 (cm3/103 g) (cm3/103 g) (cm3/103 g) (%) (%) (%) 富硅泥质页岩 5.58~11.43
(7.89)9.69~13.83
(11.90)1.89~3.73
(2.68)29.37~43.74
(34.55)48.08~60.76
(53.06)8.18~19.62
(12.39)富泥硅质页岩 7.12~10.96
(9.84)12.76~17.86
(15.50)0.73~4.03
(1.84)31.42~39.02
(36.08)50.73~61.54
(56.95)2.55~14.54
(6.96)泥/硅混合质页岩 8.61~9.57
(9.09)13.81~14.67
(14.24)0.68~1.82
(1.25)35.94~37.99
(36.97)54.79~61.21
(58.00)2.85~7.22
(5.03)混合硅质页岩 7.69~12.34
(10.01)16.34~19.83
(18.08)1.16~1.64
(1.40)29.96~37.02
(33.49)59.50~63.65
(61.57)3.49~6.39
(4.94)硅质页岩 10.69~11.81
(11.25)17.70~22.27
(19.99)0.56~0.99
(0.78)33.67~36.92
(35.29)61.14~63.51
(62.32)1.95~2.82
(2.38)注:括号中为平均值. 表 3 丁山-东溪地区五峰-龙马溪组深层超压页岩孔隙结构分形特征参数
Table 3. Fractal dimension values for overpressured deep shale of Wufeng and Longmaxi Formatioins in Dingshan and Dongxi areas
岩相类型 分形维数 D1 R2 D2 R2 D3 R2 富硅泥质页岩 2.391 6~2.485 1
(2.437 6)0.995 4 2.769 2~2.784 8
(2.777 3)0.980 5 2.832 1~2.897 4
(2.860 5)0.959 8 富泥硅质页岩 2.431 9~2.483 2
(2.461 1)0.995 1 2.769 7~2.808 8
(2.790 4)0.983 5 2.105 7~2.758 7
(2.463 0)0.962 6 泥/硅混合质页岩 2.453 6~2.456 4
(2.455 0)0.995 6 2.793 4~2.811 7
(2.802 6)0.964 2 2.329 6~2.636 8
(2.483 2)0.967 6 混合硅质页岩 2.463 1~2.466 7
(2.464 9)0.994 6 2.798 0~2.805 3
(2.801 7)0.981 6 2.332 6~2.682 8
(2.507 7)0.923 4 硅质页岩 2.506 9~2.512 1
(2.509 5)0.996 0 2.804 1~2.814 3
(2.809 2)0.964 0 2.202 2~2.326 7
(2.264 5)0.966 4 -
Chen, J.K., Zhu, Y.M., Cui, Z.B., et al., 2018. Pore Structure and Fractal Characteristics of Longmaxi Shale in Southern Sichuan Basin. Lithologic Reservoirs, 30(1): 55-62 (in Chinese with English abstract). Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d Fan, C.H., Li, H., Zhong, C., et al., 2018. Tectonic Fracture Stages and Evolution Model of Longmaxi Formation Shale, Dingshan Structure, Southeast Sichuan. Acta Petrolei Sinica, 39(4): 379-390 (in Chinese with English abstract). Gou, Q.Y., Xu, S., Hao, F., et al., 2021. The Effect of Tectonic Deformation and Preservation Condition on the Shale Pore Structure Using Adsorption-Based Textural Quantification and 3D Image Observation. Energy, 219: 119579. https://doi.org/10.1016/j.energy.2020.119579 Guo, X.S., Hu, D.F., Huang, R.C., et al., 2020. Deep and Ultra-Deep Natural Gas Exploration in the Sichuan Basin: Progress and Prospect. Natural Gas Industry, 40(5): 1-14 (in Chinese with English abstract). Guo, X.W., Qin, Z.J., Yang, R., et al., 2019. Comparison of Pore Systems of Clay-Rich and Silica-Rich Gas Shales in the Lower Silurian Longmaxi Formation from the Jiaoshiba Area in the Eastern Sichuan Basin, China. Marine and Petroleum Geology, 101: 265-280. https://doi.org/10.1016/j.marpetgeo.2018.11.038 He, S., Qin, Q.R., Fan, C.H., et al., 2019. Shale Gas Preservation Conditions in Dingshan Area, Southeastern Sichuan. Petroleum Geology and Recovery Efficiency, 26(2): 24-31 (in Chinese with English abstract). Hu, Z.G., Qin, P., Hu, M.Y., et al., 2018. The Distribution and Heterogeneity Characteristics of Shale Reservoirs in Lower Cambrian Shuijingtuo Formation in Western Hunan-Hubei Region. China Petroleum Exploration, 23(4): 39-50 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2018.04.005 Hu, W.G., Li, F.G., Fan, C.H., et al., 2019. Prediction and Evaluation on Deeper Marine Shale-Gas Reservoirs, Dingshan Area, Sichuan Basin. Natural Gas Exploration and Development, 42(3): 66-77 (in Chinese with English abstract). Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068 Jia, A.Q., Hu, D.F., He, S., et al., 2020. Variations of Pore Structure in Organic-Rich Shales with Different Lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into Gas Storage and Pore Evolution. Energy & Fuels, 34(10): 12457-12475. https://doi.org/10.1021/acs.energyfuels.0c02529 Korvin, G., 1992. Fractal Models in the Earth Sciences. Elsevier, Amsterdam, 396. Li, L., Liu, A.W., Qi, Z.X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract). Li, Z., Liang, Z. K., Jiang, Z. X., et al., 2019. The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals, 9(2): 127. https://doi.org/10.3390/min9020127 Li, Z.Q., Wang, W., Wang, X.M., et al., 2018. Study on Fractal Characteristics of Micro-Nano Pore Structure of Shale. Journal of Engineering Geology, 26(2): 494-503 (in Chinese with English abstract). Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0 Liu, C., Ding, W.G., Zhang, J., et al., 2021. Qualitative-Quantitative Multiscale Characteristics of Shale Pore Structure from Upper Paleozoic Coal-Measures in Linxing Area. Coal Geology & Exploration, 49(6): 46-57 (in Chinese with English abstract). Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 Lu, Z.Y., He, Z.L., Yu, C., et al., 2021. Characteristics of Shale Gas Enrichment in Tectonically Complex Regions—A Case Study of the Wufeng-Longmaxi Formations of Lower Paleozoic in Southeastern Sichuan Basin. Oil & Gas Geology, 42(1): 86-97 (in Chinese with English abstract). Ma, Y.S., Li, M.W., Cai, X.Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract). Mandelbrot, B.B., 1982. Fractal Geometry of Nature. W.H. Freeman, New York. Qiu, N. S., Feng, Q. Q., Teng, G., et al., 2020. Yanshanian-Himalayan Differential Tectono-Thermal Evolution and Shale Gas Preservation in Dingshan Area, Southeastern Sichuan Basin. Acta Petrolei Sinica, 41(12): 1610-1622 (in Chinese with English abstract). Qiu, Z., Liu, B., Dong, D., et al., 2020. Silica Diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Reservoir Properties and Paleoproductivity. Marine and Petroleum Geology, 121: 104594. https://doi.org/10.1016/j.marpetgeo.2020.104594 Rao, S., Yang, Y. N., Hu, S. B., et al., 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335(in Chinese with English abstract). Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048 Sun, H. Q., Mašín, D., Najser, J., et al., 2020. Fractal Characteristics of Pore Structure of Compacted Bentonite Studied by ESEM and MIP Methods. Acta Geotechnica, 15(6): 1655-1671. https://doi.org/10.1007/s11440-019-00857-z Sun, Z.L., Wang, F.R., Han, Y.J., et al., 2022. Characterization and Evaluation of Fractal Dimension of Intersalt Shale Oil Reservoirs in Qianjiang Depression. Bulletin of Geological Science and Technology, 41(4): 125-137 (in Chinese with English abstract). Sun, M.D., Zhang, L.H., Hu, Q.H., et al., 2019. Pore Connectivity and Water Accessibility in Upper Permian Transitional Shales, Southern China. Marine and Petroleum Geology, 107: 407-422. https://doi.org/10.1016/j.marpetgeo.2019.05.035 Tang, J.G., Wang, K.M., Qin, D.C., et al., 2021. Tectonic Deformation and Its Constraints to Shale Gas Accumulation in Nanchuan Area, Southeastern Sichuan Basin. Bulletin of Geological Science and Technology, 40(5): 11-21 (in Chinese with English abstract). Tatlıer, M., Erdem-Şenatalar, A., 1999. Method to Evaluate the Fractal Dimensions of Solid Adsorbents. The Journal of Physical Chemistry B, 103(21): 4360-4365. https://doi.org/10.1021/jp983179x Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9/10): 1051-1069. https://doi.org/10.1515/pac-2014-1117 Wang, C., Dong, T., Jiang, S., et al., 2022. Vertical Heterogeneity and the Main Controlling Factors of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Shales in the Middle Yangtze Region. Bulletin of Geological Science and Technology, 41(3): 108-121(in Chinese with English abstract). Wang, H.K., Lü, X.X., Wang, Y.M., et al., 2018. The Reservoir Characteristics of Lower Silurian Longmaxi Formation in Western Hubei. Natural Gas Geoscience, 29(3): 415-423 (in Chinese with English abstract). Wang, S.F., Zou, C.N., Dong, D.Z., et al., 2014. Biogenic Silica of Organic-Rich Shale in Sichuan Basin and Its Significance for Shale Gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476-486 (in Chinese with English abstract). Wang, X. Q., Zhu, Y. M., Wang, Y., 2020. Fractal Characteristics of Micro- and Mesopores in the Longmaxi Shale. Energies, 13(6): 1349. https://doi.org/10.3390/en13061349 Wang, Y.M., Li, X.J., Wang, H., et al., 2020. Prediction of Organic Matter Carbonization Zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze Region. Natural Gas Geoscience, 31(2): 151-162 (in Chinese with English abstract). Wang, Z.M., Jiang, Y.Q., Fu, Y.H., et al., 2022. Characterization of Pore Structure and Heterogeneity of Shale Reservoir from Wufeng Formation-Sublayers Long-11 in Western Chongqing Based on Nuclear Magnetic Resonance. Earth Science, 47(2): 490-504 (in Chinese with English abstract). Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/physrev.17.273 Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract). Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016. Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 189-197 (in Chinese with English abstract). Xu, J., Guo, W.H., Liu, H.T., et al., 2021. Micro-Pore Structure Characteristics and Quantitative Characterization of Silurian Longmaxi Shale in Western Hubei and Hunan Areas. Natural Gas Geoscience, 32(4): 611-622 (in Chinese with English abstract). Xu, S., Hao, F., Shu, Z., et al., 2020. Pore Structures of Different Types of Shales and Shale Gas Exploration of the Ordovician Wufeng and Silurian Longmaxi Successions in the Eastern Sichuan Basin, South China. Journal of Asian Earth Sciences, 193: 104271. https://doi.org/10.1016/j.jseaes.2020.104271 Yang, R., He, S., Hu, Q., et al., 2017. Applying SANS Technique to Characterize Nano-Scale Pore Structure of Longmaxi Shale, Sichuan Basin (China). Fuel, 197: 91-99. https://doi.org/10.1016/j.fuel.2017.02.005 Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 Yin, N., Xue, L.H., Jiang, C.F., et al., 2018. The Porous Evolution and Fractal Dimension of the Organic-Rich Shale at the Stage of Hydrocarbon Generation. Natural Gas Geoscience, 29(12): 1817-1828 (in Chinese with English abstract). Zhang, C.L., Zhao, S.X., Zhang, J., et al., 2021. Analysis and Enlightenment of the Difference of Enrichment Conditions for Deep Shale Gas in Southern Sichuan Basin. Natural Gas Geoscience, 32(2): 248-261 (in Chinese with English abstract). Zhang, G.G., Lai, X.Y., 1988. Influence of Hemp Skin Effect on Mercury Injection Data. Petroleum Expoloration and Development, 15(6): 80-82 (in Chinese with English abstract). Zhang, N., He, M. C., Zhang, B., et al., 2016. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry. Journal of Earth Science, 27(4): 670-676. https://doi.org/10.1007/s12583-016-0662-z Zhang, J.Z., Tang, Y.J., He, D.X., et al., 2020. Full-Scale Nanopore System and Fractal Characteristics of Clay-Rich Lacustrine Shale Combining FE-SEM, Nano-CT, Gas Adsorption and Mercury Intrusion Porosimetry. Applied Clay Science, 196: 105758. https://doi.org/10.1016/j.clay.2020.105758 Zhou, Z., Jiang, Z.X., Li, S.Z., et al., 2021. Biostratigraphic Characteristics of Black Graptolite Shale in Wufeng Formation and Longmaxi Formation in Jianshi Area of West Hubei. Earth Science, 46(2): 432-443(in Chinese with English abstract). Zou, C.N., Zhao, Q., Dong, D.Z., et al., 2017. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Natural Gas Geoscience, 28(12): 1781-1796 (in Chinese with English abstract). Zou, J. P., Chen, W. Z., Yang, D. S., et al., 2019. Fractal Characteristics of the Anisotropic Microstructure and Pore Distribution of Low-Rank Coal. AAPG Bulletin, 103(6): 1297-1319. https://doi.org/10.1306/11151817226 Zou, X.Y., Li, X.Q., Wang, Y., et al., 2022. Reservoir Characteristics and Gas Content of Wufeng-Longmaxi Formations Deep Shale in Southern Sichuan Basin. Natural Gas Geoscience, 33(4): 654-665 (in Chinese with English abstract). 陈居凯, 朱炎铭, 崔兆帮, 等, 2018. 川南龙马溪组页岩孔隙结构综合表征及其分形特征. 岩性油气藏, 30(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801006.htm 范存辉, 李虎, 钟城, 等, 2018. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式. 石油学报, 39(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804002.htm 郭旭升, 胡东风, 黄仁春, 等, 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htm 何顺, 秦启荣, 范存辉, 等, 2019. 川东南丁山地区页岩气保存条件分析. 油气地质与采收率, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htm 胡伟光, 李发贵, 范春华, 等, 2019. 四川盆地海相深层页岩气储层预测与评价——以丁山地区为例. 天然气勘探与开发, 42(3): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201903011.htm 胡忠贵, 秦鹏, 胡明毅, 等, 2018. 湘鄂西地区下寒武统水井沱组页岩储层分布及非均质性特征. 中国石油勘探, 23(4): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804006.htm 李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220 李志清, 王伟, 王晓明, 等, 2018. 页岩微纳米孔隙结构分形特征研究. 工程地质学报, 26(2): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802027.htm 刘成, 丁万贵, 张健, 等, 2021. 临兴区块上古生界煤系页岩孔隙结构多尺度定性-定量综合表征. 煤田地质与勘探, 49(6): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202106005.htm 卢志远, 何治亮, 余川, 等, 2021. 复杂构造区页岩气富集特征: 以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例. 石油与天然气地质, 42(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101009.htm 马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm 邱楠生, 冯乾乾, 腾格尔, 等, 2020. 川东南丁山地区燕山期-喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012013.htm 饶松, 杨轶南, 胡圣标, 等, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153 孙中良, 王芙蓉, 韩元佳, 等, 2022. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价. 地质科技通报, 41(4): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202204014.htm 汤济广, 汪凯明, 秦德超, 等, 2021. 川东南南川地区构造变形与页岩气富集. 地质科技通报, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm 王川, 董田, 蒋恕, 等, 2022. 中扬子地区上奥陶统-下志留统五峰组-龙马溪组页岩纵向非均质性及主控因素. 地质科技通报, 41(3): 108-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203011.htm 王宏坤, 吕修祥, 王玉满, 等, 2018. 鄂西下志留统龙马溪组页岩储集特征. 天然气地球科学, 29(3): 415-423. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803012.htm 王淑芳, 邹才能, 董大忠, 等, 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50(3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403010.htm 王玉满, 李新景, 王皓, 等, 2020. 中上扬子地区下志留统龙马溪组有机质碳化区预测. 天然气地球科学, 31(2): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002001.htm 王子萌, 蒋裕强, 付永红, 等, 2022. 基于核磁共振表征渝西地区五峰组—龙-11亚段页岩储层孔隙结构及非均质性. 地球科学, 47(2): 490-504. doi: 10.3799/dqkx.2021.076 吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组-龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049 吴蓝宇, 胡东风, 陆永潮, 等, 2016. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相. 石油勘探与开发, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm 徐洁, 郭维华, 刘皓天, 等, 2021. 湘鄂西地区志留系龙马溪组页岩微观孔隙结构特征及定量表征. 天然气地球科学, 32(4): 611-622. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202104015.htm 尹娜, 薛莲花, 姜呈馥, 等, 2018. 富有机质页岩生烃阶段孔隙演化及分形特征. 天然气地球科学, 29(12): 1817-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201812015.htm 张成林, 赵圣贤, 张鉴, 等, 2021. 川南地区深层页岩气富集条件差异分析与启示. 天然气地球科学, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm 张关根, 赖翔友, 1988. 麻皮效应对压汞资料的影响. 石油勘探与开发, 15(6): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198806012.htm 周志, 姜振学, 李世臻, 等, 2021. 鄂西建始地区五峰-龙马溪组黑色页岩生物地层特征. 地球科学, 46(2): 432-443. doi: 10.3799/dqkx.2020.059 邹才能, 赵群, 董大忠, 等, 2017. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm 邹晓艳, 李贤庆, 王元, 等, 2022. 川南地区五峰组-龙马溪组深层页岩储层特征和含气性. 天然气地球科学, 33(4): 654-665. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202204013.htm