• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东南地区五峰-龙马溪组深层超压富有机质页岩孔隙结构分形特征及其地质意义

    刘若冰 魏志红 加奥启 何生 侯宇光 何庆 王涛 曾宇 杨锐

    刘若冰, 魏志红, 加奥启, 何生, 侯宇光, 何庆, 王涛, 曾宇, 杨锐, 2023. 川东南地区五峰-龙马溪组深层超压富有机质页岩孔隙结构分形特征及其地质意义. 地球科学, 48(4): 1496-1516. doi: 10.3799/dqkx.2022.177
    引用本文: 刘若冰, 魏志红, 加奥启, 何生, 侯宇光, 何庆, 王涛, 曾宇, 杨锐, 2023. 川东南地区五峰-龙马溪组深层超压富有机质页岩孔隙结构分形特征及其地质意义. 地球科学, 48(4): 1496-1516. doi: 10.3799/dqkx.2022.177
    Liu Ruobing, Wei Zhihong, Jia Aoqi, He Sheng, Hou Yuguang, He Qing, Wang Tao, Zeng Yu, Yang Rui, 2023. Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance. Earth Science, 48(4): 1496-1516. doi: 10.3799/dqkx.2022.177
    Citation: Liu Ruobing, Wei Zhihong, Jia Aoqi, He Sheng, Hou Yuguang, He Qing, Wang Tao, Zeng Yu, Yang Rui, 2023. Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance. Earth Science, 48(4): 1496-1516. doi: 10.3799/dqkx.2022.177

    川东南地区五峰-龙马溪组深层超压富有机质页岩孔隙结构分形特征及其地质意义

    doi: 10.3799/dqkx.2022.177
    基金项目: 

    国家自然科学基金企业创新发展联合项目 U19B6003-03-03

    国家自然科学基金 42172157

    国家自然科学基金 41772143

    国家自然科学基金 41902140

    中国石油科技创新基金项目 2020D-5007-0103

    详细信息
      作者简介:

      刘若冰(1973-), 男, 博士, 研究员, 从事页岩气勘探评价研究及管理工作.ORCID: 0000-0003-2245-6861.E-mail: liurb.ktnf@sinopec.com

      通讯作者:

      杨锐, ORCID: 0000-0002-7864-1727.E-mail: yangyingrui@cug.edu.cn

    • 中图分类号: P618.13

    Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance

    • 摘要: 为明确川东南地区五峰-龙马溪组深层超压富有机质页岩的微观孔隙结构及其分形特征,以丁山-东溪地区五峰-龙马溪组深层超压富有机质页岩为研究对象,在查明页岩岩矿学和地球化学特征基础上,综合运用高分辨率扫描电镜、低温气体(CO2、N2)吸附以及高压压汞等研究手段,定量表征五峰-龙马溪组深层超压不同岩相富有机质页岩的微观孔隙结构特征.基于分形理论,利用低温CO2、N2吸附实验、高压压汞手段获得页岩不同尺度孔隙的分形维数,揭示页岩孔隙结构特征、矿物组成、TOC含量和分形维数的关系及其地质意义.研究表明,川东南丁山-东溪地区五峰-龙马溪组页岩样品普遍发育有机孔、无机孔(粒间孔和粒内孔)以及微裂缝;孔隙形态主要为楔形、狭缝型以及平行板状等;孔径分布呈多峰型,中孔为总孔隙体积的主要贡献者(约占59%),微孔为总孔隙体积的次要贡献者(约占35%),大孔对总孔隙体积的贡献较小.受矿物类型和含量、TOC含量和成岩作用等因素的共同影响,不同岩相页岩孔隙演化存在差异,最终造成现今储层的强非均质性和复杂的孔隙结构特征.研究区五峰-龙马溪组页岩孔隙具明显多尺度分形特征,不同岩相和不同尺度孔隙分形维数特征均存在差异,反映了页岩孔隙结构具有极强非均质性,其中硅质页岩微孔分形维数D1和中孔分形维数D2最大,发育更为复杂的微孔及中孔孔隙结构网络,可提供大量气体吸附点位和富集空间;而富硅泥质页岩具有最大的大孔分形维数D3,指示大孔孔隙空间结构相对更复杂,可提供更大的孔隙容纳空间,利于游离态页岩气的赋存.

       

    • 图  1  川东南丁山-东溪地区区域位置、构造及典型钻井位置图

      a.研究区区域构造位置; b.川东南丁山-东溪地区构造分区及典型钻井位置; c, d. 川东南丁山-东溪地区地质剖面

      Fig.  1.  Locations of regional, structural, and well for the Dingshan and Dongxi areas from the Southeast Sichuan basin

      图  2  研究区五峰-龙马溪组深层页岩岩相划分

      Fig.  2.  Shale lithofacies classification of deep gas shale from Wufeng and Longmaxi Formations in the study area

      图  3  丁山地区五峰-龙马溪组深层超压页岩样品高分辨率扫描电镜照片

      a,b. DS-1,4 359.98 m,龙马溪组,形变有机孔;c. DS-6,3 809.24 m,龙马溪组,有机孔;d. DS-4,365.57 m,龙马溪组,微裂缝;e,f. DS-5,3 799.28 m,龙马溪组,粒内溶蚀孔;g,h,i. DS-1,4 359.98 m,龙马溪组,扫描电镜、阴极发光、能谱元素面扫联用

      Fig.  3.  High resolution SEM images of overpressured deep shale samples of Wufeng and Longmaxi Formations in Dingshan area

      图  4  东溪地区五峰-龙马溪组深层超压页岩样品高分辨率扫描电镜照片

      a,b. DX-2,4 201.44 m,龙马溪组;c. DX-6,4 286.52 m,龙马溪组;d. DX-5,4 224.43 m,五峰组;e. DX-7,4 306.37 m,龙马溪组;f. DX-8,4 321.67 m,龙马溪组;g~i. DX-9,4 331.6 m,五峰组,扫描电镜、阴极发光、能谱元素面扫联用

      Fig.  4.  High resolution SEM images of overpressured deep shale samples of Wufeng and Longmaxi Formations in Dongxi area

      图  5  丁山-东溪地区五峰-龙马溪组深层超压页岩CO2(左)、N2(中)吸附及高压压汞(右)曲线

      Fig.  5.  CO2 adsorption, N2 physisorption and MICP curves for overpressured deep shale of Wufeng and Longmaxi Formations from the Dingshan and Dongxi areas

      图  6  丁山-东溪地区五峰-龙马溪组深层超压页岩孔径分布曲线及孔隙体积占比直方图

      Fig.  6.  Pore size distribution and histograms of pore volume for overpressured deep shale from Wufeng and Longmaxi Formations in Dingshan and Dongxi areas

      图  7  五峰-龙马溪组深层超压不同岩相页岩样品分形拟合

      CO2吸附微孔分形拟合(左);N2吸附中孔分形拟合(中);MIP大孔分形拟合(右)

      Fig.  7.  Fractal fitting for different shale lithofacies of overpressured deep shale of Wufeng and Longmaxi Formations

      图  8  丁山-东溪地区五峰-龙马溪组深层超压页岩TOC及矿物组分含量与孔隙结构参数关系

      Fig.  8.  Relationships between TOC contents, mineral composition, and pore structure parameters of overpressured deep shale from Wufeng and Longmaxi Formations in Dingshan and Dongxi areas

      图  9  丁山-东溪地区五峰-龙马溪组深层超压页岩TOC及矿物组分含量与分形维数的关系

      Fig.  9.  Relationships between TOC content, mineral composition, and fractal dimension of overpressured deep shale from Wufeng and Longmaxi Formations in Dingshan and Dongxi areas

      图  10  丁山-东溪地区五峰-龙马溪组深层超压页岩分形维数与孔隙体积关系

      Fig.  10.  Relationships between pore volume and fractal dimension of overpressured deep shale from Wufeng and Longmaxi Formations in Dingshan and Dongxi areas

      表  1  丁山-东溪地区五峰-龙马溪组深层超压富有机质页岩样品基本参数

      Table  1.   Basical information for the deep organic-rich shale of Wufeng and Longmaxi Formations in the Dingshan and Dongxi areas

      地区 井号 样品
      编号
      深度
      (m)
      层位 TOC含量
      (%)
      石英+长石+
      黄铁矿(%)
      黏土矿物
      (%)
      方解石+
      白云石(%)
      岩相类型
      丁山地区 丁页2井 DS-1 4 360.0 S1l 3.94 67.91 22.56 9.54 混合硅质页岩
      DS-2 4 363.3 S1l 5.85 72.10 24.30 3.61 混合硅质页岩
      DS-3 4 366.9 O3w 4.22 43.20 48.46 8.34 泥/硅混合质页岩
      丁页5井 DS-4 3 765.6 S1l 1.26 35.57 59.71 4.73 富硅泥质页岩
      DS-5 3 799.3 S1l 2.53 53.69 38.31 6.87 富泥硅质页岩
      DS-6 3 809.2 S1l 4.25 64.99 29.16 4.49 富泥硅质页岩
      DS-7 3 812.4 S1l 4.79 69.92 26.62 3.47 富泥硅质页岩
      DS-8 3 817.3 O3w 5.03 43.99 50.59 5.43 富硅泥质页岩
      东溪地区 东页深1井 DX-1 4 141.6 S1l 0.99 26.88 48.92 24.2 富硅泥质页岩
      DX-2 4 201.4 S1l 2.28 50.46 45.13 4.41 泥/硅混合质页岩
      DX-3 4 207.5 S1l 3.19 64.83 28.89 6.28 富泥硅质页岩
      DX-4 4 220.4 S1l 4.31 66.35 25.11 8.54 富泥硅质页岩
      DX-5 4 224.4 O3w 6.15 76.79 20.28 2.93 硅质页岩
      东页深3井 DX-6 4 286.5 S1l 1.14 45.02 52.15 2.83 富硅泥质页岩
      DX-7 4 306.4 S1l 2.83 56.07 39.92 4.02 富泥硅质页岩
      DX-8 4 321.7 S1l 4.48 67.45 25.29 7.26 富泥硅质页岩
      DX-9 4 331.6 O3w 5.06 78.22 18.39 3.39 硅质页岩
      下载: 导出CSV

      表  2  丁山-东溪地区五峰-龙马溪组深层超压页岩孔隙结构参数

      Table  2.   Pore structure parameters of overpressured deep shale of Wufeng and Longmaxi Formations in Dingshan and Dongxi areas

      岩相类型 微孔体积 中孔体积 大孔体积 微孔体积占比 中孔体积占比 大孔体积占比
      (cm3/103 g) (cm3/103 g) (cm3/103 g) (%) (%) (%)
      富硅泥质页岩 5.58~11.43
      (7.89)
      9.69~13.83
      (11.90)
      1.89~3.73
      (2.68)
      29.37~43.74
      (34.55)
      48.08~60.76
      (53.06)
      8.18~19.62
      (12.39)
      富泥硅质页岩 7.12~10.96
      (9.84)
      12.76~17.86
      (15.50)
      0.73~4.03
      (1.84)
      31.42~39.02
      (36.08)
      50.73~61.54
      (56.95)
      2.55~14.54
      (6.96)
      泥/硅混合质页岩 8.61~9.57
      (9.09)
      13.81~14.67
      (14.24)
      0.68~1.82
      (1.25)
      35.94~37.99
      (36.97)
      54.79~61.21
      (58.00)
      2.85~7.22
      (5.03)
      混合硅质页岩 7.69~12.34
      (10.01)
      16.34~19.83
      (18.08)
      1.16~1.64
      (1.40)
      29.96~37.02
      (33.49)
      59.50~63.65
      (61.57)
      3.49~6.39
      (4.94)
      硅质页岩 10.69~11.81
      (11.25)
      17.70~22.27
      (19.99)
      0.56~0.99
      (0.78)
      33.67~36.92
      (35.29)
      61.14~63.51
      (62.32)
      1.95~2.82
      (2.38)
      注:括号中为平均值.
      下载: 导出CSV

      表  3  丁山-东溪地区五峰-龙马溪组深层超压页岩孔隙结构分形特征参数

      Table  3.   Fractal dimension values for overpressured deep shale of Wufeng and Longmaxi Formatioins in Dingshan and Dongxi areas

      岩相类型 分形维数
      D1 R2 D2 R2 D3 R2
      富硅泥质页岩 2.391 6~2.485 1
      (2.437 6)
      0.995 4 2.769 2~2.784 8
      (2.777 3)
      0.980 5 2.832 1~2.897 4
      (2.860 5)
      0.959 8
      富泥硅质页岩 2.431 9~2.483 2
      (2.461 1)
      0.995 1 2.769 7~2.808 8
      (2.790 4)
      0.983 5 2.105 7~2.758 7
      (2.463 0)
      0.962 6
      泥/硅混合质页岩 2.453 6~2.456 4
      (2.455 0)
      0.995 6 2.793 4~2.811 7
      (2.802 6)
      0.964 2 2.329 6~2.636 8
      (2.483 2)
      0.967 6
      混合硅质页岩 2.463 1~2.466 7
      (2.464 9)
      0.994 6 2.798 0~2.805 3
      (2.801 7)
      0.981 6 2.332 6~2.682 8
      (2.507 7)
      0.923 4
      硅质页岩 2.506 9~2.512 1
      (2.509 5)
      0.996 0 2.804 1~2.814 3
      (2.809 2)
      0.964 0 2.202 2~2.326 7
      (2.264 5)
      0.966 4
      下载: 导出CSV
    • Chen, J.K., Zhu, Y.M., Cui, Z.B., et al., 2018. Pore Structure and Fractal Characteristics of Longmaxi Shale in Southern Sichuan Basin. Lithologic Reservoirs, 30(1): 55-62 (in Chinese with English abstract).
      Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
      Fan, C.H., Li, H., Zhong, C., et al., 2018. Tectonic Fracture Stages and Evolution Model of Longmaxi Formation Shale, Dingshan Structure, Southeast Sichuan. Acta Petrolei Sinica, 39(4): 379-390 (in Chinese with English abstract).
      Gou, Q.Y., Xu, S., Hao, F., et al., 2021. The Effect of Tectonic Deformation and Preservation Condition on the Shale Pore Structure Using Adsorption-Based Textural Quantification and 3D Image Observation. Energy, 219: 119579. https://doi.org/10.1016/j.energy.2020.119579
      Guo, X.S., Hu, D.F., Huang, R.C., et al., 2020. Deep and Ultra-Deep Natural Gas Exploration in the Sichuan Basin: Progress and Prospect. Natural Gas Industry, 40(5): 1-14 (in Chinese with English abstract).
      Guo, X.W., Qin, Z.J., Yang, R., et al., 2019. Comparison of Pore Systems of Clay-Rich and Silica-Rich Gas Shales in the Lower Silurian Longmaxi Formation from the Jiaoshiba Area in the Eastern Sichuan Basin, China. Marine and Petroleum Geology, 101: 265-280. https://doi.org/10.1016/j.marpetgeo.2018.11.038
      He, S., Qin, Q.R., Fan, C.H., et al., 2019. Shale Gas Preservation Conditions in Dingshan Area, Southeastern Sichuan. Petroleum Geology and Recovery Efficiency, 26(2): 24-31 (in Chinese with English abstract).
      Hu, Z.G., Qin, P., Hu, M.Y., et al., 2018. The Distribution and Heterogeneity Characteristics of Shale Reservoirs in Lower Cambrian Shuijingtuo Formation in Western Hunan-Hubei Region. China Petroleum Exploration, 23(4): 39-50 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2018.04.005
      Hu, W.G., Li, F.G., Fan, C.H., et al., 2019. Prediction and Evaluation on Deeper Marine Shale-Gas Reservoirs, Dingshan Area, Sichuan Basin. Natural Gas Exploration and Development, 42(3): 66-77 (in Chinese with English abstract).
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Jia, A.Q., Hu, D.F., He, S., et al., 2020. Variations of Pore Structure in Organic-Rich Shales with Different Lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into Gas Storage and Pore Evolution. Energy & Fuels, 34(10): 12457-12475. https://doi.org/10.1021/acs.energyfuels.0c02529
      Korvin, G., 1992. Fractal Models in the Earth Sciences. Elsevier, Amsterdam, 396.
      Li, L., Liu, A.W., Qi, Z.X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract).
      Li, Z., Liang, Z. K., Jiang, Z. X., et al., 2019. The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals, 9(2): 127. https://doi.org/10.3390/min9020127
      Li, Z.Q., Wang, W., Wang, X.M., et al., 2018. Study on Fractal Characteristics of Micro-Nano Pore Structure of Shale. Journal of Engineering Geology, 26(2): 494-503 (in Chinese with English abstract).
      Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0
      Liu, C., Ding, W.G., Zhang, J., et al., 2021. Qualitative-Quantitative Multiscale Characteristics of Shale Pore Structure from Upper Paleozoic Coal-Measures in Linxing Area. Coal Geology & Exploration, 49(6): 46-57 (in Chinese with English abstract).
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059
      Lu, Z.Y., He, Z.L., Yu, C., et al., 2021. Characteristics of Shale Gas Enrichment in Tectonically Complex Regions—A Case Study of the Wufeng-Longmaxi Formations of Lower Paleozoic in Southeastern Sichuan Basin. Oil & Gas Geology, 42(1): 86-97 (in Chinese with English abstract).
      Ma, Y.S., Li, M.W., Cai, X.Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract).
      Mandelbrot, B.B., 1982. Fractal Geometry of Nature. W.H. Freeman, New York.
      Qiu, N. S., Feng, Q. Q., Teng, G., et al., 2020. Yanshanian-Himalayan Differential Tectono-Thermal Evolution and Shale Gas Preservation in Dingshan Area, Southeastern Sichuan Basin. Acta Petrolei Sinica, 41(12): 1610-1622 (in Chinese with English abstract).
      Qiu, Z., Liu, B., Dong, D., et al., 2020. Silica Diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Reservoir Properties and Paleoproductivity. Marine and Petroleum Geology, 121: 104594. https://doi.org/10.1016/j.marpetgeo.2020.104594
      Rao, S., Yang, Y. N., Hu, S. B., et al., 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335(in Chinese with English abstract).
      Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048
      Sun, H. Q., Mašín, D., Najser, J., et al., 2020. Fractal Characteristics of Pore Structure of Compacted Bentonite Studied by ESEM and MIP Methods. Acta Geotechnica, 15(6): 1655-1671. https://doi.org/10.1007/s11440-019-00857-z
      Sun, Z.L., Wang, F.R., Han, Y.J., et al., 2022. Characterization and Evaluation of Fractal Dimension of Intersalt Shale Oil Reservoirs in Qianjiang Depression. Bulletin of Geological Science and Technology, 41(4): 125-137 (in Chinese with English abstract).
      Sun, M.D., Zhang, L.H., Hu, Q.H., et al., 2019. Pore Connectivity and Water Accessibility in Upper Permian Transitional Shales, Southern China. Marine and Petroleum Geology, 107: 407-422. https://doi.org/10.1016/j.marpetgeo.2019.05.035
      Tang, J.G., Wang, K.M., Qin, D.C., et al., 2021. Tectonic Deformation and Its Constraints to Shale Gas Accumulation in Nanchuan Area, Southeastern Sichuan Basin. Bulletin of Geological Science and Technology, 40(5): 11-21 (in Chinese with English abstract).
      Tatlıer, M., Erdem-Şenatalar, A., 1999. Method to Evaluate the Fractal Dimensions of Solid Adsorbents. The Journal of Physical Chemistry B, 103(21): 4360-4365. https://doi.org/10.1021/jp983179x
      Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9/10): 1051-1069. https://doi.org/10.1515/pac-2014-1117
      Wang, C., Dong, T., Jiang, S., et al., 2022. Vertical Heterogeneity and the Main Controlling Factors of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Shales in the Middle Yangtze Region. Bulletin of Geological Science and Technology, 41(3): 108-121(in Chinese with English abstract).
      Wang, H.K., Lü, X.X., Wang, Y.M., et al., 2018. The Reservoir Characteristics of Lower Silurian Longmaxi Formation in Western Hubei. Natural Gas Geoscience, 29(3): 415-423 (in Chinese with English abstract).
      Wang, S.F., Zou, C.N., Dong, D.Z., et al., 2014. Biogenic Silica of Organic-Rich Shale in Sichuan Basin and Its Significance for Shale Gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476-486 (in Chinese with English abstract).
      Wang, X. Q., Zhu, Y. M., Wang, Y., 2020. Fractal Characteristics of Micro- and Mesopores in the Longmaxi Shale. Energies, 13(6): 1349. https://doi.org/10.3390/en13061349
      Wang, Y.M., Li, X.J., Wang, H., et al., 2020. Prediction of Organic Matter Carbonization Zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze Region. Natural Gas Geoscience, 31(2): 151-162 (in Chinese with English abstract).
      Wang, Z.M., Jiang, Y.Q., Fu, Y.H., et al., 2022. Characterization of Pore Structure and Heterogeneity of Shale Reservoir from Wufeng Formation-Sublayers Long-11 in Western Chongqing Based on Nuclear Magnetic Resonance. Earth Science, 47(2): 490-504 (in Chinese with English abstract).
      Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/physrev.17.273
      Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract).
      Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016. Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 189-197 (in Chinese with English abstract).
      Xu, J., Guo, W.H., Liu, H.T., et al., 2021. Micro-Pore Structure Characteristics and Quantitative Characterization of Silurian Longmaxi Shale in Western Hubei and Hunan Areas. Natural Gas Geoscience, 32(4): 611-622 (in Chinese with English abstract).
      Xu, S., Hao, F., Shu, Z., et al., 2020. Pore Structures of Different Types of Shales and Shale Gas Exploration of the Ordovician Wufeng and Silurian Longmaxi Successions in the Eastern Sichuan Basin, South China. Journal of Asian Earth Sciences, 193: 104271. https://doi.org/10.1016/j.jseaes.2020.104271
      Yang, R., He, S., Hu, Q., et al., 2017. Applying SANS Technique to Characterize Nano-Scale Pore Structure of Longmaxi Shale, Sichuan Basin (China). Fuel, 197: 91-99. https://doi.org/10.1016/j.fuel.2017.02.005
      Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
      Yin, N., Xue, L.H., Jiang, C.F., et al., 2018. The Porous Evolution and Fractal Dimension of the Organic-Rich Shale at the Stage of Hydrocarbon Generation. Natural Gas Geoscience, 29(12): 1817-1828 (in Chinese with English abstract).
      Zhang, C.L., Zhao, S.X., Zhang, J., et al., 2021. Analysis and Enlightenment of the Difference of Enrichment Conditions for Deep Shale Gas in Southern Sichuan Basin. Natural Gas Geoscience, 32(2): 248-261 (in Chinese with English abstract).
      Zhang, G.G., Lai, X.Y., 1988. Influence of Hemp Skin Effect on Mercury Injection Data. Petroleum Expoloration and Development, 15(6): 80-82 (in Chinese with English abstract).
      Zhang, N., He, M. C., Zhang, B., et al., 2016. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry. Journal of Earth Science, 27(4): 670-676. https://doi.org/10.1007/s12583-016-0662-z
      Zhang, J.Z., Tang, Y.J., He, D.X., et al., 2020. Full-Scale Nanopore System and Fractal Characteristics of Clay-Rich Lacustrine Shale Combining FE-SEM, Nano-CT, Gas Adsorption and Mercury Intrusion Porosimetry. Applied Clay Science, 196: 105758. https://doi.org/10.1016/j.clay.2020.105758
      Zhou, Z., Jiang, Z.X., Li, S.Z., et al., 2021. Biostratigraphic Characteristics of Black Graptolite Shale in Wufeng Formation and Longmaxi Formation in Jianshi Area of West Hubei. Earth Science, 46(2): 432-443(in Chinese with English abstract).
      Zou, C.N., Zhao, Q., Dong, D.Z., et al., 2017. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Natural Gas Geoscience, 28(12): 1781-1796 (in Chinese with English abstract).
      Zou, J. P., Chen, W. Z., Yang, D. S., et al., 2019. Fractal Characteristics of the Anisotropic Microstructure and Pore Distribution of Low-Rank Coal. AAPG Bulletin, 103(6): 1297-1319. https://doi.org/10.1306/11151817226
      Zou, X.Y., Li, X.Q., Wang, Y., et al., 2022. Reservoir Characteristics and Gas Content of Wufeng-Longmaxi Formations Deep Shale in Southern Sichuan Basin. Natural Gas Geoscience, 33(4): 654-665 (in Chinese with English abstract).
      陈居凯, 朱炎铭, 崔兆帮, 等, 2018. 川南龙马溪组页岩孔隙结构综合表征及其分形特征. 岩性油气藏, 30(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801006.htm
      范存辉, 李虎, 钟城, 等, 2018. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式. 石油学报, 39(4): 379-390. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804002.htm
      郭旭升, 胡东风, 黄仁春, 等, 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202005002.htm
      何顺, 秦启荣, 范存辉, 等, 2019. 川东南丁山地区页岩气保存条件分析. 油气地质与采收率, 26(2): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902004.htm
      胡伟光, 李发贵, 范春华, 等, 2019. 四川盆地海相深层页岩气储层预测与评价——以丁山地区为例. 天然气勘探与开发, 42(3): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201903011.htm
      胡忠贵, 秦鹏, 胡明毅, 等, 2018. 湘鄂西地区下寒武统水井沱组页岩储层分布及非均质性特征. 中国石油勘探, 23(4): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201804006.htm
      李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220
      李志清, 王伟, 王晓明, 等, 2018. 页岩微纳米孔隙结构分形特征研究. 工程地质学报, 26(2): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802027.htm
      刘成, 丁万贵, 张健, 等, 2021. 临兴区块上古生界煤系页岩孔隙结构多尺度定性-定量综合表征. 煤田地质与勘探, 49(6): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202106005.htm
      卢志远, 何治亮, 余川, 等, 2021. 复杂构造区页岩气富集特征: 以四川盆地东南部丁山地区下古生界五峰组-龙马溪组为例. 石油与天然气地质, 42(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101009.htm
      马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
      邱楠生, 冯乾乾, 腾格尔, 等, 2020. 川东南丁山地区燕山期-喜马拉雅期差异构造-热演化与页岩气保存. 石油学报, 41(12): 1610-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012013.htm
      饶松, 杨轶南, 胡圣标, 等, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
      孙中良, 王芙蓉, 韩元佳, 等, 2022. 潜江凹陷盐间页岩油储层孔隙结构分形表征与评价. 地质科技通报, 41(4): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202204014.htm
      汤济广, 汪凯明, 秦德超, 等, 2021. 川东南南川地区构造变形与页岩气富集. 地质科技通报, 40(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105003.htm
      王川, 董田, 蒋恕, 等, 2022. 中扬子地区上奥陶统-下志留统五峰组-龙马溪组页岩纵向非均质性及主控因素. 地质科技通报, 41(3): 108-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203011.htm
      王宏坤, 吕修祥, 王玉满, 等, 2018. 鄂西下志留统龙马溪组页岩储集特征. 天然气地球科学, 29(3): 415-423. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201803012.htm
      王淑芳, 邹才能, 董大忠, 等, 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50(3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403010.htm
      王玉满, 李新景, 王皓, 等, 2020. 中上扬子地区下志留统龙马溪组有机质碳化区预测. 天然气地球科学, 31(2): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002001.htm
      王子萌, 蒋裕强, 付永红, 等, 2022. 基于核磁共振表征渝西地区五峰组—龙-11亚段页岩储层孔隙结构及非均质性. 地球科学, 47(2): 490-504. doi: 10.3799/dqkx.2021.076
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组-龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      吴蓝宇, 胡东风, 陆永潮, 等, 2016. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相. 石油勘探与开发, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
      徐洁, 郭维华, 刘皓天, 等, 2021. 湘鄂西地区志留系龙马溪组页岩微观孔隙结构特征及定量表征. 天然气地球科学, 32(4): 611-622. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202104015.htm
      尹娜, 薛莲花, 姜呈馥, 等, 2018. 富有机质页岩生烃阶段孔隙演化及分形特征. 天然气地球科学, 29(12): 1817-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201812015.htm
      张成林, 赵圣贤, 张鉴, 等, 2021. 川南地区深层页岩气富集条件差异分析与启示. 天然气地球科学, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm
      张关根, 赖翔友, 1988. 麻皮效应对压汞资料的影响. 石油勘探与开发, 15(6): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198806012.htm
      周志, 姜振学, 李世臻, 等, 2021. 鄂西建始地区五峰-龙马溪组黑色页岩生物地层特征. 地球科学, 46(2): 432-443. doi: 10.3799/dqkx.2020.059
      邹才能, 赵群, 董大忠, 等, 2017. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
      邹晓艳, 李贤庆, 王元, 等, 2022. 川南地区五峰组-龙马溪组深层页岩储层特征和含气性. 天然气地球科学, 33(4): 654-665. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202204013.htm
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  680
    • HTML全文浏览量:  646
    • PDF下载量:  81
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-19
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回