• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海洋深水钻井含可燃冰地层物性响应大尺寸高仿真实验

    周珂锐 郑明明 王凯 李可赛 王晓宇 陈禺树 刘天乐 吴祖锐

    周珂锐, 郑明明, 王凯, 李可赛, 王晓宇, 陈禺树, 刘天乐, 吴祖锐, 2024. 海洋深水钻井含可燃冰地层物性响应大尺寸高仿真实验. 地球科学, 49(11): 4098-4111. doi: 10.3799/dqkx.2022.180
    引用本文: 周珂锐, 郑明明, 王凯, 李可赛, 王晓宇, 陈禺树, 刘天乐, 吴祖锐, 2024. 海洋深水钻井含可燃冰地层物性响应大尺寸高仿真实验. 地球科学, 49(11): 4098-4111. doi: 10.3799/dqkx.2022.180
    Zhou Kerui, Zheng Mingming, Wang Kai, Li Kesai, Wang Xiaoyu, Chen Oushu, Liu Tianle, Wu Zurui, 2024. Large Scale and High Simulation Experimental Study on Physical Property Response of Combustible Ice Formation in Offshore Deepwater Drilling. Earth Science, 49(11): 4098-4111. doi: 10.3799/dqkx.2022.180
    Citation: Zhou Kerui, Zheng Mingming, Wang Kai, Li Kesai, Wang Xiaoyu, Chen Oushu, Liu Tianle, Wu Zurui, 2024. Large Scale and High Simulation Experimental Study on Physical Property Response of Combustible Ice Formation in Offshore Deepwater Drilling. Earth Science, 49(11): 4098-4111. doi: 10.3799/dqkx.2022.180

    海洋深水钻井含可燃冰地层物性响应大尺寸高仿真实验

    doi: 10.3799/dqkx.2022.180
    基金项目: 

    国家自然科学基金资助项目 41702389

    国家重点研发计划战略性国际科技创新合作重点专项项目 2016YFE0204300

    中国科学院天然气水合物重点实验室(中国科学院广州能源研究所)开放基金项目 E129kf1701

    岩土钻掘与防护教育部工程研究中心开放基金重点项目 201902

    详细信息
      作者简介:

      周珂锐(1998—),男,硕士研究生,从事非常规能源勘探与开发方面的研究. ORCID:0000-0001-8083-1514. E-mail:kerui_zhou0319@163.com

      通讯作者:

      郑明明,ORCID: 0000-0002-2312-9187. E-mail: mingming_zheng513@163.com

    • 中图分类号: P56

    Large Scale and High Simulation Experimental Study on Physical Property Response of Combustible Ice Formation in Offshore Deepwater Drilling

    • 摘要: 海洋深水钻遇可燃冰地层时,伴随传质传热的钻井液侵入行为会对近井壁地层的力学稳定产生重要影响,对地层物性的改变同时影响后续测井的质量和精度.因此,以墨西哥湾水合物联合工业计划中的Keathley Canyon井151-3井段水合物储层作为研究对象,首先利用压制胶结法制备了物性参数贴近实际的人造地层骨架,然后通过实验研究了原位储层地质与钻井工艺条件下钻井液侵入过程中近井壁地层的物性响应规律,分析了传质传热行为对地层温度、压力和电阻率的影响,得出了温差和压差的影响机理,建立了侵入深度与时间的函数关系.结果表明,通过正交试验优选的人造储层骨架孔隙度和电阻率与原位地层十分接近,分别相差1.29%和4.0%.压力的影响范围远快于温度和电阻率,而三者的影响范围都与时间呈现极强的数学关系.水合物的分解随着侵入深度的增加相继发生,表现为电阻率的变化,分解产生的游离气水向地层深处运移,易在温压变化范围之间区域重新形成水合物,呈现出高饱和水合物带.在地层破裂压力范围内,正压差对保持水合物相稳定起积极作用,从而有利于近井壁地层的稳定,而温差作用则恰为相反.现场钻井过程中,可通过提高钻井液密度、盐度,降低滤失量和添加抑制剂来减小对地层的影响.12 h的电阻率变化深度约为0.65 m,因此,电阻率测井作业中要获取未扰动水合物储层的电阻率数据,应减少钻测井之间的时间间隔,可采用随钻测井,或可采用探测深度合适的测井方法,如深侧向测井.

       

    • 图  1  甲烷水合物在蒸馏水和3.5%氯化钠溶液中的相平衡曲线

      Fig.  1.  Phase equilibrium curve of methane hydrate in distilled water and 3.5% NaCl solution

      图  2  墨西哥湾水合物联合工业计划(JIP)地理位置与钻孔分布(Ruppel et al., 2008)

      Fig.  2.  JIP local features, site survey data, and drill site locations (Ruppel et al., 2008)

      图  3  钻井液侵入模型示意

      Fig.  3.  Schematic diagram of the simulation model of the drilling fluid penetration behavior

      图  4  天然气水合物开采和流体运移模拟系统示意

      Fig.  4.  Schematic diagram of the gas hydrate mining and fluid migration simulation system

      图  5  人造岩心骨架所用石英砂的粒径级配分布曲线

      Fig.  5.  Grain size gradation distribution curve of quartz sand used for artificial core skeleton

      图  6  人造岩心骨架电导率σsed、孔隙度φ与孔隙流体导电性σpf的关系

      Fig.  6.  Relationship of the electrical conductivity σsed, porosity φ, and pore fluid conductivity σpf of the sediments

      图  7  制备的人造岩心骨架

      a.正交试验;b.最优配方长岩心

      Fig.  7.  Prepared artificial sediment columns

      图  8  水合物形成过程中地层主要物性参数变化情况

      Fig.  8.  Main physical parameter changes of the artificial sediments during gas hydrate formation

      图  9  钻井液侵入过程中近井壁地层温度、压力和电阻率变化

      a.水合物地层初始状态;b.钻井液初始状态

      Fig.  9.  Temperature, pressure, and resistivity changes of the artificial sediments during drilling fluid penetration

      图  10  水合物饱和度与沉积物电阻率的关系

      Fig.  10.  Relationship between hydrate saturation and sediment resistivity

      图  11  Archie公式实验数据表示

      Fig.  11.  Representation of experimental data in Archie formula

      图  12  钻井液侵入影响机理

      Fig.  12.  Influence mechanism of the drilling fluid penetration

      图  13  温度、压力和电阻率的可见变化与侵入时间的关系

      Fig.  13.  Relationships between visible changes of temperature, pressure, and resistivity with penetration time

      图  14  钻井液侵入过程中温度、压力和电阻率变化范围示意

      字母TPR分别代表温度、压力和电阻率.箭头表示传播方向、变化范围或变化趋势.红色箭头显示观察到的水合物改造区域.实线表示电阻率变化的范围.然而,测量点的大间距带来了精度问题

      Fig.  14.  Schematic diagram of the temperature, pressure, and resistivity change range during drilling fluid penetration

      表  1  主要实验参数

      Table  1.   Main experimental parameters

      实验参数 数值
      人造岩心骨架制备
      直径(mm) 50.0
      总长度(mm) 119.5
      渗透性(mD) 420.0
      孔隙度(%) 31.4
      主孔隙直径(μm) 40~100
      天然气水合物形成
      初始孔隙压力(MPa) 8.2
      初始孔隙温度(℃) 16.2
      孔隙水盐度(%) 3.5%
      初始岩心骨架电阻率(Ω·m) 1.04
      反应后岩心电阻率(Ω·m) 3.45
      钻井液侵入
      初始孔隙压力(MPa) 10.0
      初始孔隙温度(℃) 8.0
      钻井液盐度(%) 3.5
      钻井液初始温度(℃) 15.0
      正温差(MPa) 7.0
      钻井液初始压力(MPa) 12.0
      正压差(MPa) 2.0
      钻井液初始密度(g/cm3) 1.03
      钻井液表观粘度(mPa) 1.14
      下载: 导出CSV

      表  2  正交试验结果分析

      Table  2.   Analysis of orthogonal test results

      序号 工艺参数 模拟参数
      膨润土A(%) 粘结剂B(%) 压力C(MPa) 时间D(min) 孔隙度(%) 电阻率(Ω·m)
      1 7 0.5 5 10 35.56 0.85
      2 7 1.5 10 15 31.43 1.04
      3 7 2.5 15 20 26.60 1.23
      4 10 0.5 10 20 33.54 0.85
      5 10 1.5 15 10 29.38 1.64
      6 10 2.5 5 15 31.81 1.04
      7 13 0.5 15 15 27.23 1.32
      8 13 1.5 5 20 32.71 0.86
      9 13 2.5 10 10 30.22 1.19
      孔隙度 k1 31.20 32.11 33.36 31.72
      k2 31.58 31.17 31.73 30.16
      k3 30.05 29.54 27.74 30.95
      R 1.52 2.57 5.62 1.56
      电阻率 k1 1.04 1.01 0.92 1.22
      k2 1.18 1.18 1.02 1.13
      k3 1.13 1.15 1.40 0.98
      R 0.14 0.18 0.48 0.24
      下载: 导出CSV
    • Allshorn, S. L., Dawe, R. A., Grattoni, C. A., 2019. Implication of Heterogeneities on Core Porosity Measurements. Journal of Petroleum Science and Engineering, 174: 486-494. https://doi.org/10.1016/j.petrol.2018.11.045
      Archie, G. E., 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Journal of Petroleum Technology, 5: 1-8. https://doi.org/10.2118/942054⁃G
      Boswell, R., Schoderbek, D., Collett, T. S., et al., 2017. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, Operations, and Implications for CO2⁃CH4 Exchange in Gas Hydrate Reservoirs. Energy & Fuels, 31(1): 140-153. https://doi.org/10.1021/acs.energyfuels.6b01909
      Chen, Z. R., Li, Y. H., Chen, C., et al., 2021. Aggregation Behavior of Asphalt on the Natural Gas Hydrate Surface with Different Surfactant Coverages. The Journal of Physical Chemistry C, 125(30): 16378-16390. https://doi.org/10.1021/acs.jpcc.1c01747
      Chong, Z. R., Yang, S. H. B., Babu, P., et al., 2016. Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges. Applied Energy, 162: 1633-1652. https://doi.org/10.1016/j.apenergy.2014.12.061
      Cook, A. E., Goldberg, D. S., Malinverno, A., 2014. Natural Gas Hydrates Occupying Fractures: A Focus on Non⁃Vent Sites on the Indian Continental Margin and the Northern Gulf of Mexico. Marine and Petroleum Geology, 58: 278-291. https://doi.org/10.1016/j.marpetgeo.2014.04.013
      Dai, J. C., Banik, N., Gillespie, D., et al., 2008. Exploration for Gas Hydrates in the Deepwater, Northern Gulf of Mexico: Part II. Model Validation by Drilling. Marine and Petroleum Geology, 25(9): 845-859. https://doi.org/10.1016/j.marpetgeo.2008.02.005
      Fang, C. L., Zheng, M. M., Lu, H. Z., et al., 2018. A Simplified Method for Predicting the Penetration Distance of Cementing Slurry in Gas Hydrate Reservoirs around Wellbore. Journal of Natural Gas Science and Engineering, 52: 348-355. https://doi.org/10.1016/j.jngse.2018.01.042
      Lee, M. W., Collett, T. S., Lewis, K. A., 2012. Anisotropic Models to Account for Large Borehole Washouts to Estimate Gas Hydrate Saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B Well. Marine and Petroleum Geology, 34(1): 85-95. https://doi.org/10.1016/j.marpetgeo.2011.06.010
      Li, J. F., Ye, J. L., Qin, X. W., et al., 2018. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003
      Li, L. J., Luo, Y. J., Peng, J. M., et al., 2019. Theoretical Analysis of the Influence of Drilling Compaction on Compressional Wave Velocity in Hydrate⁃Bearing Sediments. Energy Science & Engineering, 7(2): 420-430. https://doi.org/10.1002/ese3.284
      Li, S. X., Li, S., Zheng, R. Y., et al., 2021. Strategies for Gas Production from Class 2 Hydrate Accumulations by Depressurization. Fuel, 286: 119380. https://doi.org/10.1016/j.fuel.2020.119380
      Li, S. X., Wang, W., Chen, Y. M., et al., 2011. Experimental Study on Influence Factors of Hot⁃Brine Stimulation for Dissociation of Ngh in Porous Medium. Marine Geology Frontiers, 27(6): 49-54 (in Chinese with English abstract).
      Liu, L. G., 2012. Experiment Study of Different Saturated Methane Hydrates Exploitation. Dalian University of Technology, Dalian (in Chinese with English abstract).
      Liu, L. P., Sun, Z. L., Zhang, L., et al., 2019. Progress in Global Gas Hydrate Development and Production as a New Energy Resource. Acta Geologica Sinica⁃English Edition, 93(3): 731-755. https://doi.org/10.1111/1755⁃6724.13876
      Liu, T. L., Li, L. X., Jiang, G. S., et al., 2015. A New Drilling Fluid for Drilling in Marine Gas Hydrate Bearing Sediments. Earth Science, 40(11): 1913-1921 (in Chinese with English abstract).
      Malagar, B. R. C., Lijith, K. P., Singh, D. N., 2019. Formation & Dissociation of Methane Gas Hydrates in Sediments: A Critical Review. Journal of Natural Gas Science and Engineering, 65: 168-184. https://doi.org/10.1016/j.jngse.2019.03.005
      Ning, F. L., Zhang, K. N., Wu, N. Y., et al., 2013. Invasion of Drilling Mud into Gas⁃Hydrate⁃Bearing Sediments. Part I: Effect of Drilling Mud Properties. Geophysical Journal International, 193(3): 1370-1384. https://doi.org/10.1093/gji/ggt015
      Ren, J. F., Sun, M., Han, B., 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071 (in Chinese with English abstract).
      Ruppel, C., Boswell, R., Jones, E., 2008. Scientific Results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 Drilling: Introduction and Overview. Marine and Petroleum Geology, 25(9): 819-829. https://doi.org/10.1016/j.marpetgeo.2008.02.007
      Sloan, E. D., 2003. Clathrate Hydrate Measurements: Microscopic, Mesoscopic, and Macroscopic. The Journal of Chemical Thermodynamics, 35(1): 41-53. https://doi.org/10.1016/S0021⁃9614(02)00302⁃6
      Song, Y. C., Wang, S. J., Cheng, Z. C., et al., 2021. Dependence of the Hydrate⁃Based CO2 Storage Process on the Hydrate Reservoir Environment in High⁃Efficiency Storage Methods. Chemical Engineering Journal, 415: 128937. https://doi.org/10.1016/j.cej.2021.128937
      Sun, J. X., Ning, F. L., Lei, H. W., et al., 2018. Wellbore Stability Analysis during Drilling through Marine Gas Hydrate⁃Bearing Sediments in Shenhu Area: A Case Study. Journal of Petroleum Science and Engineering, 170: 345-367. https://doi.org/10.1016/j.petrol.2018.06.032
      Sun, K. M., Wang, T. T., Zhai, C., et al., 2018. Heating Decomposition Interface of Natural Gas Hydrate with Different Saturations. Special Oil & Gas Reservoirs, 25(5): 129-134 (in Chinese with English abstract).
      Sun, X., Luo, T. T., Wang, L., et al., 2019a. Numerical Simulation of Gas Recovery from a Low⁃Permeability Hydrate Reservoir by Depressurization. Applied Energy, 250: 7-18. https://doi.org/10.1016/j.apenergy.2019.05.035
      Sun, X., Wang, L., Luo, H., et al., 2019b. Numerical Modeling for the Mechanical Behavior of Marine Gas Hydrate⁃Bearing Sediments during Hydrate Production by Depressurization. Journal of Petroleum Science and Engineering, 177: 971-982. https://doi.org/10.1016/j.petrol.2019.03.012
      Timothy, J., Kneafsey, George, J., 2014. Moridis. X⁃Ray Computed Tomography Examination and Comparison of Gas Hydrate Dissociation in NGHP⁃01 Expedition (India) and Mount Elbert (Alaska) Sediment Cores: Experimental Observations and Numerical Modeling. Marine and Petroleum Geology, 58: 526-539. https://doi.org/10.1016/j.marpetgeo.2014.06.016
      Waite, W. F., Kneafsey, T. J., Winters, W. J., et al., 2008. Physical Property Changes in Hydrate⁃Bearing Sediment Due to Depressurization and Subsequent Repressurization. Journal of Geophysical Research: Solid Earth, 113(B7): 1978-2012. https://doi.org/10.1029/2007jb005351
      Wang, L., Sun, X., Shen, S., et al., 2021a. Undrained Triaxial Tests on Water⁃Saturated Methane Hydrate⁃Bearing Clayey⁃Silty Sediments of the South China Sea. Canadian Geotechnical Journal, 58(3): 351-366. https://doi.org/10.1139/cgj⁃2019⁃0711
      Wang, Q. B., Wang, R., Sun, J. X., et al., 2021b. Effect of Drilling Fluid Invasion on Natural Gas Hydrate Near⁃Well Reservoirs Drilling in a Horizontal Well. Energies, 14(21): 7075. https://doi.org/10.3390/en14217075
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2020. The Characteristics of Gas Hydrate Accumulation and Quantitativre Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wei, W., Cai, J. C., Hu, X. Y., et al., 2015. An Electrical Conductivity Model for Fractal Porous Media. Geophysical Research Letters, 42(12): 4833-4840. https://doi.org/10.1002/2015gl064460
      Winters, W. J., Dugan, B., Collett, T. S., 2008. Physical Properties of Sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico Gas Hydrate Drilling Program. Marine and Petroleum Geology, 25(9): 896-905. https://doi.org/10.1016/j.marpetgeo.2008.01.018
      Xiong, P., Lu, H., Xie, X. N., et al., 2020. Geochemical Responses and Implications for Gas Hydrate Accumulation: Case Study from Site SHC in Shenhu Area within Northern South China Sea. Marine and Petroleum Geology, 111: 650-661. https://doi.org/10.1016/j.marpetgeo.2019.06.032
      Yu, M. H., Li, W. Z., Yang, M. J., et al., 2017. Numerical Studies of Methane Gas Production from Hydrate Decomposition by Depressurization in Porous Media. Energy Procedia, 105: 250-255. https://doi.org/10.1016/j.egypro.2017.03.310
      Yun, T. S., Santamarina, J. C., Ruppel, C., 2007. Mechanical Properties of Sand, Silt, and Clay Containing Tetrahydrofuran Hydrate. Journal of Geophysical Research: Solid Earth, 112(B4): 1978-2012. https://doi.org/10.1029/2006jb004484
      Zhang, H. W., Cheng, Y. F., Li, L. D., et al., 2018. Perturbation Simulation of Invasion of Drilling Fluid Containing Thermodynamic Hydrate Inhibitors into Natural Gas Hydrate Formation. Science Technology and Engineering, 18(6): 93-98 (in Chinese with English abstract).
      Zhao, J. F., Liu, Y. Z., Yang, L., et al., 2021. Organics⁃Coated Nanoclays Further Promote Hydrate Formation Kinetics. 12(13): 3464-3467. https://doi.org/10.1021/acs.jpclett.1c00010
      Zheng, M. M., Jiang, G. S., Liu, T. L., et al., 2017. Physical Properties Response of Hydrate Bearing Sediments near Wellbore during Drilling Fluid Invasion. Earth Science, 42(3): 453-461 (in Chinese with English abstract).
      Zheng, M. M., Liu, T. L., Gao, Z. Y., et al., 2019. Simulation of Natural Gas Hydrate Formation Skeleton with the Mathematical Model for the Calculation of Macro⁃Micro Parameters. Journal of Petroleum Science and Engineering, 178: 429-438. https://doi.org/10.1016/j.petrol.2019.03.051
      Zhou, X., Ning, F. L., Sun, J. X., et al., 2015. Numerical Simulation on the Drilling Fluid Flowing in Gas Hydrate⁃Bearing Sediment at the Laboratory Scale. Geological Science and Technology Information, 34(5): 190-198 (in Chinese with English abstract).
      李淑霞, 王炜, 陈月明, 等, 2011. 多孔介质中天然气水合物注热开采影响因素实验研究. 海洋地质前沿, 27(6): 49-54.
      刘丽国, 2012. 不同饱和度水合物开采实验研究(硕士学位论文). 大连: 大连理工大学.
      刘天乐, 李丽霞, 蒋国盛, 等, 2015. 一种海洋水合物地层钻井用新型钻井液. 地球科学, 40(11): 1913-1921. doi: 10.3799/dqkx.2015.172
      任金锋, 孙鸣, 韩冰, 等, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185
      孙可明, 王婷婷, 翟诚, 等, 2018. 不同饱和度天然气水合物加热分解界面变化规律. 特种油气藏, 25(5): 129-134.
      王秀娟, 勒佳澎, 郭依群, 等, 2020. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      张怀文, 程远方, 李令东, 等, 2018. 含热力学抑制剂钻井液侵入天然气水合物地层扰动模拟. 科学技术与工程, 18(6): 93-98.
      郑明明, 蒋国盛, 刘天乐, 等, 2017. 钻井液侵入时水合物近井壁地层物性响应特征. 地球科学, 42(3): 453-461. doi: 10.3799/dqkx.2017.035
      周欣, 宁伏龙, 孙嘉鑫, 等, 2015. 实验尺度下钻井液在含水合物地层流动数值模拟. 地质科技情报, 34(5): 190-198.
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  195
    • HTML全文浏览量:  94
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-10
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回