Geochronology and Geochemistry of the Linzizong Volcanic Succession, Namling Basin, Xizang
-
摘要: 为了更好地约束林子宗群火山岩的年龄格架、岩石成因及其演化历史,对拉萨地块中南部南木林盆地的林子宗群火山岩进行了详细的岩相学、锆石U-Pb年代学和全岩主微量元素地球化学研究.结果显示,南木林盆地林子宗群火山旋回时限依次为62.8~57.0 Ma、52.0~50.2 Ma、49.7 Ma.随着时间的演化,早期典中组以爆发相为主,年波组以喷发-沉积相为主,到晚期帕那组以喷溢相为主,且呈现出从中酸性向酸性演化,由钙碱性系列向高钾钙碱性系列再到钾玄岩系列逐渐过渡的趋势.其中,典中组英安质岩石为钙碱性系列,富集大离子亲石元素,亏损高场强元素,具有明显的Nb、Ta、Ti负异常,显示典型的弧火山岩特征;年波组和帕那组流纹质岩石为钙碱性-高钾钙碱性系列岩石,且有钾玄岩出现,富集大离子亲石元素,亏损高场强元素,除具有明显的Nb、Ta、Ti负异常外,还具有显著的Ba、Sr、P负异常,显示碰撞-碰撞后火山岩的特点.上述特征暗示典中组英安质岩石可能是新特提斯洋北向俯冲消减过程中岛弧区幔源岩浆底侵诱发上覆地壳部分熔融的产物,年波组和帕那组流纹质岩石则是印度-亚洲大陆碰撞初期阶段英安质岩石进一步分离结晶的产物.林子宗群火山岩是记录这种体制转换的重要载体.Abstract: In order to better constrain the age framework, petrogenesis and evolution history of the Linzizong volcanic succession (LVS), this study focuses on the petrography, zircon U-Pb geochronology and whole-rock geochemical characteristics analyses of LVS in Namling basin in the central-southern Lhasa Terrane. Results show that the periods of eruptive cycles of LVS in Namling basin are 62.8 Ma to 57.0 Ma, 52.0 Ma to 50.2 Ma and 49.7 Ma, respectively. With the evolution of time, the lithofacies have changed. Dianzhong Formation is dominated by the eruption facies, Nianbo Formation is dominated by the eruption-sedimentary facies, while Pana Formation is dominated by the eruption-overflow facies. Meanwhile, it shows the trend of evolution from andesitic to acidic, from calc-alkaline to high K calc-alkaline to shoshonite series. The dacite rocks of Dianzhong Formation are calc-alkaline series, which are enriched in LILE, depleted of HFSE, with obvious negative anomalies of Nb, Ta and Ti, showing typical arc volcanic characteristics. The rhyolite rocks of Nianbo Formation and Pana Formation are calc-alkaline to high K calc-alkaline series with occurrence of shoshonite series, which are enriched in LILE, and depleted in HFSE. In addition to the obvious negative anomalies of Nb, Ta and Ti, there are also significant negative anomalies of Ba, Sr and P, showing the characteristics of collision to post-collision volcanic rocks. The above features suggest that the dacite rocks of Dianzhong Formation may be the product of partial melting of the overlying crust induced by the undercutting of mantle-derived magma in the arc region during the northward subduction of the Neo-Tethys Ocean. While, the rhyolite rocks of Nianbo Formation and Pana Formation are the products of further separation and crystallization of dacite rocks in the early stage of the Indian-Asian continental collision. In summary, LVS is an important archive for recording this system transformation from subduction to collision.
-
Key words:
- Linzizong volcanic succession /
- zircon U-Pb chronology /
- geochemistry /
- Namling /
- Lhasa terrane /
- petrology
-
图 1 青藏高原构造格架(a)、冈底斯构造岩浆岩带地质简图(b,据Zhu et al., 2011修改)、南木林盆地地质简图(c)、南木林盆地林子宗群火山岩柱状图(d)、A-B剖面图(e)和C-D剖面图(f)
图c中:cg.砾岩;ls.灰岩;ss.砂岩;年龄数据上方圆圈中的数字表示引用的文献编号,其中:1.曹延等(2020);2.陈贝贝等(2016);3.陈兰朴等(2019);4.He et al.(2007);5.Huang et al.(2015);6.李皓扬等(2007);7.李勇等(2018);8.梁银平等(2010);9.刘安琳等(2015);10.王乔林(2011);11.谢冰晶等(2013);12.Yan et al.(2019);13.杨辉等(2013);14.Zhu et al.(2015);15.Liu et al.(2018);16.李强等(2017);17.刘富军等(2019);18.韦乃韶等(2019);19.张运昌等(2019);20.赵亚云等(2019);21.呼建雄等(2018);22.付文春等(2014);23.谢克家等(2011);24.刘安琳(2020);25.Ding et al.(2021);26.刘冯斌等(2020);27.周鹏等(2019);28.胡林等(2020);29.韩飞等(2019);30.待发表数据
Fig. 1. Tectonic framework of Qinghai-Xizang Plateau (a), sketch geological map of Gangdese magmatic belt (b, modified by Zhu et al., 2011) and Namling basin (c), LVS stratigraphic column in Namling basin (d), A-B (e) and C-D (f) sections
图 5 南木林林子宗群火山岩TAS图解(a)、K2O-SiO2图解(b)和Ce/Yb-Ta/Yb图解(c)(图例同图 4)
图a中:B.玄武岩;O1.玄武安山岩;O2.安山岩;O3.英安岩;Pc.苦橄玄武岩;Ph.响岩;R.流纹岩;S1.粗面玄武岩;S2.响岩质玄武岩;S3.碱玄武岩;T.粗面岩;U1.碱玄岩碧玄岩;U2.响岩质碱玄岩;U3.碱玄响岩
Fig. 5. TAS (a), K2O-SiO2(b) and Ce/Yb-Ta/Yb diagram (c) of LVS in Namling area
图 6 球粒陨石标准化稀土元素配分曲线(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石和原始地幔标准值引自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE distribution pattern (a) and primitive mantle-normalized trace element spider diagram (b)
图 7 南木林盆地和林周盆地林子宗群火山岩地层柱状图
林周盆地柱状图引自陈贝贝等(2016);部分图例同图 1
Fig. 7. Lithostratigraphic columns of LVS in Namling and Linzhou basin
图 8 Rb/Sr-Rb/Ba(a)、Sr-Ba/Sr(b)和Sr-Rb/Sr(c)相关性图解
图例同图 4
Fig. 8. Correlation plot of Rb/Sr-Rb/Ba (a), Sr-Ba/Sr (b) and Sr-Rb/Sr (c)
表 1 南木林盆地林子宗群火山岩样品概况
Table 1. Petrography of samples from the LVS in Namling basin
样品号 岩石名称 组 采样位置 岩性描述 备注 P9 安山玢岩 典中组 29°40′43″N89°11′05″E 新鲜面呈浅灰绿色,具辉绿结构,块状构造.由斜长石(80%)和普通辉石(20%)组成.其中斜长石呈板条状,自形‒半自形粒状结构,发育聚片双晶;普通辉石呈短柱状,分布于长石颗粒间,形成辉绿结构,部分发生绿泥石化(图 2i). 年龄样1件 D3423 英安岩 典中组 29°40′48″N89°09′31″E 新鲜面呈灰色,斑状结构,块状构造.斑晶主要为斜长石(25%),呈板条状,表面较脏,多被绢云母完全交代,保留长石板条状晶形;还可见少量石英斑晶(5%),粒状;基质(70%)为隐晶质,成分主要为斜长石微晶和玻璃质(图 2e). 年龄样1件;全岩地化样5件 P2 英安岩 典中组 29°43′10″N89°05′43″E 新鲜面呈灰色,斑状结构,块状构造.斑晶主要为斜长石(20%),粒状、宽板状,局部绢云母化;少量石英斑晶(5%),粒状;基质(75%)主要为斜长石微晶和玻璃质组成,呈隐晶质结构. 全岩地化样2件 D0108 英安质含角砾晶屑凝灰岩 典中组 29°50′51″N89°00′54″E 新鲜面呈紫灰色,具含角砾晶屑凝灰结构,块状构造,主要由晶屑(35%)、火山角砾(10%)和火山灰(55%)组成.火山角砾为英安岩岩屑,呈次棱角状;填隙物为粒度细小的火山灰. 年龄样1件 D1694 流纹质含角砾岩屑晶屑凝灰岩 年波组 29°52′34″N89°08′13″E 新鲜面呈灰色,凝灰结构,块状构造.火山碎屑物由 < 2 mm的凝灰物质组成,碎屑成分主要由岩屑(20%),晶屑(35%)、玻屑(10%)组成,填隙物为火山灰,另有少量火山角砾(5%).火山碎屑物分选性差,有粗糙感,层理不明显. 全岩地化样2件 D1099 流纹质晶屑凝灰岩 年波组 29°50′16″N89°02′16″E 新鲜面呈灰白色,具晶屑凝灰结构,块状构造.火山碎屑物由 < 2 mm的凝灰物质组成,碎屑主要为晶屑(45%),填隙物为灰色火山灰(图 2f). 年龄样1件;全岩地化样5件 P8 流纹质晶屑凝灰岩 年波组 29°44′55″N89°22′33″E 新鲜面呈灰白色,晶屑凝灰结构,块状构造.火山碎屑物由 < 2 mm的凝灰物质组成,碎屑主要为晶屑(40%),填隙物为灰色火山灰. 全岩地化样2件 D3022 流纹质含角砾熔结凝灰岩 年波组 29°47′27″N89°11′44″E 新鲜面呈灰白色,具熔结凝灰结构,可见假流动构造.主要由晶屑(20%)、塑性岩屑(25%)、火山角砾(5%)和火山灰(50%)组成.晶屑成分主要为石英、斜长石和碱性长石,多呈次棱角状;塑性岩屑呈拉长的条带状;火山角砾呈棱角状,火山碎屑物分选性差.火山灰由于蠕动变形和熔结,围绕晶屑、岩屑及火山角砾变为平滑线状定向排列而形成假流动构造. 年龄样2件;全岩地化样1件 D9018 球粒流纹岩 帕那组 29°49′42″N89°22′31″E 新鲜面呈灰色,球粒结构,块状构造.斑晶主要为石英(30%)和钾长石(20%),球粒(50%)由放射状长英质纤维组成,局部具十字消光,其间为隐晶质(图 2h). 年龄样1件;全岩地化样7件 -
Bao, C. H., Ding, F., Wang, Q., et al., 2014. Lithochemical, Geochemical, Characteristics and Tectonic Setting of the Volcanic Rocks in the Eocene Pana Formation, Linzizong Group, in the Xiongma Area, Coqen County, Xizang (Tibet). Geological Review, 60(2): 275-284 (in Chinese with English abstract). Cao, Y., Kang, Z. Q., Xu, J. F., et al., 2020. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block. Earth Science, 45(5): 1573-1592 (in Chinese with English abstract). Chen, B. B., Ding, L., Xu, Q., et al., 2016. U-Pb Age Framework of the Linzizong Volcanic Rocks from the Linzhou Basin, Tibet. Quaternary Sciences, 36(5): 1037-1054 (in Chinese with English abstract). Chen, L. P., Huang, Z. S., Jiangba, D. J., et al., 2019. Zircon U-Pb Age and Geochemical Characteristics of Igneous Rocks from the Dianzhong Formation in the Shengong Area of Tibet. Geological Bulletin of China, 38(7): 1127-1135 (in Chinese with English abstract). Ding, X. L., Ding, L., Wang, C., et al., 2021. Petrogenesis and Tectonic Implications of Palaeocene (Ca. 54 Ma) Rhyolites in the Western Lhasa Terrane, South Tibet: Constraints from Geochemistry and Sr-Nd-Hf Isotope Compositions. Geological Journal, 56(1): 494-507. https://doi.org/10.1002/gj.3976 Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859 (in Chinese with English abstract). Green, D. H. 1976. Experimental Testing of Equilibrium Partial Melting of Peridotite Under Water-Saturated, High-pressure Conditions. The Canadian Mineralogist, 14(3): 255-268. Han, F., Huang, Y. G., Li, Y. X., et al., 2019. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdise Magmatic Belt, Nanmulin Area, Tibet. Geological Bulletin of China, 38(9): 1403-1416 (in Chinese with English abstract). He, S. D., Kapp, P., DeCelles, P. G., et al., 2007. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 433(1-4): 15-37. https://doi.org/10.1016/j.tecto.2007.01.005 Hu, J. X., Chen, J. L., Yao, S., et al., 2018. Zircon U-Pb Geochronology, Genesis for Nianbo Formation Volcanic Rocks of Linzizong Group in the Western Part of Gangdese Arc and Its Implication. Geochimica, 47(6): 699-711(in Chinese with English abstract). Hu, L., Tang, H., Xu, G., et al., 2020. The Discovery and Limplications for the India-Eurasia Plate Collision of the Nianbo Formation Adakitic Rocks from Yangyi Basin in Middle Gangdise Belt. Geological Bulletin of China, 39(10): 1507-1517 (in Chinese with English abstract). Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804 (in Chinese with English abstract). Huang, W. T., Dupont-Nivet, G., Lippert, P. C., et al., 2015. What was the Paleogene Latitude of the Lhasa Terrane? A Reassessment of the Geochronology and Paleomagnetism of Linzizong Volcanic Rocks (Linzhou Basin, Tibet). Tectonics, 34(3): 594-622 doi: 10.1002/2014TC003787 Huang, Y. G., Li, Y. X., Han, F., et al., 2020. U-Pb Geochronology of Hydrothermal Zircons from the Nyainqentanglha Ductile Shear Zone: Constraints on Inception of Cenozoic East-West Extension in the Tibetan Plateau. Acta Geologica Sinica-English Edition, 94(4): 1314-1316. https://doi.org/10.1111/1755-6724.14578 Jackson, M. D., Cheadle, M. J., Atherton, M. P., 2003. Quantitative Modeling of Granitic Melt Generation and Segregation in the Continental Crust. Journal of Geophysical Research: Solid Earth, 108(B7): 2332. https://doi.org/10.1029/2001JB001050 Li, H. Y., Chung, S. L., Wang, Y. B., et al., 2007. Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes. Acta Petrologica Sinica, 23(2): 493-500 (in Chinese with English abstract). Li, Q., Ran, M. L., Kang, Z. Q., et al., 2017. Zircon U-Pb Ages and Geological Significance of Zenong Group Volcanic Rock in Yare Area, West of Lhasa Block. Journal of Guilin University of Technology, 37(4): 561-569 (in Chinese with English abstract). Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8): 2755-2766 (in Chinese with English abstract). Liang, Y. P., Zhu, J., Ci, Q., et al., 2010. Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau. Earth Science, 35(2): 211-223 (in Chinese with English abstract). Liu, A. L., 2020. Spatial and Temporal Comparison of the Linzizong Volcanic Composition from Typical Locations in Southern Tibet and Geodynamic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Liu, A. L., Wang, Q., Zhu, D. C., et al., 2018. Origin of the Ca. 50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc, Southern Tibet. Lithos, 304-307: 374-387. https://doi.org/10.1016/j.lithos.2018.02.017 Liu, A. L., Zhu, D. C., Wang, Q., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Origin of the Linzizong Volcanic Rocks from Milashan, Southern Tibet. Geological Bulletin of China, 34(5): 826-833 (in Chinese with English abstract). Liu, F. B., Zhang, N., Ding, F., et al., 2020. Geochemical Characteristics and Tectonic Response of Dianzhong Formation Volcanic Rocks in Chunzhe Area, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 411-422 (in Chinese with English abstract). Liu, F. J., Qin, S., Sun, C. M., 2019. Zircon U-Pb Ages and Geochemical Characteristics of the Pana Formation Volcanic Rocks from the Linzizong Group in Zhaxue Area, Eastern Gangdese Belt, Xizang(Tibet), and Its Tectonic Significance. Geological Review, 65(5): 1131-1152 (in Chinese with English abstract). Parman, S. W., Grove, T. L., 2004. Harzburgite Melting with and without H2O: Experimental Data and Predictive Modeling. Journal of Geophysical Research: Solid Earth, 109(B2): B02201. https://doi.org/10.1029/2003JB002566 Prouteau, G., Scaillet, B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44(12): 2203-2241. https://doi.org/10.1093/petrology/egg075 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Wang, Q. L., 2011. Geochemistry and Zircon U-Pb Chronology of Linzizong Group Volcanic Rocks in Western Gangdese, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Wei, N. S., Kang, Z. Q., Yang, F., et al., 2019. Geochronology, Geochemical Characteristics, and Genesis of the Dianzhong Formation Volcanic Rocks in Changguo Area, Southeastern Lhasa Block, Tibet. Geochimica, 48(1): 30-42 (in Chinese with English abstract). Xie, B. J., Zhou, S., Xie, G. G., et al., 2013. Zircon SHRIMP U-Pb Data and Regional Contrasts of Geochemical Characteristics of Linzizong Volcanic Rocks from Konglong and Dinrenle Region, Middle Gangdese Belt. Acta Petrologica Sinica, 29(11): 3803-3814 (in Chinese with English abstract). Xie, K. J., Zeng, L. S., Liu, J., et al., 2011. Timing and Geochemistry of the Linzizong Group Volcanic Rocks in Sangsang Area, Ngamring County, Southern Tibet. Geological Bulletin of China, 30(9): 1339-1352 (in Chinese with English abstract). Yan, H. Y., Long, X. P., Li, J., et al., 2019. Arc Andesitic Rocks Derived from Partial Melts of Mélange Diapir in Subduction Zones: Evidence from Whole-Rock Geochemistry and Sr-Nd-Mo Isotopes of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Journal of Geophysical Research: Solid Earth, 124(1): 456-475. https://doi.org/10.1029/2018JB016545 Yang, H., Xiang, S. Y., Wang, X., et al., 2013. Age and Tectonic Setting of Dianzhong Formation in the Maxiang Area, Tibet, China. Geological Science and Technology Information, 32(4): 89-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201304015.htm Zhang, Y. C., Chen, Y., Yang, Q., et al., 2019. Zircon U-Pb Age and Geochemistry of Volcanic Rock of Linzizong Group in Nanmulin Area of Middle Gangdise Belt, Tibet. Geological Bulletin of China, 38(5): 719-732 (in Chinese with English abstract). Zhao, Y. Y., Yang, C. S., Lü, J. L., et al., 2019. Zircon U-Pb Age, Geochemical Characteristics and Significance of the Linzizong Group Volcanic Rocks in the Luobuzhen Orefield, Tibet, China. Geoscience, 33(1): 73-84 (in Chinese with English abstract). Zhou, P., Liu, G. X., Li, Q., et al., 2019. Zircon U-Pb Ages and Geochemistry of Volcanic Rocks from the Linzizong Group in the Tingong Area in Middle Gangdise Belt. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 352-360 (in Chinese with English abstract). Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. 40Ar/39Ar Geochronology of Cenozoic Linzizong Volcanic Rocks from Linzhou Basin, Tibet, China, and Their Geological Implications. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese). doi: 10.1360/csb2004-49-20-2095 Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record: Method and Examples. Science in China (Series D), 47(6): 657-673 (in Chinese). Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 鲍春辉, 丁枫, 王乾, 等, 2014. 西藏措勤县雄玛地区始新统林子宗群帕那组火山岩地球化学特征及构造背景. 地质论评, 60(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402003.htm 曹延, 康志强, 许继峰, 等, 2020. 拉萨地块西部狮泉河地区典中组火山岩年代学、地球化学特征及其构造意义. 地球科学, 45(5): 1573-1592. doi: 10.3799/dqkx.2019.161?viewType=HTML 陈贝贝, 丁林, 许强, 等, 2016. 西藏林周盆地林子宗群火山岩的精细年代框架. 第四纪研究, 36(5): 1037-1054. 陈兰朴, 黄泽森, 江巴多吉, 等, 2019. 西藏神公地区典中组火成岩锆石U-Pb年龄及地球化学特征. 地质通报, 38(7): 1127-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907006.htm 付文春, 康志强, 潘会彬, 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义. 地质通报, 33(6): 850-859. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201406008.htm 韩飞, 黄永高, 李应栩, 等, 2019. 西藏冈底斯中段南木林地区始新世岩浆作用的厘定及其大地构造意义. 地质通报, 38(9): 1403-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201909001.htm 呼建雄, 陈建林, 姚胜, 等, 2018. 冈底斯弧西部林子宗群年波组火山岩锆石U-Pb年代学、岩石成因及其指示. 地球化学, 47(6): 699-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201806010.htm 胡林, 唐华, 徐刚, 等, 2020. 冈底斯中段羊易盆地年波组埃达克岩的发现及其对印度‒欧亚板块碰撞的启示. 地质通报, 39(10): 1507-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202010002.htm 黄丰, 许继峰, 王保弟, 等, 2020. 印度‒亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180?viewType=HTML 李皓扬, 钟孙霖, 王彦斌, 等, 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012005.htm 李强, 冉孟兰, 康志强, 等, 2017. 拉萨地块西部亚热区则弄群火山岩锆石U-Pb年龄及其地质意义. 桂林理工大学学报, 37(4): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201704002.htm 李勇, 张士贞, 李奋其, 等, 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755-2766. doi: 10.3799/dqkx.2018.593?viewType=HTML 梁银平, 朱杰, 次邛, 等, 2010. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地球科学, 35(2): 211-223. doi: 10.3799/dqkx.2010.021?viewType=HTML 刘安琳, 2020. 藏南典型地区林子宗火山岩成分的时空对比及其构造含义(博士学位论文). 北京: 中国地质大学. 刘安琳, 朱弟成, 王青, 等, 2015. 藏南米拉山地区林子宗火山岩LA-ICP-MS锆石U-Pb年龄和起源. 地质通报, 34(5): 826-833. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201505003.htm 刘冯斌, 张娜, 丁枫, 等, 2020. 西藏春哲地区古新统典中组火山岩地球化学特征及其构造响应. 成都理工大学学报(自然科学版), 47(4): 411-422. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202004003.htm 刘富军, 秦松, 孙传敏, 2019. 西藏冈底斯东段扎雪地区林子宗群帕那组火山岩锆石U-Pb年龄、地球化学特征及其构造意义. 地质论评, 65(5): 1131-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201905008.htm 王乔林, 2011. 冈底斯西段林子宗群火山岩的地球化学特征及锆石年代学研究(硕士学位论文). 北京: 中国地质大学. 韦乃韶, 康志强, 杨锋, 等, 2019. 西藏拉萨地块东部南缘昌果地区典中组火山岩的年代学、地球化学及成因. 地球化学, 48(1): 30-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901003.htm 谢冰晶, 周肃, 谢国刚, 等, 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803-3814. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311013.htm 谢克家, 曾令森, 刘静, 等, 2011. 藏南昂仁县桑桑地区林子宗群火山岩的形成时代和地球化学特征. 地质通报, 30(9): 1339-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201109002.htm 杨辉, 向树元, 王欣, 等, 2013. 西藏马乡地区典中组年龄厘定及其构造背景. 地质科技情报, 32(4): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304015.htm 张运昌, 陈彦, 杨青, 等, 2019. 西藏冈底斯带中部南木林地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地质通报, 38(5): 719-732. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201905003.htm 赵亚云, 杨春四, 吕金梁, 等, 2019. 西藏罗布真矿区林子宗群火山岩锆石U-Pb年龄、地球化学特征及其地质意义. 现代地质, 33(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901008.htm 周鹏, 刘恭喜, 李强, 等, 2019. 冈底斯中段厅宫地区林子宗火山岩锆石U-Pb年龄和地球化学特征. 矿物岩石地球化学通报, 38(2): 352-360. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201902016.htm 周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩锆石40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200420013.htm 朱弟成, 王青, 赵志丹, 2017. 岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例. 中国科学(D辑), 47(6): 657-673. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201706002.htm -
dqkxzx-49-3-822-附表.doc
-