• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模

    唐佳凡 唐明明 卢双舫 刘雪萍 张克鑫 何涛华 韩迪

    唐佳凡, 唐明明, 卢双舫, 刘雪萍, 张克鑫, 何涛华, 韩迪, 2024. 基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模. 地球科学, 49(1): 174-188. doi: 10.3799/dqkx.2022.199
    引用本文: 唐佳凡, 唐明明, 卢双舫, 刘雪萍, 张克鑫, 何涛华, 韩迪, 2024. 基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模. 地球科学, 49(1): 174-188. doi: 10.3799/dqkx.2022.199
    Tang Jiafan, Tang Mingming, Lu Shuangfang, Liu Xueping, Zhang Kexin, He Taohua, Han Di, 2024. Three-Dimensional Modeling of Estuary Reservoir Based on Coupling Sedimentary Dynamics Simulation and Multipoint Geostatistics Method. Earth Science, 49(1): 174-188. doi: 10.3799/dqkx.2022.199
    Citation: Tang Jiafan, Tang Mingming, Lu Shuangfang, Liu Xueping, Zhang Kexin, He Taohua, Han Di, 2024. Three-Dimensional Modeling of Estuary Reservoir Based on Coupling Sedimentary Dynamics Simulation and Multipoint Geostatistics Method. Earth Science, 49(1): 174-188. doi: 10.3799/dqkx.2022.199

    基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模

    doi: 10.3799/dqkx.2022.199
    基金项目: 

    国家自然科学基金项目 42072163

    国家自然科学基金项目 41402108

    国家自然科学基金项目 41972250

    山东省自然科学基金项目 ZR2019MD006

    山东省自然科学基金项目 ZR2014DL003

    详细信息
      作者简介:

      唐佳凡(1996-),男,硕士研究生,主要从事储层地质建模、沉积动力学模拟等相关研究.ORCID:0000-0002-2098-7792. E-mail:z19010190@s.upc.edu.cn

      通讯作者:

      唐明明, E-mail: tangmingming@upc.edu.cn

    • 中图分类号: P618.13

    Three-Dimensional Modeling of Estuary Reservoir Based on Coupling Sedimentary Dynamics Simulation and Multipoint Geostatistics Method

    • 摘要: 为提高潮控河口湾储层中少井区三维建模精度,以南美Oriente盆地J油田M1层为研究对象,采用沉积动力学模拟与多点统计学建模方法,设定地形坡折高度、潮汐幅度,河口流速、沉积物粒径等参数建立了研究区三维沉积模型.结合M1层储层特征将沉积模拟结果转换为三维训练模板,联合井上测井数据,使用多点地质统计学方法构建沉积动力学模拟约束下的潮控河口湾储层三维精细地质模型.结果表明在沉积动力学建立的三维训练模板约束下,模型中取心井结果与岩心拟合程度高,验证井与井上测井数据相对误差为7.6%,高于序贯高斯模拟方法模拟的精度.在潮控河口湾储层中,通过沉积动力学建立三维训练模板约束储层模型,能够在少井区有效提高模型精度,并得到了验证井交叉验证的结果,这将为潮控河口湾含油储层的勘探与开发提供指导.

       

    • 图  1  奥连特盆地J油田研究区位置(a)和J油田M1SS层顶部构造图(b)

      Fig.  1.  Location of study area (a) and structure map of M1SS layer top (b) of J Oilfield, Oriente Basin

      图  2  奥连特盆地层序地层剖面和J30取心井岩性测井特征

      Fig.  2.  Sequence stratigraphic profile and lithofacies logging characteristics of J30 core well in Oriente Basin

      图  3  研究区岩心岩相特征

      图a、b为砂坝‒高孔渗砂岩,取自J32井3 000 m与2 996 m;图c为砂坪‒中孔渗粗砂岩,取自J32井3 002 m;图d为砂坪‒中孔渗细砂岩,取自J32井2 827 m;图e为混合坪‒钙质胶结低孔渗砂岩与混合坪‒低孔渗砂岩,取自J32井2 797 m;图f为陆棚‒非储层泥岩,取自J32井2 494 m

      Fig.  3.  Lithologic characteristics of core in the study area

      图  4  沉积动力学模拟结果

      a. T=30 step初始沉积模拟结果;b、c. T=60 step和T=90 step时的中期沉积模拟;d. T=120 step最终模拟结果

      Fig.  4.  Sedimentary dynamics numerical simulation data

      图  5  沉积动力学模拟的平面和剖面模型

      a.平面沉积动力学模型模拟,aa’、bb’、cc’为模型中部横截面位置;b.位于aa’位置的剖面;c.位于bb’位置的剖面;d.位于cc’位置的剖面

      Fig.  5.  Plane and profile models for sedimentary dynamics simulation

      图  6  中部河口湾三维训练模板

      Fig.  6.  Central estuary three-dimensional training template group

      图  7  研究区三维构造模型

      a.各小层微幅构造面;b研究区构造模型

      Fig.  7.  Three-dimensional structural model of study area

      图  8  研究区岩性模型模拟结果连井剖面

      Fig.  8.  The simulation results of lithofacies model in the study area connected with the well profile

      图  9  研究区岩性模型

      Fig.  9.  Lithological model of study area

      图  10  三维属性模型

      Fig.  10.  Three-dimensional attribute model

      图  11  研究区小层孔隙度、渗透率分布直方图

      Fig.  11.  Histogram of porosity and permeability distribution of small layers in the study area

      图  12  J30取心井测井数据与模型模拟结果对比

      a.岩性模型、属性模型模拟结果与测井曲线对比;b.各深度段岩心图

      Fig.  12.  Comparison between logging data of J30 core well and model simulation results

      图  13  J30井铸体薄片

      a. 2 386 m样品,粒间孔隙度为21.7%;b. 2 391 m样品,粒间孔隙度为15.3%;c. 2 390 m样品,粒间孔隙度为9%;d. 2 394 m样品,粒间孔隙度为0.3%

      Fig.  13.  Well J30 casting sheet

      图  14  验证井模拟结果

      方法一(Method Ⅰ): 沉积动力学模拟方法与多点统计结合的建模方法; 方法二(Method Ⅱ): 序贯高斯模拟建模

      Fig.  14.  Simulation results of well validation

    • Arpat, G. B., Caers, J., 2007. Conditional Simulation with Patterns. Mathematical Geology, 39(2): 177-203. https://doi.org/10.1007/s11004-006-9075-3
      Cao, B. F., Luo, X. R., Zhang, L. K., et al., 2020. Petrofacies Prediction and 3-D Geological Model in Tight Gas Sandstone Reservoirs by Integration of Well Logs and Geostatistical Modeling. Marine and Petroleum Geology, 114: 104202. https://doi.org/10.1016/j.marpetgeo.2019.104202
      Chen, S. W., Jiang, Z. X., Teng, B. B., et al., 2012. New Understanding of Sedimentation and Reservoir Characteristics of M1 Zone in Cretaceous Strata of Oriente Basin, Ecuador. Earth Science Frontiers, 19(1): 182-187 (in Chinese with English abstract).
      de Paula Faria, D. L., dos Reis, A. T., de Souza Jr., O. G., 2017. Three-Dimensional Stratigraphic-Sedimentological Forward Modeling of an Aptian Carbonate Reservoir Deposited during the Sag Stage in the Santos Basin, Brazil. Marine and Petroleum Geology, 88: 676-695. https://doi.org/10.1016/j.marpetgeo.2017.09.013
      Guardiano, F. B., Srivastava, R. M., 1993. Multivariate Geostatistics: Beyond Bivariate Moments. Quantitative Geology and Geostatistics. Springer, Dordrecht, Netherlands, 133-144. https://doi.org/10.1007/978-94-011-1739-5_12
      Hu, C. W., Yu, M. H., Wei, H. Y., et al., 2019. The Mechanisms of Energy Transformation in Sharp Open-Channel Bends: Analysis Based on Experiments in a Laboratory Flume. Journal of Hydrology, 571: 723-739. https://doi.org/10.1016/j.jhydrol.2019.01.074
      Lee, G. H., Eissa, M. A., Decker, C. L., et al., 2004. Aspects of the Petroleum Geology of the Bermejo Field, Northwestern Oriente Basin, Ecuador. Journal of Petroleum Geology, 27(4): 335-356. https://doi.org/10.1111/j.1747-5457.2004.tb00062.x
      Li, Y., 2020. Study on Sequence Stratigraphy and Sedimentary System of U-T Member in Block T of Oriente Basin, Ecuador (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Liu, C., Zhang, Q., Xie, Y. F., et al., 2014. Sequence Stratigraphic Framework and Development Model of Cretaceous in Northeastern Block of Oriente Basin, Ecuador. Acta Sedimentologica Sinica, 32(6): 1123-1131 (in Chinese with English abstract).
      Liu, X. P., Lu, S. F., Tang, M. M., et al., 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957 (in Chinese with English abstract).
      Llave, E., Jané, G., Maestro, A., et al., 2018. Geomorphological and Sedimentary Processes of the Glacially Influenced Northwestern Iberian Continental Margin and Abyssal Plains. Geomorphology, 312: 60-85. https://doi.org/10.1016/j.geomorph.2018.03.022
      Mitten, A. J., Mullins, J., Pringle, J. K., et al., 2020. Depositional Conditioning of Three Dimensional Training Images: Improving the Reproduction and Representation of Architectural Elements in Sand-Dominated Fluvial Reservoir Models. Marine and Petroleum Geology, 113: 104156. https://doi.org/10.1016/j.marpetgeo.2019.104156
      Rodríguez, W., Buatois, L. A., Mángano, M. G., et al., 2018. Sedimentology, Ichnology, and Sequence Stratigraphy of the Miocene Oficina Formation, Junín and Boyacá Areas, Orinoco Oil Belt, Eastern Venezuela Basin. Marine and Petroleum Geology, 92: 213-233. https://doi.org/10.1016/j.marpetgeo.2018.01.037
      Schwarz, E., Veiga, G. D., Spalletti, L. A., et al., 2011. The Transgressive Infill of an Inherited-Valley System: The Springhill Formation (Lower Cretaceous) in Southern Austral Basin, Argentina. Marine and Petroleum Geology, 28(6): 1218-1241. https://doi.org/10.1016/j.marpetgeo.2010.11.003
      Selim, S. S., Abdel Baset, A. A., 2020. Sedimentological Analysis and Reservoir Characterization of an Estuarine Bar: An Example from the El-Basant Gas Field, Nile Delta, Egypt. Journal of Natural Gas Science and Engineering, 84: 103548. https://doi.org/10.1016/j.jngse.2020.103548
      Strebelle, S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34(1): 1-21. doi: 10.1023/A:1014009426274
      Tang, M. M., Lu, S. F., Zhang, K. X., et al., 2019. A Three Dimensional High-Resolution Reservoir Model of Napo Formation in Oriente Basin, Ecuador, Integrating Sediment Dynamic Simulation and Geostatistics. Marine and Petroleum Geology, 110: 240-253. https://doi.org/10.1016/j.marpetgeo.2019.07.022
      Vallejo, C., Tapia, D., Gaibor, J., et al., 2017. Geology of the Campanian M1 Sandstone Oil Reservoir of Eastern Ecuador: A Delta System Sourced from the Amazon Craton. Marine and Petroleum Geology, 86: 1207-1223. https://doi.org/10.1016/j.marpetgeo.2017.07.022
      van der Vegt, H., Storms, J. E. A., Walstra, D. J. R., et al., 2016. Can Bed Load Transport Drive Varying Depositional Behaviour in River Delta Environments? Sedimentary Geology, 345: 19-32. https://doi.org/10.1016/j.sedgeo.2016.08.009
      Virolle, M., Brigaud, B., Luby, S., et al., 2019. Influence of Sedimentation and Detrital Clay Grain Coats on Chloritized Sandstone Reservoir Qualities: Insights from Comparisons between Ancient Tidal Heterolithic Sandstones and a Modern Estuarine System. Marine and Petroleum Geology, 107: 163-184. https://doi.org/10.1016/j.marpetgeo.2019.05.010
      Virolle, M., Féniès, H., Brigaud, B., et al., 2020. Facies Associations, Detrital Clay Grain Coats and Mineralogical Characterization of the Gironde Estuary Tidal Bars: A Modern Analogue for Deeply Buried Estuarine Sandstone Reservoirs. Marine and Petroleum Geology, 114: 104225. https://doi.org/10.1016/j.marpetgeo.2020.104225
      Wighman, D. M., Pemberton, S. G., 1997. The Lower Cretaceous (Aptian) Mcmurray Formation: An Overview of Carbon in the Fort McMurray Area, Northeastern Alberta. CSPG Specoal Publications, 18: 312-344.
      Willis, B., Sun, T., 2019. Relating Depositional Processes of River-Dominated Deltas to Reservoir Behavior Using Computational Stratigraphy. Journal of Sedimentary Research, 89(12): 1250-1276.
      Wu, J., Zhang, X. Z., Bai, H. J., et al., 2021. Miocene Tidal Control System and Its Exploration Significance of Lithologic Trap in Yangjiang Sag, Pearl River Mouth Basin. Earth Science, (10): 3673-3689 (in Chinese with English abstract).
      Wu, S. H., Yue, D. L., Liu, J. M., et al., 2008. Study on Hierarchical Modeling of Reservoir Configuration of Underground Ancient River Channel. Scientia Sinica Terrae, 38(S1): 111-121 (in Chinese).
      Yang, J. X., Zhang, K. X., Chen, H. P., et al., 2017. Genesis of Mudstone Wall in D-F Oilfield of Oriente Basin and Its Influence on Reservoir Distribution. Oil & Gas Geology, 38(6): 1156-1164 (in Chinese with English abstract).
      Yang, L., Wang, Y., 2015. Survey for Various Cross-Validation Estimators of Generalization Error. Application Research of Computers, 32(5): 1287-1290.
      Yang, X. F., Ma, Z. Z., Zhou, Y. B., et al., 2019. Reservoir Characteristics and Hydrocarbon Accumulation of the Glauconitic Sandstone in the Tarapoa Block, Oriente Basin, Ecuador. Journal of Petroleum Science and Engineering, 173: 558-568. https://doi.org/10.1016/j.petrol.2018.10.059
      Yin, X. D., Lu, S. F., Liu, K. Y., et al., 2018. Non-Uniform Subsidence and Its Control on the Temporal-Spatial Evolution of the Black Shale of the Early Silurian Longmaxi Formation in the Western Yangtze Block, South China. Marine and Petroleum Geology, 98: 881-889. https://doi.org/10.1016/j.marpetgeo.2018.05.011
      Yin, Y. S., Hu, X., Huang, J. X., et al., 2020. A Three-Dimensional Model of Deep-Water Turbidity Channel in Plutonio Oilfield, Angola: From Training Image Generation, Optimization to Multi-Point Geostatistical Modelling. Journal of Petroleum Science and Engineering, 195: 107650. https://doi.org/10.1016/j.petrol.2020.107650
      Zhang, J. L., Zhang, Z. J., 2008. Sedimentary Facies of the Silurian Tide-Dominated Paleo-Estuary of the Tazhong Area in the Tarim Basin. Petroleum Science, 5(2): 95-104. https://doi.org/10.1007/s12182-008-0016-2
      陈诗望, 姜在兴, 滕彬彬, 等, 2012. 厄瓜多尔奥连特盆地白垩系M1油藏沉积储层新认识. 地学前缘, 19(1): 182-187
      李阳, 2020. 厄瓜多尔Oriente盆地T区块U段-T段层序地层及沉积体系研究(硕士学位论文). 北京: 中国石油大学.
      刘畅, 张琴, 谢寅符, 等, 2014. 厄瓜多尔Oriente盆地东北部区块白垩系层序地层格架及发育模式. 沉积学报, 32(6): 1123-1131.
      刘雪萍, 卢双舫, 唐明明, 等, 2021. 河流‒潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305
      吴静, 张晓钊, 白海军, 等, 2021. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义. 地球科学, (10): 3673-3689. doi: 10.3799/dqkx.2021.017
      吴胜和, 岳大力, 刘建民, 等, 2008. 地下古河道储层构型的层次建模研究. 中国科学: 地球科学, 38(S1): 111-121.
      杨金秀, 张克鑫, 陈和平, 等, 2017. Oriente盆地D-F油田泥岩墙成因及其对油藏分布的影响. 石油与天然气地质, 38(6): 1156-1164.
    • 加载中
    图(14)
    计量
    • 文章访问数:  355
    • HTML全文浏览量:  1506
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-15
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回