• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?

    林旭 李长安

    林旭, 李长安, 2022. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?. 地球科学, 47(10): 3633-3647. doi: 10.3799/dqkx.2022.206
    引用本文: 林旭, 李长安, 2022. 黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?. 地球科学, 47(10): 3633-3647. doi: 10.3799/dqkx.2022.206
    Lin Xu, Li Chang’an, 2022. Are Detrital Materials from the Yellow River Associated with Desert/Sandy Land Provenances in Northwest China?. Earth Science, 47(10): 3633-3647. doi: 10.3799/dqkx.2022.206
    Citation: Lin Xu, Li Chang’an, 2022. Are Detrital Materials from the Yellow River Associated with Desert/Sandy Land Provenances in Northwest China?. Earth Science, 47(10): 3633-3647. doi: 10.3799/dqkx.2022.206

    黄河碎屑物质和中国西北沙漠/沙地存在物源联系吗?

    doi: 10.3799/dqkx.2022.206
    基金项目: 

    国家自然科学基金面上项目 41972212

    湖北省楚天学者人才计划项目 8210403

    详细信息
      作者简介:

      林旭(1984-),男,副教授,从事青藏高原隆升和中国大河起源研究.ORCID:0000-0001-7022-6708. E-mail:hanwuji-life@163.com

      通讯作者:

      李长安(1956-),E-mail:1002858465@qq.com

    • 中图分类号: P535

    Are Detrital Materials from the Yellow River Associated with Desert/Sandy Land Provenances in Northwest China?

    • 摘要: 在中国西北内陆分布着面积广大的沙漠/沙地,确定其物质来源对理解这些沙漠的形成和发育至关重要.尤其对腾格里沙漠、河东沙地、毛乌素沙漠、乌兰布和沙漠和库布齐沙漠的碎屑物质是来自远源的黄河还是近源源区的争议较大.鉴于此,对沙漠中广泛存在的碎屑钾长石进行了554颗原位Pb同位素分析,结合黄河上游已经发表的钾长石Pb同位素数据,判定二者之间是否存在物源联系.综合区域内已发表的物源示踪结果,表明黄河上游的碎屑物质对腾格里沙漠的影响主要集中在有限的局部区域,未深入到沙漠腹地;黄河上游物质和河东沙地、毛乌素沙漠、乌兰布和沙漠和库布齐沙漠不存在物源联系.中国西北内陆这些沙漠/沙地的物质主要以近源物质为主,是对早更新世以来青藏高原隆升和气候干旱的沉积响应.

       

    • 图  1  黄河流域和中国西北主要沙漠/沙地位置分布

      Fig.  1.  Distribution map of Yellow River basin and main deserts/sandy lands in Northwest China

      图  2  黄河干流主要水文站输沙特征对比图(中华人民共和国水利部, 2020)

      Fig.  2.  Column chart of sediment transport of main hydrological stations in the Yellow River trunk stream(Ministry of Water Resources of the People's Republic of China, 2020)

      图  3  野外样品采集点照片

      黄色圆圈代表采样地点

      Fig.  3.  Photos showing the field sample collection sites

      图  4  碎屑钾长石背散射图

      图中圆圈代表分析点

      Fig.  4.  Backscattered diagrams of clastic K-feldspar

      图  5  钾长石206Pb/204Pb和207Pb/204Pb比值散点图

      a.腾格里沙漠;b.河东沙地;c.毛乌素沙漠,库布齐沙漠和乌兰布和沙漠;d.黄河上游

      Fig.  5.  206Pb/204Pb vs. 207Pb/204Pb isotope discrimination diagrams of single K-feldspar grains

      图  6  钾长石206Pb/204Pb和207Pb/204Pb比值散点图(a~e)和钾长石206Pb/204Pb同位素比值多维标度图(f)

      a. 腾格里沙漠;b. 河东沙地;c.毛乌素沙漠;d. 乌兰布和沙漠;e. 库布齐沙漠与潜在物源区黄河上游(林旭等,2022a)和华北板块(张理刚,1995). 图f中实线代表最近距离,虚线代表第二近距离

      Fig.  6.  Scatter plots of 206Pb/204Pb and 207Pb/204Pb ratios of K-feldspar (a-e) and multi-dimensional scaling maps based on 206Pb/204Pb isotope ratios for Pb isotopic data (f)

      图  7  黄河上游流域及其沿途主要沙漠/沙地的全岩Ti/K和Sr/Ca比值二维散点图

      数据来源:庞红丽(2018)陈垚(2020)

      Fig.  7.  Two-dimensional scatter plots of whole-rock Ti/K and Sr/Ca ratios in the main desert/sandy land along the upper Yellow River basin

      图  8  粒度组成分布

      a.黄河上游沿岸沙漠/沙地(桂洪杰,2013);b.黄河上游河流沉积物(陈垚,2020);c.兰州盆地(Zhang et al.,2014a)、临夏盆地(Fan et al.,2006)、庄浪剖面(Qiang et al.,2011)和秦安剖面(Qiao et al.,2006)风成沉积物

      Fig.  8.  Diagrams showing the distribution of particle size compositions

      图  9  中国西北内陆洪积扇、沙漠/沙地和河流分布(a);河东沙地形成过程(b)

      Fig.  9.  Distribution of diluvial fans, deserts/sandy lands and rivers in Northwest China (a); formation process of Hedong sand land (b)

      表  1  样品采集信息

      Table  1.   Sampling point information

      样品性质 采样点 经度(E) 纬度(N) 数量(颗) 数据来源
      河砂 玛曲(黄河) 102°04'48.00" 33°57'28.80" 63 林旭等(2022a)
      同德(黄河) 100°12'42.25" 35°21'24.58" 65
      兰州(黄河) 103°36'32.40" 36°08'24.00" 65
      巴彦(黄河) 107°22'08.40" 40°40'15.60" 65
      沙漠砂 腾格里沙漠1 104°58'12.00" 37°27'39.60" 65
      腾格里沙漠2 105°4′46.56″ 37°52′51.96″ 57
      河东沙地1 106°21′45.72″ 38°7′25.32″ 62
      河东沙地2 106°36′6.84″ 38°40′1.20″ 60
      河东沙地3 106°43′33.24″ 38°48′7.92″ 59
      河东沙地4 106°53′30.84″ 38°59′2.76″ 63
      毛乌素沙漠 109°41'45.60" 38°23'06.00" 65 本次研究
      乌兰布和沙漠 106°51′12.96″ 40°11′34.80″ 58
      库布齐沙漠 107°59′24.00″ 40°46′12.00″ 65
      基岩 华北板块 63 张理刚(1995)
      下载: 导出CSV
    • [1] Alizai, A., Clift, P. D., Giosan, L., et al., 2011. Pb Isotopic Variability in the Modern-Pleistocene Indus River System Measured by Ion Microprobe in Detrital K-Feldspar Grains. Geochimica et Cosmochimica Acta, 75(17): 4771-4795. https://doi.org/10.1016/j.gca.2011.05.039
      [2] Bao, C., Chen, Y. L., Li, D. P., et al., 2014. Provenances of the Mesozoic Sediments in the Ordos Basin and Implications for Collision between the North China Craton (NCC) and the South China Craton (SCC). Journal of Asian Earth Sciences, 96: 296-307. https://doi.org/10.1016/j.jseaes.2014.09.006
      [3] Barham, M., Kirkland, C. L., Hovikoski, J., et al., 2021. Reduce or Recycle? Revealing Source to Sink Links through Integrated Zircon-Feldspar Provenance Fingerprinting. Sedimentology, 68(2): 531-556. https://doi.org/10.1111/sed.12790
      [4] Chang, H., Zuo, H. J., Wang, H. B., et al., 2019. Multi-Fractal Features and Their Significances of Surface Sediments along Both Banks of the Yellow River Reach in the Ulanbuh Desert. Arid Zone Research, 36(6): 1559-1567(in Chinese with English abstract).
      [5] Chen, J., Li, G., Yang, J., et al., 2007. Nd and Sr Isotopic Characteristics of Chinese Deserts: Implications for the Provenances of Asian Dust. Geochimica et Cosmochimica Acta, 71(15): 3904-3914. https://doi: 10.1016/j.gca.2007.04.033
      [6] Chen, Y., 2020. Spatial Evolution Characteristics of the Yellow River Sediments and the Significance of Provenance Tracing (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      [7] Chen, Y., Li, J. G., Miao, P. S., et al., 2021. U-Pb Ages and Hf Isotopes of Detrital Zircons from the Cretaceous Succession in the Southwestern Ordos Basin, Northern China: Implications for Provenance and Tectonic Evolution. Journal of Asian Earth Sciences, 219: 104896. https://doi.org/10.1016/j.jseaes.2021.104896
      [8] Chun, X., Chen, F. H., Fan, Y. X., et al., 2007. Formation of Ulan Buh Desert and Its Environmental Evolution. Journal of Desert Research, 27(6): 927-931(in Chinese with English abstract).
      [9] Ding, J. N., Wu, Y. Q., Tan, L. H., et al., 2021. Trace and Rare Earth Element Evidence for the Provenances of Aeolian Sands in the Mu us Desert, NW China. Aeolian Research, 50: 100683. https://doi.org/10.1016/j.aeolia.2021.100683
      [10] Fan, M. J., Song, C. H., Dettman, D. L., et al., 2006. Intensification of the Asian Winter Monsoon after 7.4 Ma: Grain-Size Evidence from the Linxia Basin, Northeastern Tibetan Plateau, 13.1 Ma to 4.3 Ma. Earth and Planetary Science Letters, 248(1/2): 186-197. https://doi.org/10.1016/j.epsl.2006.05.025
      [11] Fan, Y. X., Li, Z. J., Wang, F., et al., 2019. Provenance Variations of the Tengger Desert since 2.35 Ma and Its Linkage with the Northern Tibetan Plateau: Evidence from U-Pb Age Spectra of Detrital Zircons. Quaternary Science Reviews, 223: 105916. https://doi.org/10.1016/j.quascirev.2019.105916
      [12] Gui, H. J., 2013. Comparative Studies on Characteristics of Grain Sizes and Elements of the Four Deserts in Ningxia-Inner Mongolia Section of the Yellow River(Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      [13] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. https://doi.org/10.1038/416159a
      [14] Hällberg, L. P., Stevens, T., Almqvist, B., et al., 2020. Magnetic Susceptibility Parameters as Proxies for Desert Sediment Provenance. Aeolian Research, 46: 100615. https://doi.org/10.1016/j.aeolia.2020.100615
      [15] Hu, F. G., Yang, X. P., 2016. Geochemical and Geomorphological Evidence for the Provenance of Aeolian Deposits in the Badain Jaran Desert, Northwestern China. Quaternary Science Reviews, 131: 179-192. https://doi.org/10.1016/j.quascirev.2015.10.039
      [16] Jia, X. P., Li, Y. S., Wang, H. B., 2016. Bed Sediment Particle Size Characteristics and Its Sources Implication in the Desert Reach of the Yellow River. Environmental Earth Sciences, 75(11): 950. https://doi.org/10.1007/s12665-016-5760-9
      [17] Jiang, Q. D., Li, Z. J., Hao, Q. Z., 2022. Modern Sand Supply of the Tengger Desert and Temporal Variations in Sand Provenance Driven by Northern Hemisphere Glaciation. CATENA, 214: 106278. https://doi.org/10.1016/j.catena.2022.106278
      [18] Li, B. F., Sun, D. H., Xu, W. H., et al., 2017. Paleomagnetic Chronology and Paleoenvironmental Records from Drill Cores from the Hetao Basin and Their Implications for the Formation of the Hobq Desert and the Yellow River. Quaternary Science Reviews, 156: 69-89. https://doi.org/10.1016/j.quascirev.2016.11.023
      [19] Li, Y. H., Li, W. H., Zhang, Q., et al., 2019. Atlas of Ordos Basin and Its Surrounding Sedimentary Facies. Geological Publishing House, Beijing (in Chinese).
      [20] Li, Z. J., Sun, D. H., Chen, F. H., et al., 2014. Chronology and Paleoenvironmental Records of a Drill Core in the Central Tengger Desert of China. Quaternary Science Reviews, 85: 85-98. https://doi.org/10.1016/j.quascirev.2013.12.003
      [21] Li, Z. L., Chen, Q. J., Dong, S. P., et al., 2021. Applicability of Rare Earth Elements in Eolian Sands from Desert as Proxies for Provenance: A Case Study in the Badain Jaran Desert, Northwestern China. CATENA, 207: 105647. https://doi.org/10.1016/j.catena.2021.105647
      [22] Lin, X., Li, L. L., Liu, H. J., et al., 2022a. Sediments from the Upper Reaches of Yellow River did not Enter into Jinshan Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568-582 (in Chinese with English abstract).
      [23] Lin, X., Liu, J., Wu, Z. H., et al., 2022b. Provenance Tracing of Pb Isotopes of Fluvial Detrital K-Feldspar from the Yellow River Basin. Seismology and Geology(in press)(in Chinese with English abstract).
      [24] Liu, C. M., 2014. Hydrogeography of China. Science Press, Beijing (in Chinese).
      [25] Liu, D. S., 2009. Loess and Arid Environment. Anhui Science and Technology Press, Hefei (in Chinese).
      [26] Liu, Q. Q., Yang, X. P., 2018. Geochemical Composition and Provenance of Aeolian Sands in the Ordos Deserts, Northern China. Geomorphology, 318: 354-374. https://doi.org/10.1016/j.geomorph.2018.06.017
      [27] Lü, T., Sun, J., 2011. Luminescence Sensitivities of Quartz Grains from Eolian Deposits in Northern China and Their Implications for Provenance. Quaternary Research, 76(2): 181-189. https://doi: 10.1016/j.yqres.2011.06.015.
      [28] Ministry of Water Resources of the People's Republic of China, 2020. China River Sediment Bulletin. China Water Resources and Hydropower Publishing House, Beijing.
      [29] Muhs, D. R., 2004. Mineralogical Maturity in Dunefields of North America, Africa and Australia. Geomorphology, 59(1/2/3/4): 247-269. https://doi.org/10.1016/j.geomorph.2003.07.020
      [30] Muhs, D. R., 2017. Evaluation of Simple Geochemical Indicators of Aeolian Sand Provenance: Late Quaternary Dune Fields of North America Revisited. Quaternary Science Reviews, 171: 260-296. https://doi.org/10.1016/j.quascirev.2017.07.007
      [31] Nie, J., Stevens, T., Rittner, M., et al. 2015. Loess Plateau Storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment. Nature Communications, 6(1): 1-10. https://doi.org/10.1038/ncomms9511.
      [32] Pan, B. T., Pang, H. L., Zhang, D., et al., 2016. Sediment Grain-Size Characteristics and Its Source Implication in the Ningxia-Inner Mongolia Sections on the Upper Reaches of the Yellow River. Geomorphology, 246: 255-262. https://doi.org/10.1016/j.geomorph.2015.06.028
      [33] Pan, B. T., Su, H., Hu, Z. B., et al., 2009. Evaluating the Role of Climate and Tectonics during Non-Steady Incision of the Yellow River: Evidence from a 1.24 Ma Terrace Record near Lanzhou, China. Quaternary Science Reviews, 28(27-28): 3281-3290. https://doi.org/10.1016/j.quascirev.2009.09.003
      [34] Pang, H. L., 2018. Coarse Sediment Characteristics and Its Provenance Implication in the Ningxia-Inner Mongolia Sections of the Yellow River (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      [35] Pang, H. L., Pan, B. T., Garzanti, E., et al., 2018. Mineralogy and Geochemistry of Modern Yellow River Sediments: Implications for Weathering and Provenance. Chemical Geology, 488: 76-86. https://doi.org/10.1016/j.chemgeo.2018.04.010
      [36] Qiang, X. K., An, Z. S., Song, Y. G., et al., 2011. New Eolian Red Clay Sequence on the Western Chinese Loess Plateau Linked to Onset of Asian Desertification about 25 Ma Ago. Science China Earth Sciences, 54(1): 136-144. https://doi.org/10.1007/s11430-010-4126-5
      [37] Qiao, Y. S., Guo, Z. T., Hao, Q. Z., et al., 2006. Grain-Size Features of a Miocene Loess-Soil Sequence at Qinan: Implications on Its Origin. Science in China (Series D), 49(7): 731-738. https://doi.org/10.1007/s11430-006-0731-8
      [38] Shi, W., Dong, S. W., Hu, J. M., 2020. Neotectonics around the Ordos Block, North China: A Review and New Insights. Earth-Science Reviews, 200: 102969. https://doi.org/10.1016/j.earscirev.2019.102969
      [39] State Forestry Administration, 2018. Desert Atlas of China. Science Press, Beijing (in Chinese).
      [40] Stevens, T., Carter, A., Watson, T. P., et al., 2013. Genetic Linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau. Quaternary Science Reviews, 78: 355-368. https://doi.org/10.1016/j.quascirev.2012.11.032
      [41] Sun, J. M., 2020. Loess Deposits and Its Relationship with Earth Sphere Interactions. Quaternary Sciences, 40(1): 1-7(in Chinese with English abstract).
      [42] Sun, Y. B., Tada, R., Chen, J., et al., 2007. Distinguishing the Sources of Asian Dust Based on Electron Spin Resonance Signal Intensity and Crystallinity of Quartz. Atmospheric Environment, 41(38): 8537-8548. https://doi.org/10.1016/j.atmosenv.2007.07.014
      [43] Sun, Y. B., Yan, Y., Nie, J. S., et al., 2020. Source-to-Sink Fluctuations of Asian Aeolian Deposits since the Late Oligocene. Earth-Science Reviews, 200: 102963. https://doi.org/10.1016/j.earscirev.2019.102963
      [44] Tyrrell, S., Haughton, P. D. W., Daly, J. S., 2007. Drainage Reorganization during Breakup of Pangea Revealed by In-Situ Pb Isotopic Analysis of Detrital K-Feldspar. Geology, 35(11): 971-974. https://doi.org/10.1130/g4123a.1
      [45] Tyrrell, S., Haughton, P. D. W., Daly, J. S., et al., 2006. The Use of the Common Pb Isotope Composition of Detrital K-Feldspar Grains as a Provenance Tool and Its Application to Upper Carboniferous Paleodrainage, Northern England. Journal of Sedimentary Research, 76(2): 324-345. https://doi.org/10.2110/jsr.2006.023
      [46] Vermeesch, P., Resentini, A., Garzanti, E., 2016. An R Package for Statistical Provenance Analysis. Sedimentary Geology, 336: 14-25. https://doi.org/10.1016/j.sedgeo.2016.01.009
      [47] Wang, F., Sun, D. H., Chen, F. H., et al., 2015. Formation and Evolution of the Badain Jaran Desert, North China, as Revealed by a Drill Core from the Desert Centre and by Geological Survey. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 139-158. https://doi.org/10.1016/j.palaeo.2015.03.011
      [48] Woodhead, J. D., Hergt, J. M., 2007. Strontium, Neodymium and Lead Isotope Analyses of NIST Glasscertified Reference Materials: SRM 610, 612, 614. Geostandards Newsletter, 25: 261-266. https://doi.org/10.1111/j.1751-908X.2001.tb00601.x
      [49] Xu, J. M., 1965. The Sources of the Dune Sands in the Region East of the Yellow River in Ningxia. Acta Geographica Sinica, 20(2): 142-156(in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1965.02.005
      [50] Yang, L. R., Zou, N., Yue, L. P., et al., 2017. Distribution of U-Pb Ages of Detrital Zircon from the Hobq Desert and Its Implications for Provenance. Quaternary Sciences, 37(3): 560-569(in Chinese with English abstract).
      [51] Yang, X. P., Forman, S., Hu, F. G., et al., 2016. Initial Insights into the Age and Origin of the Kubuqi Sand Sea of Northern China. Geomorphology, 259: 30-39. https://doi.org/10.1016/j.geomorph.2016.02.004
      [52] Zhai, M. G., 2021. Ordos Block (Basin) is a Key to Understand Early Continental Evolution and Tectonic Regime of the North China Craton. Chinese Science Bulletin, 66(26): 3441-3461(in Chinese). doi: 10.1360/TB-2021-0113
      [53] Zhang, C., 2020. Heavy Mineral Assemblages and Provenance Analysis of Eolian Sand in the Alashan Desert, Northwestern China(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract).
      [54] Zhang, C., Li, Z. L., Chen, Q. J., et al., 2020a. Provenance of Eolian Sands in the Ulan Buh Desert, Northwestern China, Revealed by Heavy Mineral Assemblages. CATENA, 193: 104624. https://doi.org/10.1016/j.catena.2020.104624
      [55] Zhang, Z. C., Pan, K. J., Zhang, C. X., et al., 2020b. Geochemical Characteristics and the Provenance of Aeolian Material in the Hexi Corridor Desert, China. CATENA, 190: 104483. https://doi.org/10.1016/j.catena.2020.104483
      [56] Zhang, Y. L., Chun, X., Zhou, H. J., et al., 2020c. Particle Size Characteristics of Surface Sediments and Their Environmental Significance: A Comparative Study of Deserts in Arid Western Inner Mongolia, China. Environmental Earth Sciences, 79(10): 203. https://doi.org/10.1007/s12665-020-08931-6
      [57] Zhang, H. B., Nie, J. S., Liu, X. J., et al., 2021. Spatially Variable Provenance of the Chinese Loess Plateau. Geology, 49(10): 1155-1159. doi: 10.1130/G48867.1
      [58] Zhang, H. Z., Lu, H. Y., Xu, X. S., et al., 2016. Quantitative Estimation of the Contribution of Dust Sources to Chinese Loess Using Detrital Zircon U-Pb Age Patterns. Journal of Geophysical Research: Earth Surface, 121(11): 2085-2099. https://doi.org/10.1002/2016JF003936
      [59] Zhang, L. G., 1995. Lithospheric Block Geology in East Asia. Science Press, Beijing (in Chinese).
      [60] Zhang, Y. B., Sun, D. H., Li, Z. J., et al., 2014a. Cenozoic Record of Aeolian Sediment Accumulation and Aridification from Lanzhou, China, Driven by Tibetan Plateau Uplift and Global Climate. Global and Planetary Change, 120: 1-15. https://doi.org/10.1016/j.gloplacha.2014.05.009
      [61] Zhang, H. P., Zhang, P. Z., Champagnac, J. D., et al., 2014b. Pleistocene Drainage Reorganization Driven by the Isostatic Response to Deep Incision into the Northeastern Tibetan Plateau. Geology, 42(4): 303-306. https://doi.org/10.1130/G35115.1
      [62] Zhao, H., Sun, Y. B., Qiang, X. K., 2022. Mid-Pleistocene Formation of Modern-Like Desert Landscape in North China. CATENA, 216: 106399. https://doi.org/10.1016/j.catena.2022.106399
      [63] Zhao, W. C., Liu, L. W., Chen, J., et al., 2019. Geochemical Characterization of Major Elements in Desert Sediments and Implications for the Chinese Loess Source. Science China Earth Sciences, 62(9): 1428-1440. https://doi.org/10.1007/s11430-018-9354-y
      [64] Zhou, S. Z., Wang, X. L., Wang, J., et al., 2006. A Preliminary Study on Timing of the Oldest Pleistocene Glaciation in Qinghai-Tibetan Plateau. Quaternary International, 154/155: 44-51. https://doi.org/10.1016/j.quaint.2006.02.002
      [65] Zhu, Z. D., Wu, Z., Liu, S., et al., 1980. An Outline of Chinese Deserts. Science Press, Beijing (in Chinese).
      [66] 常宏, 左合君, 王海兵, 等, 2019. 黄河乌兰布和沙漠段两岸地表沉积物多重分形特征及其指示意义. 干旱区研究, 36(6): 1559-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201906027.htm
      [67] 陈垚, 2020. 黄河泥沙沉积物演化特征及物源示踪(博士学位论文). 西安: 长安大学.
      [68] 春喜, 陈发虎, 范育新, 等, 2007. 乌兰布和沙漠的形成与环境变化. 中国沙漠, 27(6): 927-931. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200706005.htm
      [69] 桂洪杰, 2013. 黄河宁蒙河段四大沙漠粒度和元素特征对比研究(硕士学位论文). 兰州: 兰州大学.
      [70] 国家林业局, 2018. 中国沙漠图集. 科学出版社, 北京.
      [71] 李玉宏, 李文厚, 张倩, 等, 2019. 鄂尔多斯盆地及周缘沉积相图册. 北京: 地质出版社.
      [72] 林旭, 李玲玲, 刘海金, 等, 2022a. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203012.htm
      [73] 林旭, 刘静, 吴中海, 等, 2022b. 黄河流域碎屑钾长石Pb同位素特征及其物源示踪的地质意义. 地震地质(待刊).
      [74] 刘昌明, 2014. 中国水文地理. 北京: 科学出版社.
      [75] 刘东生, 2009. 黄土与干旱环境. 合肥: 安徽科学技术出版社.
      [76] 庞红丽, 2018. 黄河宁蒙段粗泥沙特征及物源示踪研究(博士学位论文). 兰州: 兰州大学.
      [77] 孙继敏, 2020. 黄土沉积与地球圈层相互作用. 第四纪研究, 40(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202001001.htm
      [78] 徐俊名, 1965. 宁夏河东沙区沙丘沙的来源. 地理学报, 20(2): 142-156. doi: 10.3321/j.issn:0375-5444.1965.02.005
      [79] 杨利荣, 邹宁, 岳乐平, 等, 2017. 库布齐沙漠碎屑锆石U-Pb年龄组成及其物源分析. 第四纪研究, (3): 560-569.
      [80] 翟明国, 2021. 鄂尔多斯地块是破解华北早期大陆形成演化和构造体制谜团的钥匙. 科学通报, 66(26): 3441-3461. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202126012.htm
      [81] 张诚, 2020. 阿拉善沙漠风积砂重矿物组成及物源分析(硕士学位论文). 兰州: 兰州大学.
      [82] 张理刚, 1995. 东亚岩石圈块体地质. 北京: 科学出版社.
      [83] 中华人民共和国水利部, 2020. 中国河流泥沙公报. 北京: 中国水利水电出版社.
      [84] 朱震达, 吴正, 刘恕, 等, 1980. 中国沙漠概论(修订版). 北京: 科学出版社.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  302
    • HTML全文浏览量:  129
    • PDF下载量:  145
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-07
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回