• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素

    周小航 陈冬霞 夏宇轩 曾溅辉 乔俊程 徐轩 蔡建超

    周小航, 陈冬霞, 夏宇轩, 曾溅辉, 乔俊程, 徐轩, 蔡建超, 2022. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素. 地球科学, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208
    引用本文: 周小航, 陈冬霞, 夏宇轩, 曾溅辉, 乔俊程, 徐轩, 蔡建超, 2022. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素. 地球科学, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208
    Zhou Xiaohang, Chen Dongxia, Xia Yuxuan, Zeng Jianhui, Qiao Juncheng, Xu Xuan, Cai Jianchao, 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208
    Citation: Zhou Xiaohang, Chen Dongxia, Xia Yuxuan, Zeng Jianhui, Qiao Juncheng, Xu Xuan, Cai Jianchao, 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208

    鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素

    doi: 10.3799/dqkx.2022.208
    基金项目: 

    国家自然科学基金 42172159

    中石油战略合作科技专项项目 ZLZX2020⁃02⁃01⁃03

    详细信息
      作者简介:

      周小航(1996-), 男, 硕士, 主要从事油气田开发地质. ORCID: 0000-0003-4258-3307. E-mail:2019215003@student.cup.edu.cn

      通讯作者:

      蔡建超, ORCID: 0000-0003-2950-888X. E-mail: caijc@cup.edu.cn

    • 中图分类号: TE122

    Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin

    • 摘要: 自发渗吸存在于页岩油藏体积压裂和注水开发等多个关键阶段,是影响页岩油产能的重要因素之一,厘清渗吸特征及影响因素对提高页岩油采收率有重要意义. 对鄂尔多斯盆地长7段不同源储配置关系的页岩油储层岩心开展自发渗吸实验,结合核磁共振技术监测流体运移过程,分析储层物性及孔隙结构对页岩油储层自发渗吸的影响机制,明确源储配置关系对渗吸的控制作用. 长7段页岩油储层中储夹源型渗吸体积分数均值为33.84%,源储互层型为25.98%;储夹源型渗吸阶段斜率均值为0.359,源储互层型均值为0.302;渗吸过程中核磁共振横向弛豫时间小于10 ms的孔隙占比高;渗吸体积分数与润湿性、储层品质因子及孔喉比相关性较好. 长7段页岩油储层储夹源型配置关系渗吸能力优于源储互层型;储层渗吸能力主要由润湿性、储层品质因子及孔喉比控制.

       

    • 图  1  鄂尔多斯盆地构造单元划分及研究区位置

      王福伟等(2022)

      Fig.  1.  The division of structural units and the location of the study area in the Ordos Basin

      图  2  鄂尔多斯盆地长7地层岩性柱状图

      杨留峰等(2015)

      Fig.  2.  Lithology histogram of Chang 7 formation in Ordos Basin

      图  3  孔隙网络模型

      红色像素代表孔隙,黄色像素代表喉道

      Fig.  3.  Pore network model

      图  4  渗吸曲线

      a. 为渗吸全程自发渗吸曲线;b. 为渗吸前期(前50 min)自发渗吸曲线

      Fig.  4.  Imbibition curve

      图  5  不同源储配置关系下样品渗吸对数曲线

      a. 为储夹源型样品11号、17号、18号;b. 为储夹源型样品13号、14号;c. 为源储互层型样品8号、16号

      Fig.  5.  The logarithmic curve of sample imbibition under different source⁃storage configuration relationships

      图  6  储夹源型(11号、17号、18号)核磁共振T2谱响应曲线

      Fig.  6.  The response curve of T2 spectrum of the reservoir sandwiching source rocks (No. 11, No. 17, and No. 18) NMR

      图  7  储夹源型(13号、14号)核磁共振T2谱响应曲线

      Fig.  7.  The response curve of T2 spectrum of the reservoir sandwiching source rocks (No. 13 and No. 14) NMR

      图  8  源储互层型(8号、16号)核磁共振T2谱响应曲线

      Fig.  8.  Source⁃reservoir interbed rocks (No. 8 and No. 16) NMR T2 spectrum response curve

      图  9  渗吸体积分数与孔喉比关系

      Fig.  9.  Relationship between imbibition volume fraction and pore throat ratio

      表  1  样品基本物性参数

      Table  1.   Basic physical property parameters of samples

      源储配置关系 编号 深度(m) 长度(cm) 直径(cm) 孔隙度(%) 渗透率(mD) 润湿角(°)
      源储互层型 8 1 791.3 5.689 2.509 10.32 0.097 36.8
      16 1 976.9 5.390 2.523 9.25 0.039 35.0
      储夹源型 11 1 768.0 3.473 2.522 11.64 0.105 33.3
      13 1 957.5 5.103 2.515 13.69 0.106 41.5
      14 1 964.5 5.887 2.514 12.47 0.065 39.2
      17 1 514.2 6.291 2.523 8.13 0.126 28.4
      18 1 980.0 6.251 2.523 7.92 0.056 38.4
      下载: 导出CSV

      表  2  样品矿物组成

      Table  2.   Mineral composition of the sample

      编号 石英(%) 钾长石(%) 斜长石(%) 方解石(%) 白云石(%) 菱铁矿(%) 白云母(%) 黏土含量(%)
      8 60.2 1.1 17.4 2.4 6.1 - 1.0 11.8
      11 57.6 6.4 14.5 0.2 4.1 2.8 2.8 11.6
      13 61.2 1.5 11.1 2.3 9.0 2.5 2.1 10.3
      14 52.9 3.8 9.5 0.5 5.5 2.0 2.7 22.2
      16 63.1 2.8 14.4 0.8 5.3 1.4 3.0 9.2
      17 60.7 11.9 12.2 0.9 2.5 - 1.9 9.7
      18 60.2 4.6 9.9 0.3 3.9 1.5 1.6 18.0
      均值 59.4 4.6 12.7 1.1 5.2 2.0 2.2 13.3
      下载: 导出CSV

      表  3  样品孔隙结构参数

      Table  3.   Pore structure property parameters of samples

      编号 平均孔隙半径(μm) 配位数 平均喉道半径(μm) 孔喉比
      8 4.17 1.18 3.730 1.12
      11 2.47 1.32 2.090 1.18
      13 2.67 0.89 2.359 1.13
      14 3.92 1.18 3.470 1.13
      16 2.32 0.63 1.980 1.17
      17 2.74 0.77 2.090 1.31
      18 2.62 0.87 1.869 1.41
      下载: 导出CSV

      表  4  渗吸体积分数及无量纲渗吸质量

      Table  4.   Imbibition volume fraction and dimensionless imbibition mass

      编号 渗吸体积分数(%) 无量纲渗吸质量
      8 27.67 0.012 8
      11 25.81 0.014 8
      13 22.43 0.014 7
      14 26.33 0.015 6
      16 24.28 0.010 2
      17 39.50 0.014 3
      18 55.15 0.019 3
      下载: 导出CSV

      表  5  样品渗吸体积分数及储层品质因子

      Table  5.   The imbibition volume fraction and reservoir quality factor

      编号 渗吸体积分数 储层品质因子(mD0.5
      8 0.276 7 0.304 4
      11 0.258 1 0.298 1
      13 0.224 3 0.276 6
      14 0.263 3 0.226 5
      16 0.242 8 0.202 6
      17 0.395 0 0.390 9
      18 0.551 5 0.264 4
      下载: 导出CSV
    • [1] Amaefule, J.O., Altunbay, M., Tiab, D., et al., 1993. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. SPE Annual Technical Conference and Exhibition. Texas. https://doi.org/10.2118/26436-MS
      [2] Austad, T., Standnes, D. C., 2003. Spontaneous Imbibition of Water into Oil-Wet Carbonates. Journal of Petroleum Science and Engineering, 39(3/4): 363-376. https://doi.org/10.1016/s0920-4105(03)00075-5
      [3] Blunt, M. J., Bijeljic, B., Dong, H., et al., 2013. Pore-Scale Imaging and Modelling. Advances in Water Resources, 51(2-3): 197-216. https://doi.org/10.1016/j.advwatres.2012.03.003
      [4] Cai, J.C., 2021. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media. Chinese Journal of Computational Physics, 38(5): 505-512(in Chinese with English abstract).
      [5] Cai, J.C., Perfect, E., Cheng, C.L., et al., 2014. Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures. Langmuir, 30(18): 5142-5151. https://doi.org/10.1021/la5007204
      [6] Dang, H.L., Wang, X.F., Cui, P.X., et al., 2020. Research on the Characteristics of Spontaneous Imbibition Oil Displacement with the Low Permeability Tight-Sandstone Oil Reservoir Using the Nuclear Magnetic Resonance (NMR) Technology. Progress in Geophysics, 35(5): 1759-1769(in Chinese with English abstract).
      [7] Diao, Z. H., Li, S., Liu, W., et al., 2021. Numerical Study of the Effect of Tortuosity and Mixed Wettability on Spontaneous Imbibition in Heterogeneous Porous Media. Capillarity, 4(3): 50-62. https://doi.org/10.46690/capi.2021.03.02
      [8] Dong, D.P., Li, B.H., Yuan, S.W., et al., 2021. Spontaneous Imbibition Characteristics of the Low-Permeability Water-Wet Core Based on the NMR Test. Petroleum Geology & Oilfield Development in Daqing, 40(2): 60-65(in Chinese with English abstract).
      [9] Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 931-945. https://doi.org/10.1016/s1876-3804(20)60107-0
      [10] Gao, Z. Y., Fan, Y. P., Xuan, Q. X., et al., 2020. A Review of Shale Pore Structure Evolution Characteristics with Increasing Thermal Maturities. Advances in Geo-Energy Research, 4(3): 247-259. https://doi.org/10.46690/ager.2020.03.03
      [11] Gu, X. Y., Pu, C. S., Huang, H., et al., 2017. Micro-Influencing Mechanism of Permeability on Spontaneous Imbibition Recovery for Tight Sandstone Reservoirs. Petroleum Exploration and Development, 44(6): 1003-1009. https://doi.org/10.1016/s1876-3804(17)30112-x
      [12] Guo, J. C., Li, M., Chen, C., et al., 2020. Experimental Investigation of Spontaneous Imbibition in Tight Sandstone Reservoirs. Journal of Petroleum Science and Engineering, 193(3): 107395. https://doi.org/10.1016/j.petrol.2020.107395
      [13] Hu, Q. H., Ewing, R. P., Dultz, S., 2012. Low Pore Connectivity in Natural Rock. Journal of Contaminant Hydrology, 133(B10): 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006
      [14] Huang, R.Z., Jiang, Z.X., Gao, Z.Y., et al., 2017. Effect of Composition and Structural Characteristics on Spontaneous Imbibition of Shale Reservoir. Petroleum Geology and Recovery Efficiency, 24(1): 111-115(in Chinese with English abstract).
      [15] Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 139-146. https://doi.org/10.1016/s1876-3804(12)60026-3
      [16] Li, C.S., Zhang, W.S., Lei, Y., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574(in Chinese with English abstract).
      [17] Li, C. X., Singh, H., Cai, J. C., 2019. Spontaneous Imbibition in Shale: A Review of Recent Advances. Capillarity, 2(2): 17-32. https://doi.org/10.26804/capi.2019.02.01
      [18] Liu, H. L., Yang, Y. Y., Wang, F. Q., et al., 2018. Micro Pore and Throat Characteristics and Origin of Tight Sandstone Reservoirs: A Case Study of the Triassic Chang 6 and Chang 8 Members in Longdong Area, Ordos Basin, NW China. Petroleum Exploration and Development, 45(2): 239-250. https://doi.org/10.1016/s1876-3804(18)30027-2
      [19] Lyu, C., Ning, Z. F., Chen, M. Q., et al., 2019. Experimental Study of Boundary Condition Effects on Spontaneous Imbibition in Tight Sandstones. Fuel, 235(4): 374-383. https://doi.org/10.1016/j.fuel.2018.07.119
      [20] Shen, Y. H., Ge, H. K., Li, C. X., et al., 2016. Water Imbibition of Shale and its Potential Influence on Shale Gas Recovery: a Comparative Study of Marine and Continental Shale Formations. Journal of Natural Gas Science and Engineering, 35(3): 1121-1128. https://doi.org/10.1016/j.jngse.2016.09.053
      [21] Umeobi, H. I., Li, Q., Xu, L., et al., 2021. NMR Investigation of Brine Imbibition Dynamics in Pores of Tight Sandstones under Different Boundary Conditions. Energy & Fuels, 35(19): 15856-15866. https://doi.org/10.1021/acs.energyfuels.1c01417
      [22] Wang, F.W., Chen, D.X., Xie, G. j., et al., 2022. Differential Enrichment Mechanism of Tight Sandstone Oil under the Control of the Source-Rreservoir Structures of Member 7 of Yanchang Formation in Qingcheng Area, Ordos Basin. Acta Pctrolei Sinica, 43(7): 941-956, 976(in Chinese with English abstract).
      [23] Wang, X. J., Wang, M., Li, Y., et al., 2021. Shale Pore Connectivity and Influencing Factors Based on Spontaneous Imbibition Combined with a Nuclear Magnetic Resonance Experiment. Marine and Petroleum Geology, 132: 105239. https://doi.org/10.1016/j.marpetgeo.2021.105239
      [24] Wu, Z.Y., Gao, Z.W., Ma, S.W., et al., 2021. Preliminary Study on Imbibition and Oil Displacement of Chang 7 Shale Oil in Ordos Basin. Natural Gas Geoscience, 32(2): 1874-1879(in Chinese with English abstract).
      [25] Xia, Y. X., Tian, Z. H., Xu, S., et al., 2021. Effects of Microstructural and Petrophysical Properties on Spontaneous Imbibition in Tight Sandstone Reservoirs. Journal of Natural Gas Science and Engineering, 96: 104225. https://doi.org/10.1016/j.jngse.2021.104225
      [26] Xu, X.Y., Wang, W.T., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768(in Chinese with English abstract).
      [27] Yang, L., Ge, H. K., Shi, X., et al., 2016. The Effect of Microstructure and Rock Mineralogy on Water Imbibition Characteristics in Tight Reservoirs. Journal of Natural Gas Science and Engineering, 34(2): 1461-1471. https://doi.org/10.1016/j.jngse.2016.01.002
      [28] Yang, Z.F., Zeng, J.H., Feng, X., et al., 2015. Effects of Source-Reservoir Lithologic Assemblage on Tight Oil Accumulation: A Case Study of Yanchang Chang-7 Member in Ordos Basin. Xinjiang Petroleum Geology, 36(4): 383-393(in Chinese with English abstract).
      [29] Yao, J.L., Zeng J.H., Luo, A.X., et al., 2019. Controlling Effect of Source-Reservoir Structure in Tight Reservoir on Oil-Bearing Property: A Case Study of Chang-6~Chang-8 Members in Heshui Area of Ordos Basin, China. Journal of Earth Sciences & Environment, 41(3): 267-280(in Chinese with English abstract).
      [30] You, Y., Niu, X.B., Feng, S.B., et al., 2014. Study of pore features in Chang7 Tight Oil Reservoir, Yanchang Layer, Ordos Basin. Journal of China University of Petroleum (Edition of Natural Science), 38(6): 18-23(in Chinese with English abstract).
      [31] Yu, R.A., Zhu, Q., Wen, S.B., et al., 2020. Tectonic Setting and Provenance Analysis of Zhiluo Formation and Stone of Tarangaole Area in the Ordos Basin. Earth Science, 45(5): 1754-1768(in Chinese with English abstract).
      [32] 蔡建超, 2021. 多孔介质自发渗吸关键问题与思考. 计算物理, 38(5): 505-512. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL202105001.htm
      [33] 党海龙, 王小锋, 崔鹏兴, 等, 2020. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究. 地球物理学进展, 35(5): 1759-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005016.htm
      [34] 董大鹏, 李斌会, 苑盛旺, 等, 2021. 基于核磁共振测试的低渗亲水岩心静态渗吸特征. 大庆石油地质与开发, 40(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102007.htm
      [35] 黄睿哲, 姜振学, 高之业, 等, 2017. 页岩储层组构特征对自发渗吸的影响. 油气地质与采收率, 24(1): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201701019.htm
      [36] 李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007
      [37] 王福伟, 陈冬霞, 解广杰, 等. 2022. 鄂尔多斯盆地庆城地区延长组7段源-储结构控制下致密砂岩油的差异富集机制. 石油学报, 43(7): 941-956, 976. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202207005.htm
      [38] 吴志宇, 高占武, 麻书玮, 等, 2021. 鄂尔多斯盆地长7段页岩油渗吸驱油现象初探. 天然气地球科学, 32(12): 1874-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112013.htm
      [39] 徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768 doi: 10.3799/dqkx.2019.175
      [40] 杨智峰, 曾溅辉, 冯枭, 等, 2015. 源储岩性组合对致密油聚集的影响——以鄂尔多斯盆地延长组长7段为例. 新疆石油地质, 36(4): 383-393. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201504004.htm
      [41] 姚泾利, 曾溅辉, 罗安湘, 等, 2019. 致密储层源储结构对储层含油性的控制作用——以鄂尔多斯盆地合水地区长6~长8段为例. 地球科学与环境学报, 41(3): 267-280. doi: 10.3969/j.issn.1672-6561.2019.03.002
      [42] 尤源, 牛小兵, 冯胜斌, 等, 2014. 延长组页岩油储层微观孔隙特征研究. 中国石油大学学报(自然科学版), 38(6): 18-23. doi: 10.3969/j.issn.1673-5005.2014.06.003
      [43] 俞礽安, 朱强, 文思博, 等, 2020. 鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析. 地球科学, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
    • 加载中
    图(9) / 表(5)
    计量
    • 文章访问数:  84
    • HTML全文浏览量:  76
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-28
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回