• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率

    张宝华 毛竹 刘锦 叶宇 孙伟 郭新转 刘兆东 郭璇

    张宝华, 毛竹, 刘锦, 叶宇, 孙伟, 郭新转, 刘兆东, 郭璇, 2022. 实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率. 地球科学, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    引用本文: 张宝华, 毛竹, 刘锦, 叶宇, 孙伟, 郭新转, 刘兆东, 郭璇, 2022. 实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率. 地球科学, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    Zhang Baohua, Mao Zhu, Liu Jin, Ye Yu, Sun Wei, Guo Xinzhuan, Liu Zhaodong, Guo Xuan, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity. Earth Science, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    Citation: Zhang Baohua, Mao Zhu, Liu Jin, Ye Yu, Sun Wei, Guo Xinzhuan, Liu Zhaodong, Guo Xuan, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity. Earth Science, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219

    实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率

    doi: 10.3799/dqkx.2022.219
    基金项目: 

    国家自然科学基金项目 42042007

    国家自然科学基金项目 41973065

    国家自然科学基金项目 41773056

    详细信息
      作者简介:

      张宝华(1978-),男,研究员,主要从事高温高压矿物物理研究.ORCID:0000-0002-1239-1569. E-mail:zhangbaohua@zju.edu.cn

    • 中图分类号: P574

    Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity

    • 摘要: 实验矿物物理是高温高压实验地球科学的重要分支学科之一,它主要是通过高温高压实验模拟地球内部的物理化学环境,并原位测定地球深部物质(矿物、岩石和熔/流体等)的相变和状态方程、电导率、热导率等物理参数,探讨地球内部的圈层结构、物质组成、地球动力学过程等地球物理性质相关的一系列重要科学问题. 综述了实验矿物物理的发展历史、近二十年的研究现状与趋势,并展望了该学科未来发展的方向、关键科学问题与面临的主要挑战.

       

    • 图  1  地球内部的圈层结构与成分

      周春银和金振民(2014)

      Fig.  1.  Layered structure and composition of the Earth interior

      图  2  (a)大腔体压机(large volume press,简称LVP)和(b)金刚石压腔(diamond anvil cell,简称DAC)能够达到的温压范围

      Yamazaki and Ito(2020)

      Fig.  2.  Pressure and temperature ranges for (a) large volume press (LVP) and (b) diamond anvil cell (DAC)

      图  3  下地幔的结构与动力学

      Garnero and McNamara(2008)

      Fig.  3.  Structure and geodynamics of the lower mantle

    • Akimoto, S. I., Fujisawa, H., 1968. Olivine‐Spinel Transition in the System Mg2SiO4‐Fe2SiO4 at 800℃. Earth and Planetary Science Letters, 1(4): 237-240. https://doi.org/10.1016/0012‐821x(66)90076‐8
      Badro, J., Fiquet, G., Guyot, F., et al., 2003. Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity. Science, 300(5620): 789-791. https://doi.org/10.1126/science.1081311
      Badro, J., Rueff, J. P., Vanko, G., et al., 2004. Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle. Science, 305(5682): 383-386. https://doi.org/10.1126/science.1098840
      Beck, A. E., Darbha, D. M., Schloessin, H. H., 1978. Lattice Conductivities of Single‐Crystal and Polycrystalline Materials at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 17(1): 35-53. https://doi.org/10.1016/0031‐9201(78)90008‐0
      Beck, P., Goncharov, A. F., Struzhkin, V. V., et al., 2007. Measurement of Thermal Diffusivity at High Pressure Using a Transient Heating Technique. Applied Physics Letters, 91(18): 181914. https://doi.org/10.1063/1.2799243
      Birch, F., 1938. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain. Journal of Applied Physics, 9(4): 279-288. https://doi.org/10.1063/1.1710417
      Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227-286. https://doi.org/10.1029/jz057i002p00227
      Bridgman, P.W., 1958. Physics of High Pressure. G Bell and Sons, London.
      Buffett, B.A., Garnero, E.J., Jeanloz, R., 2000. Sediments at the Top of Earth' s Core. Science, 290: 1338-1342. doi: 10.1126/science.290.5495.1338
      Chai, M., Brown, J. M., Slutsky, L. J., 1996. Thermal Diffusivity of Mantle Minerals. Physics and Chemistry of Minerals, 23(7): 470-475. https://doi.org/10.1007/bf00202033
      Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration‐Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. Proceedings of the National Academy of Sciences, 114(16): 4078-4081. https://doi.org/10.1073/pnas.1616216114
      Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2018. Dehydration of Phengite Inferred by Electrical Conductivity Measurements: Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1): 11-14. https://doi.org/10.1130/g39716.1
      Coes, L., 1953. A New Dense Crystalline Silica. Science, 118(3057): 131-132. https://doi.org/10.1126/science.118.3057.131
      Dai, L. D., Karato, S. I., 2009. Electrical Conductivity of Pyrope‐Rich Garnet at High Temperature and High Pressure. Physics of the Earth and Planetary Interiors, 176(1/2): 83-88. https://doi.org/10.1016/j.pepi.2009.04.002
      Dai, L. D., Li, H. P., Hu, H. Y., et al., 2008. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under High‐Temperature, High‐Pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research, 113(B12): 211. https://doi.org/10.1029/2008jb005820
      Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences, 104(22): 9182-9186. https://doi.org/10.1073/pnas.0609013104
      Fei, H. , Huang, R., Yang, X., 2017. CaSiO3‐Perovskite May Cause Electrical Conductivity Jump in the Topmost Lower Mantle. Geophysical Research Letters, 44: 10226-10232. https://doi.org/10.1002/2017gl075070
      Fei, H. Z., Druzhbin, D., Katsura, T., 2020. The Effect of Water on Ionic Conductivity in Olivine. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb019313
      Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283‐988 K and 0.3‐1.5 GPa. American Mineralogist, 104(11): 1533-1545. https://doi.org/10.2138/am‐2019‐7099
      Garnero, E. J., McNamara, A. K., 2008. Structure and Dynamics of Earth's Lower Mantle. Science, 320(5876): 626-628. https://doi.org/10.1126/science.1148028
      Ge, J. H., Zhang, B. H., Xiong, Z. L., et al., 2021. Thermal Properties of Harzburgite and Dunite at 0.8‐3 GPa and 300‐823 K and Implications for the Thermal Evolution of Tibet. Geoscience Frontiers, 12(2): 947-956. https://doi.org/10.1016/j.gsf.2020.01.008
      Gomi, H., Hirose, K., 2015. Electrical Resistivity and Thermal Conductivity of Hcp Fe‐Ni Alloys under High Pressure: Implications for Thermal Convection in the Earth's Core. Physics of the Earth and Planetary Interiors, 247: 2-10. https://doi.org/10.1016/j.pepi.2015.04.003
      Guillot, T., 2005. The Interiors of Giant Planets: Models and Outstanding Questions. Annual Review of Earth and Planetary Sciences, 33(1): 493-530. https://doi.org/10.1146/annurev.earth.32.101802.120325
      Guo, X. Z., Yoshino, T., 2014. Pressure‐Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627
      Guo, X. Z., Yoshino, T., 2013. Electrical Conductivity of Dense Hydrous Magnesium Silicates with Implication for Conductivity in the Stagnant Slab. Earth and Planetary Science Letters, 369-370: 239-247. https://doi.org/10.1016/j.epsl.2013.03.026
      Guo, X. Z., Yoshino, T., Shimojuku, A., 2015. Electrical Conductivity of Albite‐(Quartz)‐Water and Albite‐Water‐NaCl Systems and its Implication to the High Conductivity Anomalies in the Continental Crust. Earth and Planetary Science Letters, 412(2): 1-9. https://doi.org/10.1016/j.epsl.2014.12.021
      Guo, X., Zhang, L., Behrens, H., et al., 2016. Probing the Status of Felsic Magma Reservoirs: Constraints from the PT‐H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth and Planetary Science Letters, 433: 54-62. https://doi.org/10.1016/j.epsl.2015.10.036
      Gutenberg, B., 1913. Uber die Konstitution der Erdinnern, Erschlossen aus Erdbebenbeobachtungen. Physika Zeitschrift, 14: 1217-1218.
      Helled, R., Nettelmann, N., Guillot, T., 2020. Uranus and Neptune: Origin, Evolution and Internal Structure. Space Science Reviews, 216(3): 1-26. https://doi.org/10.1007/s11214‐020‐00660‐3
      Hinze, E., Will, G., Cemič, L., 1981. Electrical Conductivity Measurements on Synthetic Olivines and on Olivine, Enstatite and Diopside from Dreiser Weiher, Eifel (Germany) under Defined Thermodynamic Activities as a Function of Temperature and Pressure. Physics of the Earth and Planetary Interiors, 25(3): 245-254. https://doi.org/10.1016/0031‐9201(81)90068‐6
      Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth's Core. Nature Reviews Earth & Environment, 2(9): 645-658. https://doi.org/10.1038/s43017‐021‐00203‐6
      Hsieh, W. P., Chen, B., Li, J., et al., 2009. Pressure Tuning of the Thermal Conductivity of the Layered Muscovite Crystal. Physical Review B, 80(18): 302. https://doi.org/10.1103/physrevb.80.180302
      Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2017. Reduced Lattice Thermal Conductivity of Fe‐Bbearing Bridgmanite in Earth's Deep Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 4900-4917. https://doi.org/10.1002/2017jb014339
      Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2018. Effects of Iron on the Lattice Thermal Conductivity of Earth's Deep Mantle and Implications for Mantle Dynamics. Proceedings of the National Academy of Sciences, 115(16): 4099-4104. https://doi.org/10.1073/pnas.1718557115
      Hsieh, W. P., Goncharov, A. F., Labrosse, S., et al., 2020. Low Thermal Conductivity of Iron‐Silicon Alloys at Earth's Core Conditions with Implications for the Geodynamo. Nature Communications, 11(1): 3332. https://doi.org/10.1038/s41467‐020‐17106‐7
      Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower‐Mantle Conditions and Earth's Oxygen‐Hydrogen Cycles. Nature, 534(7606): 241-244. https://doi.org/10.1038/nature18018
      Hu, Q. Y., Liu, J., Chen, J., et al., 2021. Mineralogy of the Deep Lower Mantle in the Presence of H2O. National Science Review, 8(4): 98. https://doi.org/10.1093/nsr/nwaa098
      Huang, X. G., Xu, Y. S., Karato, S. I., 2005. Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite. Nature, 434(7034): 746-749. https://doi.org/10.1038/nature03426
      Irifune, T., Nishiyama, N., Kuroda, K., et al., 1998. The Postspinel Phase Boundary in Mg2SiO4 Determined by in Situ X‐Rray Diffraction. Science, 279: 1698-1700. doi: 10.1126/science.279.5357.1698
      Ito, E., Takahashi, E., 1989. Postspinel Transformations in the System Mg2SiO4‐Fe2SiO4 and some Geophysical Implications. Journal of Geophysical Research: Solid Earth, 94(B8): 10637-10646. https://doi.org/10.1029/jb094ib08p10637
      Journaux, B., Daniel, I., Petitgirard, S., et al., 2017. Salt Partitioning between Water and High‐Pressure Ices. Implication for the Dynamics and Habitability of Icy Moons and Water‐Rich Planetary Bodies. Earth and Planetary Science Letters, 463: 36-47. https://doi.org/10.1016/j.epsl.2017.01.017
      Karato, S., 1990. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature,347: 272-273.
      Katsura, T., 1995. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 122(1): 63-69. https://doi.org/10.1111/j.1365‐246x.1995.tb03536.x
      Katsura, T., Sato, K., Ito, E., 1998. Electrical Conductivity of Silicate Perovskite at Lower‐Mantle Conditions. Nature, 395(6701): 493-495. https://doi.org/10.1038/26736
      Konôpková, Z., McWilliams, R. S., Gómez‐Pérez, N., et al., 2016. Direct Measurement of Thermal Conductivity in Solid Iron at Planetary Core Conditions. Nature, 534(7605): 99-101. https://doi.org/10.1038/nature18009
      Lebedev, S., Chevrot, S., van der Hilst, R. D., 2002. Seismic Evidence for Olivine Phase Changes at the 410‐ and 660‐Kilometer Discontinuities. Science, 296(5571): 1300-1302. https://doi.org/10.1126/science.1069407
      Lehmann, I., 1936. P', Publications du Bureau Central Seismologique International, Série A. Travaux Scientifique, 14: 87-115.
      Li, Y., Jiang, H. T., Yang, X. Z., 2017. Fluorine Follows Water: Effect on Electrical Conductivity of Silicate Minerals by Experimental Constraints from Phlogopite. Geochimica et Cosmochimica Acta, 217: 16-27. https://doi.org/10.1016/j.gca.2017.08.020
      Lin, J. F., Struzhkin, V. V., Jacobsen, S. D., et al., 2005. Spin Transition of Iron in Magnesiowüstite in the Earth's Lower Mantle. Nature, 436(7049): 377-380. https://doi.org/10.1038/nature03825
      Lin, J. F., Speziale, S., Mao, Z., et al., 2013. Effects of The Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Geochemistry. Reviews of Geophysics, 51(2): 244-275. https://doi.org/10.1002/rog.20010
      Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017. Hydrogen‐Bearing Iron Peroxide and the Origin of Ultralow‐Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461
      Liu, J., Hu, Q. Y., Bi, W. L., et al., 2019. Altered Chemistry of Oxygen and Iron under Deep Earth Conditions. Nature Communications, 10(1): 153. https://doi.org/10.1038/s41467‐018‐08071‐3
      Liu, J., Wang, C. X., Lv, C., et al., 2020. Evidence for Oxygenation of Fe‐Mg Oxides at Mid‐Mantle Conditions and the Rise of Deep Oxygen. National Science Review, 8(4): 96. https://doi.org/10.1093/nsr/nwaa096
      Liu, H. Y., Zhang, K., Ingrin, J., et al., 2021. Electrical Conductivity of Omphacite and Garnet Indicates Limited Deep Water Recycling by Crust Subduction. Earth and Planetary Science Letters, 559: 116784. https://doi.org/10.1016/j.epsl.2021.116784
      Liu, L. G., 1976. The Post‐Spinel Phase of Forsterite. Nature, 262(5571): 770-772. https://doi.org/10.1038/262770a0
      Lobanov, S. S., Zhu, Q., Holtgrewe, N., et al., 2015. Stable Magnesium Peroxide at High Pressure. Scientific Reports, 5(1): 13582. https://doi.org/10.1038/srep13582
      Lv, C. J., Liu, J., 2022. Early Planetary Processes and Light Elements in Iron‐Dominated Cores. Acta Geochimica, 218(12): 1-25. https://doi.org/10.1007/s11631‐021‐00522‐x
      Manthilake, G. M., de Koker, N., Frost, D. J., et al., 2011. Lattice Thermal Conductivity of Lower Mantle Minerals and Heat Flux from Earth's Core. Proceedings of the National Academy of Sciences, 108(44): 17901-17904. https://doi.org/10.1073/pnas.1110594108
      Manthilake, G., Bolfan‐Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5): 1-14. https://doi.org/10.1126/sciadv.1501631
      Manthilake, G., Mookherjee, M., Bolfan‐Casanova, N., et al., 2015. Electrical Conductivity of Lawsonite and Dehydrating Fluids at High Pressures and Temperatures. Geophysical Research Letters, 42(18): 7398-7405. https://doi.org/10.1002/2015gl064804
      Mao, Z., Lin, J. F., Liu, J., et al., 2011. Thermal Equation of State of Lower‐Mantle Ferropericlase across the Spin Crossover. Geophysical Research Letters, 38(23): 10-25. https://doi.org/10.1029/2011gl049915
      Mao, Z., Lin, J. F., Liu, J., et al., 2012. Sound Velocities of Fe and Fe‐Si Alloy in the Earth's Core. Proceedings of the National Academy of Sciences, 109(26): 10239-10244. https://doi.org/10.1073/pnas.1207086109
      Mao, Z., Lin, J.F., Yang, J., et al., 2014. (Fe, Al)‐Bearing Post‐Perovskite in the Earth's Lower Mantle. Earth and Planetary Science Letters, 403: 157-165. doi: 10.1016/j.epsl.2014.06.042
      Marzotto, E., Hsieh, W. P., Ishii, T., et al., 2020. Effect of Water on Lattice Thermal Conductivity of Ringwoodite and its Implications for the Thermal Evolution of Descending Slabs. Geophysical Research Letters, 47(13): 23-29. https://doi.org/10.1029/2020gl087607
      Miao, S. Q., Li, H. P., Chen, G., 2014. The Temperature Dependence of Thermal Conductivity for Lherzolites from the North China Craton and the Associated Constraints on the Thermodynamic Thickness of the Lithosphere. Geophysical Journal International, 197(2): 900-909. https://doi.org/10.1093/gji/ggu020
      Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932
      Murnaghan, F. D., 1937. Finite Deformations of an Elastic Solid. American Journal of Mathematics, 59(2): 235. https://doi.org/10.2307/2371405
      Ni, H. W., Keppler, H., Manthilake, M. A. G. M., et al., 2011. Electrical Conductivity of Dry and Hydrous NaAlSi3O8 Glasses and Liquids at High Pressures. Contributions to Mineralogy and Petrology, 162(3): 501-513. https://doi.org/10.1007/s00410‐011‐0608‐5
      Ni, H. W., Hui, H., Steinle‐Neumann, G., 2015. Transport Properties of Silicate Melts. Reviews of Geophysics, 53(3): 715-744. https://doi.org/10.1002/2015rg000485
      Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post‐Perovskite Phase of MgSiO3 in Earth's D″ Layer. Nature, 430(6998): 445-448. https://doi.org/10.1038/nature02701
      Ohta, K., Onoda, S., Hirose, K., et al., 2008. The Electrical Conductivity of Post‐Perovskite in Earth's D'' Layer. Science, 320(5872): 89-91. https://doi.org/10.1126/science.1155148
      Ohta, K., Yagi, T., Taketoshi, N., et al., 2012. Lattice Thermal Conductivity of MgSiO3 Perovskite and Post‐Perovskite at the Core‐mantle Boundary. Earth and Planetary Science Letters, 349-350: 109-115. https://doi.org/10.1016/j.epsl.2012.06.043
      Ohta, K., Kuwayama, Y., Hirose, K., et al., 2016. Experimental Determination of the Electrical Resistivity of Iron at Earth's Core Conditions. Nature, 534(7605): 95-98. https://doi.org/10.1038/nature17957
      Oldham, R. D., 1906. The Constitution of the Interior of the Earth, as Revealed by Earthquakes: (Second Communication). some New Light on the Origin of the Oceans. Quarterly Journal of the Geological Society, 63(1/2/3/4): 344-350. https://doi.org/10.1144/gsl.jgs.1907.063.01‐04.24
      Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143-144: 311-320. https://doi.org/10.1016/j.pepi.2003.10.010
      Peslier, A. H., Schönbächler, M., Busemann, H., et al., 2017. Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 212(1/2): 743-810. https://doi.org/10.1007/s11214‐017‐0387‐z
      Pozzo, M., Davies, C., Gubbins, D., et al., 2012. Thermal and Electrical Conductivity of Iron at Earth's Core Conditions. Nature, 485(7398): 355-358. https://doi.org/10.1038/nature11031
      Ringwood, A.E., 1959. The Olivine‐Spinel Inversion in Fayalite. American Mineralogist, 44: 659-661.
      Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle, McGraw‐Hill, New York, 1-618.
      Roberts, J. J., Tyburczy, J. A., 1991. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts. Journal of Geophysical Research, 96(B10): 16205. https://doi.org/10.1029/91jb01574
      Roberts, J. J., Tyburczy, J. A., 1993. Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport. Physics and Chemistry of Minerals, 20(1): 19-26. https://doi.org/10.1007/bf00202246
      Roberts, J. J., Tyburczy, J. A., 1999. Partial‐Melt Electrical Conductivity: Influence of Melt Composition. Journal of Geophysical Research: Solid Earth, 104(B4): 7055-7065. https://doi.org/10.1029/1998jb900111
      Saikia, A., Frost, D. J., Rubie, D. C., 2008. Splitting of the 520 Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle. Science, 319(5869): 1515-1518. https://doi.org/10.1126/science.1152818
      Shim, S. H., Duffy, T. S., Shen, G. Y., 2001. The Post‐Spinel Transformation in Mg2SiO4 and Its Relation to the 660 km Seismic Discontinuity. Nature, 411(6837): 571-574. https://doi.org/10.1038/35079053
      Shimojuku, A., Yoshino, T., Yamazaki, D., et al., 2012. Electrical Conductivity of Fluid‐Bearing Quartzite under Lower Crustal Conditions. Physics of the Earth and Planetary Interiors, 198-199: 1-8. https://doi.org/10.1016/j.pepi.2012.03.007
      Stevenson, D. J., 2020. Jupiter's Interior as Revealed by Juno. Annual Review of Earth and Planetary Sciences, 48(1): 465-489. https://doi.org/10.1146/annurev‐earth‐081619‐052855
      Stishov, S. M., Popova, S. V., 1961. A New Dense Modification of Silica. Geochemistry, 10: 923-926.
      Sun, W., Dai L., Li, H., et al., 2020. Electrical Conductivity of Clinopyroxene‐NaCl‐H2O System at High Temperatures and Pressures: Implications for High‐conductivity Anomalies in the Deep Crust and Subduction Zone. Journal of Geophysical Research: Solid Earth, 125: e2019JB019093.
      Takahashi, T., Bassett, W. A., 1964. High‐Pressure Polymorph of Iron. Science, 145(3631): 483-486. https://doi.org/10.1126/science.145.3631.483
      Tange, Y., Nishihara, Y., Tsuchiya, T., 2010. Correction to "Unified Analyses for P‐V‐Tequation of State of MgO: A Solution for Pressure‐Scale Problems in High P‐T Experiments". Journal of Geophysical Research, 115(B12): 3208. https://doi.org/10.1029/2010jb007959
      Wang, D. J., Mookherjee, M., Xu, Y. S., et al., 2006. The Effect of Water on the Electrical Conductivity of Olivine. Nature, 443(7114): 977-980. https://doi.org/10.1038/nature05256
      Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119: 6277-6287. doi: 10.1002/2014JB011208
      Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post‐Perovskite. Nature Communications, 8(1): 14669. https://doi.org/10.1038/ncomms14669
      Wu, X., Wu, Y., Lin, J.F., Liu, J., et al., 2016. Two‐Stage Spin Transition of Iron in FeAl‐Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411-6420. https://doi.org/10.1002/2016jb013209
      Xia, Q. K., Liu, J., Kovács, I., et al., 2019. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. National Science Review, 6(1): 125-144. https://doi.org/10.1093/nsr/nwx016
      Xie, H.S., 1997. Introduction to Deep Earth Material Science. Science Press, Beijing, 1-297(in Chinese).
      Xiong, Z. L., Zhang, B. H., Ge, J. H., et al., 2021. Thermal Diffusivity and Thermal Conductivity of Alkali Feldspar at 0.8‐3 GPa and 300‐873 K. Contributions to Mineralogy and Petrology, 176(6): 42. https://doi.org/10.1007/s00410‐021‐01797‐2
      Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Physics of the Earth and Planetary Interiors, 143-144: 321-336. https://doi.org/10.1016/j.pepi.2004.03.005
      Yamazaki, D., Yoshino, T., Nakakuki, T., 2014. Interconnection of Ferro‐Periclase Controls Subducted Slab Morphology at the Top of the Lower Mantle. Earth and Planetary Science Letters, 403: 352-357. https://doi.org/10.1016/j.epsl.2014.07.017
      Yamazaki, D., Ito, E., 2020. High Pressure Generation in the Kawai‐Type Multianvil Apparatus Equipped with Sintered Diamond Anvils. High Pressure Research, 40(1): 3-11. https://doi.org/10.1080/08957959.2019.1689975
      Yang, X. Z., Keppler, H., McCammon, C., et al., 2011. Effect of Water on the Electrical Conductivity of Lower Crustal Clinopyroxene. Journal of Geophysical Research, 116(B4): 208. https://doi.org/10.1029/2010jb008010
      Yang, X. Z., Keppler, H., McCammon, C., et al., 2012. Electrical Conductivity of Orthopyroxene and Plagioclase in the Lower Crust. Contributions to Mineralogy and Petrology, 163(1): 33-48. https://doi.org/10.1007/s00410‐011‐0657‐9
      Yoshino, T., Katsura, T., 2009. Reply to Comments on "Electrical Conductivity of Wadsleyite as a Function of Temperature and Water Content" by Manthilake et al. . Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 22-23. https://doi.org/10.1016/j.pepi.2009.01.012
      Yoshino, T., Noritake, F., 2011. Unstable Graphite Films on Grain Boundaries in Crustal Rocks. Earth and Planetary Science Letters, 306(3/4): 186-192. https://doi.org/10.1016/j.epsl.2011.04.003
      Yoshino, T., Katsura, T., 2013. Electrical Conductivity of Mantle Minerals: Role of Water in Conductivity Anomalies. Annual Review of Earth and Planetary Sciences, 41(1): 605-628. https://doi.org/10.1146/annurev‐earth‐050212‐124022
      Yoshino, T., Walter, M. J., Katsura, T., 2004. Connectivity of Molten Fe Alloy in Peridotite Based on in Situ Electrical Conductivity Measurements: Implications for Core Formation in Terrestrial Planets. Earth and Planetary Science Letters, 222(2): 625-643. https://doi.org/10.1016/j.epsl.2004.03.010
      Yoshino, T., Matsuzaki, T., Yamashita, S., et al., 2006. Hydrous Olivine Unable to Account for Conductivity Anomaly at the Top of the Asthenosphere. Nature, 443(7114): 973-976. https://doi.org/10.1038/nature05223
      Yoshino, T., Manthilake, G., Matsuzaki, T., et al., 2008. Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite. Nature, 451(7176): 326-329. https://doi.org/10.1038/nature06427
      Yoshino, T., Matsuzaki, T., Shatzkiy, A., et al., 2009. Corrigendum to "The Effect of Water on the Electrical Conductivity of Olivine Aggregates and its Implications for the Electrical Structure in the Upper Mantle". Earth and Planetary Science Letters, 391: 135-136. https://doi.org/10.1016/j.epsl.2009.09.032
      Yoshino, T., Laumonier, M., McIsaac, E., et al., 2010. Electrical Conductivity of Basaltic and Carbonatite Melt‐Bearing Peridotites at High Pressures: Implications for Melt Distribution and Melt Fraction in the Upper Mantle. Earth and Planetary Science Letters, 295(3/4): 593-602. https://doi.org/10.1016/j.epsl.2010.04.050
      Yoshino, T., Ito, E., Katsura, T., et al., 2011. Effect of Iron Content on Electrical Conductivity of Ferropericlase with Implications for the Spin Transition Pressure. Journal of Geophysical Research, 116(B4): 87-96. https://doi.org/10.1029/2010jb007801
      Yoshino, T., Kamada, S., Zhao, C. C., et al., 2016. Electrical Conductivity Model of Al‐Bearing Bridgmanite with Implications for the Electrical Structure of the Earth's Lower Mantle. Earth and Planetary Science Letters, 434(B4): 208-219. https://doi.org/10.1016/j.epsl.2015.11.032
      Yoshino, T., Zhang, B. H., Rhymer, B., et al., 2017. Pressure Dependence of Electrical Conductivity in Forsterite. Journal of Geophysical Research: Solid Earth, 122(1): 158-171. https://doi.org/10.1002/2016jb013555
      Zhang, B. H., Ash, B., Yoshino, T., 2017. Effect of Graphite on the Electrical Conductivity of the Lithospheric Mantle. Geochemistry, Geophysics, Geosystems, 18(1): 23-40. https://doi.org/10.1002/2016gc006530
      Zhang, B. H., Yoshino, T., 2020. Temperature‐Enhanced Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 530(12): 115922. https://doi.org/10.1016/j.epsl.2019.115922
      Zhang, B. H., Xia, Q. K., 2021. Influence of Water on the Physical Properties of Olivine, Wadsleyite, and Ringwoodite. European Journal of Mineralogy, 33(1): 39-75. https://doi.org/10.5194/ejm‐33‐39‐2021
      Zhang, B. H., Yoshino, T., Wu, X. P., et al., 2012. Electrical Conductivity of Enstatite as a Function of Water Content: Implications for the Electrical Structure in the Upper Mantle. Earth and Planetary Science Letters, 357-358: 11-20. https://doi.org/10.1016/j.epsl.2012.09.020
      Zhang, B. H., Yoshino, T., Yamazaki, D., et al., 2014. Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 405: 98-109. https://doi.org/10.1016/j.epsl.2014.08.018
      Zhang, B.H., Zhao, C.C., Ge, J.H., et al., 2019a. Electrical Conductivity of Omphacite as a Function of Water Content and Implications for High Conductivity Anomalies in the Dabie‐Sulu UHPM Belts and Tibet. Journal of Geophysical Research: Solid Earth, 124(12): 12523-12536. https://doi.org/10.1029/2019jb018826
      Zhang, B.H., Ge, J.H., Xiong, Z.L., et al., 2019b. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481. https://doi.org/10.1029/2019je006194
      Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019c. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519(16): 109-119. https://doi.org/10.1016/j.epsl.2019.04.048
      Zhang, B. H., Guo, X., Yoshino, T., et al., 2021. Electrical Conductivity of Melts: Implications for Conductivity Anomalies in the Earth's Mantle. National Science Review, 8(11): 64. https://doi.org/10.1093/nsr/nwab064
      Zhang, L., Meng, Y., Yang, W., et al., 2014. Disproportionation of (Mg, Fe)SiO3 Perovskite in Earth's Deep Lower Mantle. Science, 344: 877-882. doi: 10.1126/science.1250274
      Zhao, C. C., Yoshino, T., 2016. Electrical Conductivity of Mantle Clinopyroxene as a Function of Water Content and its Implication on Electrical Structure of Uppermost Mantle. Earth and Planetary Science Letters, 447(20): 1-9. https://doi.org/10.1016/j.epsl.2016.04.028
      Zhou, C.Y., Jin, Z.M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chines with English abstract).
      Zhuang, Y. K., Su, X. W., Salke, N. P., et al., 2021. The Effect of Nitrogen on the Compressibility and Conductivity of Iron at High Pressure. Geoscience Frontiers, 12(2): 983-989. https://doi.org/10.1016/j.gsf.2020.04.012
      谢鸿森, 1997. 地球深部物质科学导论. 北京: 科学出版社, 1-297.
      周春银, 金振民, 2014. 照亮地球深部的"明灯"——高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm
    • 加载中
    图(3)
    计量
    • 文章访问数:  1041
    • HTML全文浏览量:  534
    • PDF下载量:  172
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-15
    • 刊出日期:  2022-08-25

    目录

      /

      返回文章
      返回