Effect of Double-Décollement Strength on Structure Deformation in Northern Bogda Mountain Using Discrete Element Numerical Simulation
-
摘要: 博格达山北缘褶皱冲断带以横向分段、纵向分层、多期构造变形叠加、先存构造发育为主要特征,发育有中侏罗统西山窑组和下侏罗统八道湾组两套滑脱层,为探究这两套滑脱层内聚力强度差异及先存构造对冲断带新生代构造变形的影响,研究采用离散元数值模拟方法,在布设先存构造的基础上设计了无滑脱层模型和不同内聚力强度组合的双滑脱层模型共5组数值模拟实验.实验结果表明:双滑脱层内聚力强度相同时,上滑脱层在应力传播中占据优势;双滑脱层内聚力强度不同时,应力会优先沿弱内聚力滑脱层传递,且当下滑脱层内聚力较弱时,上滑脱层可能不发挥作用.通过对比实验结果与实际地质剖面,认为先存构造控制了冲断带构造变形的总体样式,而两套滑脱层共同控制了冲断带纵向上的变形解耦,上部滑脱层内聚力弱于下部滑脱层是影响研究区新生代构造变形的关键性因素.Abstract: The fold-thrust belt of the northern Bogda Mountain is characterized by horizontal segmentation, vertical stratification, overlap of multi-phase structure deformation and rich pre-existing structures. Two décollements, the Xishangyao Formation of Upper Jurassic and the Badaowan Formation of Lower Jurassic, are developed in this area. In order to investigate the influence of the difference in cohesion strength between the two décollements and the pre-existing structures on the structure deformation in Cenozoic, this study designed five experiments including a model without décollement and four double-décollement models with different cohesion strength combinations adopted the discrete element method, on the basis of laying out pre-existing structures. The experimental results show that when the cohesion strengths of the double-décollement are the same, the upper décollement has the advantage in stress propagation; when the cohesion strengths of the double-décollement are different, the stress will preferentially transmits along the weaker cohesion décollement, and when the cohesion strength of the lower décollement is weaker, the upper décollement may not play a role. By comparing the experimental results with actual geological profile, it is concluded that the pre-existing structures control the structure deformation style of the thrust belt. However, the two décollements jointly control the tectonic decoupling in the vertical of the fold-thrust belt, and that the cohesion strength of the upper décollement weaker than that of the lower décollement, which is a key factor affecting the Cenozoic structure deformation in the study area.
-
图 1 博格达山西段地质构造简图
F1.三工河断裂; F2.妖魔山断裂: F3.阜康断裂; A1.苦坝沟背斜; A2.七道湾背斜; A3.古牧地背斜;a.研究区的大地构造位置;b博格达山西段构造纲要简图,修改自Chen et al.(2015)和马德龙等(2017)
Fig. 1. Simple geological map of west Bogda Mountain
图 2 博格达山北缘综合地层柱状图
修改自马德龙等(2017);Zhou et al.(2017)
Fig. 2. Comprehensive stratigraphic column of northern Bogda Mountain
表 1 离散元数值模拟实验参数
Table 1. Experimental parameters of discrete element numerical simulation
地质单元 颗粒的细观参数 颗粒间的粘结参数 色标 颗粒半径
(m)剪切模量
(109 Pa)泊松比 摩擦系数 密度
(103 kg/m3)杨氏模量
(108 Pa)剪切模量
(108 Pa)抗拉强度
(107 Pa)剪切强度
(107 Pa)能干层 60/80 2.9 0.2 0.3 2.5 2.0 2.0 2.0 4.0 弱滑脱层 60/80 2.9 0.2 0.0 2.2 / / / / 强滑脱层 60/80 2.9 0.2 0.1 2.2 / / / / 断层 60/80 2.9 0.2 0.0 2.5 / / / / 基底 60/80 2.9 0.2 0.4 2.5 2.0 2.0 2.0 4.0 -
Avouac, J. P., Tapponnier, P., Bai, M., et al., 1993. Active Thrusting and Folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. Journal of Geophysical Research: Solid Earth, 98(B4): 6755-6804. https://doi.org/10.1029/92jb01963 Buiter, S. J. H., 2012. A Review of Brittle Compressional Wedge Models. Tectonophysics, 530/531: 1-17. https://doi.org/10.1016/j.tecto.2011.12.018 Chen, K., Lin, W., Wang, Q. C., 2015. The Bogeda Shan Uplifting: Evidence from Multiple Phases of Deformation. Journal of Asian Earth Sciences, 99: 1-12. https://doi.org/10.1016/j.jseaes.2014.12.006 Chen, K., Wang, Z. Y., Liu, F., et al., 2012. The Structural Characteristics along the Northern Piedmont of Bogedashan and Its Dynamic Significances. Chinese Journal of Geology (Scientia Geologica Sinica), 47(4): 1041-1051(in Chinese with English abstract). Chen, Y. Y., Li, Y. Q., Wei, D. T., et al., 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436(in Chinese with English abstract). Cundall, P. A., Strack, O. D. L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1): 47-65. https://doi.org/10.1680/geot.1979.29.1.47 Graveleau, F., Malavieille, J., Dominguez, S., 2012. Experimental Modelling of Orogenic Wedges: A Review. Tectonophysics, 538/539/540: 1-66. https://doi.org/10.1016/j.tecto.2012.01.027 Greene, T. J., Carroll, A. R., Wartes, M., et al., 2005. Integrated Provenance Analysis of a Complex Orogenic Terrane: Mesozoic Uplift of the Bogda Shan and Inception of the Turpan-Hami Basin, NW China. Journal of Sedimentary Research, 75(2): 251-267. https://doi.org/10.2110/jsr.2005.019 Guo, Z. J., Wu, C. D., Zhang, Z. C., et al., 2011. Tectonic Control on Hydrocarbon Accumulation and Prospect for Large Oil-Gas Field Exploration in the Southern Junggar Basin. Geological Journal of China Universities, 17(2): 185-195(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2011.02.004 Hardy, S., Finch, E., 2005. Discrete-Element Modelling of Detachment Folding. Basin Research, 17(4): 507-520. https://doi.org/10.1111/j.1365-2117.2005.00280.x Jahn, B. M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/s1367-9120(03)00124-x Kang, Z. L., 1997. Petroleum Prospect in the Southern Margin of Junggar Basin. China Petroleum Exploration, 2(4): 31-34, 6(in Chinese with English abstract). Li, C. S., 2019. Quantitative Analysis and Simulation of Structural Deformation in the Fold and Thrust Belt Based on Discrete Element Method(Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Li, C. S., Yin, H. W., Jia, D., et al., 2018. Validation Tests for Discrete Element Codes Using Single-Contact Systems. International Journal of Geomechanics, 18(6): 06018011. https://doi.org/10.1061/(asce)gm.1943-5622.0001133 Li, C. S., Yin, H. W., Wu, C., et al., 2021. Calibration of the Discrete Element Method and Modeling of Shortening Experiments. Frontiers in Earth Science, 9: 636512. https://doi.org/10.3389/feart.2021.636512 Li, Z., Peng, S. T., 2013. U-Pb Geochronological Records and Provenance System Analysis of the Mesozoic-Cenozoic Sandstone Detrital Zircons in the Northern and Southern Piedmonts of Tianshan, Northwest China: Responses to Intracontinental Basin-Range Evolution. Acta Petrologica Sinica, 29(3): 739-755(in Chinese with English abstract). Liu, H. L., Li, Z. Q., Li, G., et al., 2022. Influences of Pre-Existing Structures on Future Growth and Geometry of Faults: A Case Study of Hongqi Sag, Hailar Basin. Earth Science, 47(7): 2646-2666(in Chinese with English abstract). Ma, D. L., He, D. F., Wei, D. T., et al., 2017. Multiple Phase Deformation of Gumudi Anticline at South Margin of Junggar Basin. Journal of Jilin University (Earth Science Edition), 47(6): 1695-1704 (in Chinese with English abstract). Morgan, J. K., 2015. Effects of Cohesion on the Structural and Mechanical Evolution of Fold and Thrust Belts and Contractional Wedges: Discrete Element Simulations. Journal of Geophysical Research: Solid Earth, 120(5): 3870-3896. https://doi.org/10.1002/2014jb011455 Sassi, W., Colletta, B., Balé, P., et al., 1993. Modelling of Structural Complexity in Sedimentary Basins: The Role of Pre-Existing Faults in Thrust Tectonics. Tectonophysics, 226(1/2/3/4): 97-112. https://doi.org/10.1016/0040-1951(93)90113-x Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 Shang, L., Dai, J. S., Feng, J. W., et al., 2013. Geometric and Kinematic Analyses of Gumudi Anticline in Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 34(6): 627-631, 617(in Chinese with English abstract). Shen, C. B., Mei, L. F., Liu, L., et al., 2006. Evidence from Apatite and Zircon Fission Track Analysis for Mesozoic-Cenozoic Uplift Thermal History of Bogeda Mountain of Xinjiang, Northwest China. Marine Geology & Quaternary Geology, 26(3): 87-92(in Chinese with English abstract). Sun, Z. M., Shen, J., 2014. Bogda Nappe Structure and Its Relations to Hydrocarbon in Xinjiang. Petroleum Geology & Experiment, 36(4): 429-434, 458(in Chinese with English abstract). Sun, Z. M., Wang, Y., 2014. Structural Analysis and Modeling in Miquan Area of the Western Margin of the Bogda Mountain, Xinjiang. Geoscience, 28(2): 300-307(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2014.02.007 Tang, W. H., Zhang, Z. C., Li, J. F., et al., 2014. Late Paleozoic to Jurassic Tectonic Evolution of the Bogda Area (Northwest China): Evidence from Detrital Zircon U-Pb Geochronology. Tectonophysics, 626: 144-156. https://doi.org/10.1016/j.tecto.2014.04.005 Tapponnier, P., Molnar, P., 1979. Active Faulting and Cenozoic Tectonics of the Tien Shan, Mongolia, and Baykal Regions. Journal of Geophysical Research: Solid Earth, 84(B7): 3425-3459. https://doi.org/10.1029/jb084ib07p03425 Wang, G. C., Shen, T. Y., Chen, C., et al., 2020. Basin-Range Coupling and Tectonic Topography Analysis during Geological Mapping on Covered Area: A Case Study of Turpan-Hami Basin, Eastern Tianshan. Earth Science, 45(12): 4313-4331(in Chinese with English abstract). Wang, X. W., Wang, X. W., Ma, Y. S., 2007. Differential Exhumation History of Bogda Mountain, Xinjiang, Northwestern China since the Late Mesozoic. Acta Geologica Sinica, 81(11): 1507-1517(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.11.005 Wang, Z. X., Li, T., 2004. Mechanism of Cenozoic Revival Orogeny in the Bogda Mountain Chain, Xinjiang. Bulletin of Geology of China, 23(3): 286-293(in Chinese with English abstract). Wartes, M. A., Carroll, A. R., Greene, T. J., 2002. Permian Sedimentary Record of the Turpan-Hami Basin and Adjacent Regions, Northwest China: Constraints on Post Amalgamation Tectonic Evolution. Geological Society of America Bulletin, 114(2): 131-152. https://doi.org/10.1130/0016-7606(2002)1140131:psrott>2.0.co;2 doi: 10.1130/0016-7606(2002)1140131:psrott>2.0.co;2 Wen, Z. G., Hou, J. G., Zhang, B. Q., et al., 2005. Analysis on Hydrocarbon Accumulation Conditions and Evaluation of Exploration Potential in Miquan Block in the Southern Margin of Jungar Basin. Journal of Oil and Gas Technology, 27(1): 10-13, 141(in Chinese with English abstract). Wu, H., Qiu, N. S., Chang, J., et al., 2019. Physical Simulation on Development of Multilayer Detachment Fold Belt in Eastern Sichuan. Earth Science, 44(3): 784-797(in Chinese with English abstract). Wu, J. H., Xiang, S. Z., Wu, X. Z., et al., 2002. Structures in East Part of Southern Margin in Junggar Basin and Their Formation Mechanism. Xinjiang Petroleum Geology, 23(3): 208-210, 178(in Chinese with English abstract). Xin, W., Chen, H. L., An, K. X., et al., 2020. Analyzing the Influence of Factors That Control the Structural Deformation of Fold-Thrust Belts in the Southwestern Tianshan Using Discrete Element Simulations. Acta Geologica Sinica, 94(6): 1704-1715(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.06.004 Yin, A., Nie, S., Craig, P., et al., 1998. Late Cenozoic Tectonic Evolution of the Southern Chinese Tian Shan. Tectonics, 17(1): 1-27. https://doi.org/10.1029/97tc03140 Zhang, Y., Li, Z. S., Nie, F., et al., 2015. Age, Provenance and Tectonic Evolution of Late Paleozoic Strata in Bogda Mountain, Xinjiang: Evidence from Detrital Zircon U-Pb Geochronology. Chinese Journal of Geology (Scientia Geologica Sinica), 50(1): 155-181(in Chinese with English abstract). Zhou, Y. X., Wu, C. D., Yuan, B., et al., 2020. Cenozoic Tectonic Patterns and Their Controls on Growth Strata in the Northern Tianshan Fold and Thrust Belt, Northwest China. Journal of Asian Earth Sciences, 198: 104237. https://doi.org/10.1016/j.jseaes.2020.104237 Zhu, W. B., Shu, L. S., Wan, J. L., et al., 2006. Fission-Track Evidence for the Exhumation History of Bogda-Harlik Mountains, Xinjiang since the Cretaceous. Acta Geologica Sinica, 80(1): 16-22(in Chinese with English abstract). Zou, H. M., 2017. Study on the Tectonic Characteristics of the Western Section of the Fukang Fracture Zone in the Junggar Basin and Its Reservoir Control Role(Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract). 陈科, 王镇远, 刘飞, 等, 2012. 博格达山北缘前陆褶皱冲断带构造特征及其动力学意义. 地质科学, 47(4): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201204010.htm 陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436. doi: 10.3799/dqkx.2021.097 郭召杰, 吴朝东, 张志诚, 等, 2011. 准噶尔盆地南缘构造控藏作用及大型油气藏勘探方向浅析. 高校地质学报, 17(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201102007.htm 康竹林, 1997. 准噶尔盆地南缘油气勘探前景. 勘探家, 2(4): 31-34, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199704007.htm 李长圣, 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟(博士学位论文). 南京: 南京大学. 李忠, 彭守涛, 2013. 天山南北麓中-新生界碎屑锆石U-Pb年代学记录、物源体系分析与陆内盆山演化. 岩石学报, 29(3): 739-755. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303002.htm 刘恒麟, 李忠权, 李根, 等, 2022. 先存构造对断层后期生长及形态的影响: 以海拉尔盆地红旗凹陷为例. 地球科学, 47(7): 2646-2666. doi: 10.3799/dqkx.2021.192 马德龙, 何登发, 魏东涛, 等, 2017. 准噶尔盆地南缘古牧地背斜多期构造变形特征. 吉林大学学报(地球科学版), 47(6): 1695-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706009.htm 商琳, 戴俊生, 冯建伟, 等, 2013. 准噶尔盆地南缘古牧地背斜几何学与运动学分析. 新疆石油地质, 34(6): 627-631, 617. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201306004.htm 沈传波, 梅廉夫, 刘麟, 等, 2006. 新疆博格达山中新生代隆升-热历史的裂变径迹记录. 海洋地质与第四纪地质, 26(3): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603013.htm 孙自明, 沈杰, 2014. 新疆博格达推覆构造及其与油气的关系. 石油实验地质, 36(4): 429-434, 458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201404008.htm 孙自明, 王毅, 2014. 新疆博格达山西缘米泉地区构造解析与建模. 现代地质, 28(2): 300-307. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201402007.htm 王国灿, 申添毅, 陈超, 等, 2020. 覆盖区地质调查中的盆山构造地貌关系研究: 以东天山-吐哈盆地为例. 地球科学, 45(12): 4313-4331. doi: 10.3799/dqkx.2020.300 汪新伟, 汪新文, 马永生, 2007. 新疆博格达山晚中生代以来的差异剥露史. 地质学报, 81(11): 1507-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711006.htm 王宗秀, 李涛, 2004. 新疆博格达山链新生代再生造山机理: 岩石圈内切层"开""合"造山带的典型代表. 地质通报, 23(3): 286-293. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200403014.htm 文志刚, 侯建国, 张柏桥, 等, 2005. 准噶尔盆地南缘米泉区块油气成藏条件分析与勘探潜力评价. 石油天然气学报(江汉石油学院学报), 27(1): 10-13, 141. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200501002.htm 吴航, 邱楠生, 常健, 等, 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784-797. doi: 10.3799/dqkx.2018.109 吴建华, 向书政, 吴晓智, 等, 2002. 准噶尔盆地南缘东部构造样式与形成机制. 新疆石油地质, 23(3): 208-210, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200203008.htm 辛文, 陈汉林, 安凯旋, 等, 2020. 基于离散元数值模拟的西南天山山前冲断带构造变形控制因素研究. 地质学报, 94(6): 1704-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202006004.htm 张妍, 李振生, 聂峰, 等, 2015. 新疆博格达山晚古生代地层的形成时代、物源及其演化: 碎屑锆石U-Pb年代学证据. 地质科学, 50(1): 155-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501010.htm 朱文斌, 舒良树, 万景林, 等, 2006. 新疆博格达-哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601001.htm 邹会明, 2017. 准噶尔盆地阜康断裂带西段构造特征及其控藏作用研究(硕士学位论文). 北京: 中国石油大学.