• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于模拟月壤的贯入模块化试验

    胡定坤 李谦 吕嘉航 邹欣悦 罗浩天

    胡定坤, 李谦, 吕嘉航, 邹欣悦, 罗浩天, 2024. 基于模拟月壤的贯入模块化试验. 地球科学, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230
    引用本文: 胡定坤, 李谦, 吕嘉航, 邹欣悦, 罗浩天, 2024. 基于模拟月壤的贯入模块化试验. 地球科学, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230
    Hu Dingkun, Li Qian, Lü Jiahang, Zou Xinyue, Luo Haotian, 2024. Penetration Modular Test Based on Lunar Soil Simulant. Earth Science, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230
    Citation: Hu Dingkun, Li Qian, Lü Jiahang, Zou Xinyue, Luo Haotian, 2024. Penetration Modular Test Based on Lunar Soil Simulant. Earth Science, 49(3): 1052-1065. doi: 10.3799/dqkx.2022.230

    基于模拟月壤的贯入模块化试验

    doi: 10.3799/dqkx.2022.230
    基金项目: 

    国家自然科学基金项目 11502034

    国家自然科学基金项目 42072344

    四川省自然科学基金项目 2022NSFSC0991

    详细信息
      作者简介:

      胡定坤(1997-),男,硕士研究生,从事月壤量化扰动特征的研究. ORCID:0000-0002-1198-1583. E-mail:13696245664@163.com

      通讯作者:

      李谦,ORCID: 0000-0003-1535-7734. E-mail:liqian2014@cdut.edu.cn

    • 中图分类号: P691

    Penetration Modular Test Based on Lunar Soil Simulant

    • 摘要: 为了解采样机具与模拟月壤间的相互作用,同时验证月壤采样机具模块化建模的可行性.基于中国地质大学(武汉)研制的CUG-1A型模拟月壤,开展不同条件下机具贯入力载的试验研究,并依据试验结果建立理论模型进行验证.各机具在浅层模拟月壤贯入阻力平均增长率为19.9%,次浅层提升至38.18%,深层出现陡增达到63.43%;贯入速度对贯入阻力的平均误差为2.5%;不同入土角度下贯入阻力的平均增长率为62.85%;不同截面机具贯入阻力随截面面积增长而增长,值近似为1∶2∶3∶4.同时进行了机具结构模块化验证,理论模型与试验结果吻合度在85%以上.采样机具所受贯入阻力与贯入深度、方式和机具结构明显相关,可建立模块化理论模型准确预估不同条件机具的贯入阻力.

       

    • 图  1  Apollo计划使用采样铲及分解图

      Fig.  1.  Apollo sampling shovel used and its breakdown diagram

      图  2  试验流程(a)及机具贯入模拟月壤(b)

      Fig.  2.  Test process (a) and machine penetration into simulated lunar soil (b)

      图  3  试验所用机械臂(a)与贯入机具固定设备(b)与机械臂运动状态(c)

      Fig.  3.  The manipulator (a) used in the test, the fixed equipment of the penetration machine (b) and the motion state of the manipulator (c)

      图  4  贯入机具尺寸(mm)和实物照片

      Fig.  4.  Penetration machine size (mm) and photos

      图  5  CUG-1A模拟月壤实物(a)、试样制作(b)和机具贯入(c)

      Fig.  5.  CUG-1A simulated lunar soil (a), sample preparation (b) and machine penetration (c)

      图  6  贯入阻力试验结果

      Fig.  6.  Penetration resistance test results

      图  7  贯入阻力平均增长率

      Fig.  7.  Average growth rate of penetration resistance

      图  8  贯入速度对贯入阻力的影响趋势

      Fig.  8.  The influence trend of penetration velocity on penetration resistance

      图  9  贯入角度试验

      Fig.  9.  Penetration angle test

      图  10  模块化验证

      Fig.  10.  Modular verification

      图  11  模块化机具组合

      Fig.  11.  Modular machine combination

      图  12  组合机具平均误差

      Fig.  12.  Average error of combined equipment

      图  13  “一字形”采样机具贯入模型

      Fig.  13.  The penetration model of "one-shaped" sampling machine

      图  14  机具A面受力

      Fig.  14.  Force on A surface of machine

      图  15  机具B边、C边、D边受力

      Fig.  15.  B side, C side, D side force of the machine

      图  16  机具闭合受力

      Fig.  16.  Closed force of machine tools

      图  17  试验数据与理论数据对比

      Fig.  17.  Comparison of experimental data and theoretical data

      图  18  试验数据与修正理论数据对比

      Fig.  18.  Comparison between experimental data and modified theoretical data

      表  1  贯入阻力试验方案

      Table  1.   Penetration resistance test scheme

      机具类型 贯入角度(°) 贯入速度(mm/s) 贯入深度(mm) 试验次数
      空心方形、U形、L形、一字形 30、40、45、50、60 5、10、15 60 4×5×3×3=180
      注:①以水平向左的方向为0°,顺时针方向转动为正向;②重复试验3次.
      下载: 导出CSV

      表  2  CUG⁃1A模拟月壤性质指标

      Table  2.   CUG⁃1A simulated lunar soil properties index

      项目 数值
      含水率ω0(%) 0.240
      湿密度ρ(g/cm3 1.700
      干密度ρ(g/cm3 1.696
      相对密度 2.611
      孔隙比E 0.569
      孔隙率φ(%) 36
      压缩系数α1-2κ(MPa) 0.09
      压缩模量Es(MPa) 17.43
      内聚力c(kPa) 1.36
      内摩擦角φ(°) 24.36
      下载: 导出CSV

      表  3  不同机具最大贯入阻力

      Table  3.   Penetration resistance of different tools

      贯入角度(°) 贯入速度(mm/s) 贯入阻力(N)
      一字形 L形 U形 空心方形
      30 5 7.41 14.53 19.38 26.70
      30 10 7.05 14.87 24.04 32.35
      30 15 7.34 14.20 21.40 25.65
      45 5 7.18 18.70 31.15 38.85
      45 10 10.14 18.44 29.83 37.66
      45 15 9.51 16.22 26.79 40.66
      60 5 11.87 20.72 32.82 44.92
      60 10 12.08 27.52 45.97 55.42
      60 15 9.00 27.82 36.42 53.41
      下载: 导出CSV

      表  4  不同贯入速度对贯入阻力误差

      Table  4.   Error of penetration resistance with different penetration velocities

      贯入角度(°) 贯入速度(mm/s) 贯入阻力误差
      一字形 L形 U形 空心方形
      30 5 1.97% ‒0.02% ‒10.3% ‒5.43%
      30 10 ‒2.98% 2.32% 11.26% 14.58%
      30 15 1% ‒2.29% ‒0.95% ‒9.15%
      45 5 ‒19.72% 5.13% 6.47% ‒0.53%
      45 10 13.38% 3.67% 1.96% ‒3.58%
      45 15 6.33% ‒8.81% ‒8.43% 4.11%
      60 5 8.07% ‒18.28% ‒14.54% ‒12.35%
      60 10 9.98% 8.55% 19.7% 8.14%
      60 15 ‒18.05% 9.73% ‒5.16% 4.21%
      下载: 导出CSV

      表  5  U形与空心方形机具各角度贯入阻力增长率

      Table  5.   Growth rate of penetration resistance of U-shaped and hollow square machines

      贯入角度 30° 40° 45° 50° 60° 贯入阻力增长率范围
      U形 43.00% 46.53% 50.11% 58.34% 72.36% 43.00%~72.36%
      空心方形 48.03% 52.68% 63.08% 74.82% 81.41% 48.03%~81.41%
      下载: 导出CSV

      表  6  不同机具结构模块化组合后的平均误差率

      Table  6.   The average error rate after modular combination of different machine structures

      组合类型 贯入角度30°,贯入速度10 mm/s 贯入角度45°,贯入速度10 mm/s 贯入角度60°,贯入速度10 mm/s
      0~15 mm 15~30 mm 30~60 mm 0~15 mm 15~30 mm 30~60 mm 0~15 mm 15~30 mm 30~60 mm
      U+一 578.23% ‒2.49% 12.00% ‒159.05% ‒36.06% ‒2.70% ‒470.58% ‒34.01% ‒0.42%
      L+L 670.13% ‒4.72% 7.96% ‒448.62% ‒3.39% 3.95% ‒602.46% ‒0.26% ‒0.43%
      一+一 ‒305.00% ‒2.54% 7.70% 142.35% 35.38% 9.25% ‒593.20% ‒3.88% 5.49%
      下载: 导出CSV
    • Agui, J. H., Bucek, M., DeGennaro, A., et al., 2013. Lunar Excavation Experiments in Simulant Soil Test Beds: Revisiting the Surveyor Geotechnical Data. Journal of Aerospace Engineering, 26(1): 117-133. https://doi.org/10.1061/(asce)as.1943⁃5525.0000249
      Cai, H. H., Peng, Z. B., 2015. Taking the Moon Drilling as an Example to Explore Exoplanet Drilling Technology. Science & Technology Vision, (16): 6-7 (in Chinese with English abstract).
      Chen, T., Zhao, Z., Wang, Q., et al., 2019. Modeling and Experimental Investigation of Drilling into Lunar Soils. Applied Mathematics and Mechanics, 40(1): 153-166. https://doi.org/10.1007/s10483⁃019⁃2410⁃8
      Gao, H., Duan, L. C., Li, Q., et al., 2014. Surface Sampling Experiment for Lunar Soil Simulant. Geological Science and Technology Information, 33(6): 175-179 (in Chinese with English abstract).
      Green, A., Zacny, K., 2014. Effect of Mars Atmospheric Pressure on Percussive Excavation Forces. Journal of Terramechanics, 51: 43-52. https://doi.org/10.1016/j.jterra.2013.11.001
      Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E⁃5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160 (in Chinese with English abstract).
      Johnson, L. L., King, R. H., 2010. Measurement of Force to Excavate Extraterrestrial Regolith with a Small Bucket⁃Wheel Device. Journal of Terramechanics, 47(2): 87-95. https://doi.org/10.1016/j.jterra.2009.08.002
      King, R. H., Van Susante, P., Gefreh, M. A., 2011. Analytical Models and Laboratory Measurements of the Soil⁃Tool Interaction Force to Push a Narrow Tool through JSC⁃1A Lunar Simulant and Ottawa Sand at Different Cutting Depths. Journal of Terramechanics, 48(1): 85-95. https://doi.org/10.1016/j.jterra.2010.07.003
      Li, Q., Xie, L. L., Li, J. P., 2019. Modular Motion⁃Structure Design Model for Planetary Surface Sampling. International Journal of Aerospace Engineering, 2019: 5987306. https://doi.org/10.1155/2019/5987306
      Li, Q., Gao, H., Xie, L. L., et al., 2021. Review of Research about Lunar Drilling Technology. Drilling Engineering, 48(1): 15-34 (in Chinese with English abstract).
      Liu, D. Y., Wang, L. S., Sun, Q. C., et al., 2018. Drilling Experiment of Simulated Icy Soil of Lunar Polar Region. Science Technology and Engineering, 18(25): 256-261 (in Chinese with English abstract).
      Maciejewski, J., Jarzębowski, A., Tra̧mpczyński, W., 2003. Study on the Efficiency of the Digging Process Using the Model of Excavator Bucket. Journal of Terramechanics, 40(4): 221-233. https://doi.org/10.1016/j.jterra.2003.12.003
      Obermayr, M., Dressler, K., Vrettos, C., et al., 2011. Prediction of Draft Forces in Cohesionless Soil with the Discrete Element Method. Journal of Terramechanics, 48(5): 347-358. https://doi.org/10.1016/j.jterra.2011.08.003
      Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract).
      Pang, Y., Feng, Y. J., Sun, Q. C., et al., 2019. Simulation and Experimental Study on the Effect of Large Granular Rocks in Lunar Soil on Drilling Load. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(3): 397-404 (in Chinese with English abstract).
      Quan, Q. Q., Tang, J. Y., Yuan, F. P., et al., 2017. Drilling Load Modeling and Validation Based on the Filling Rate of Auger Flute in Planetary Sampling. Chinese Journal of Aeronautics, 30(1): 434-446. https://doi.org/10.1016/j.cja.2016.05.003
      Tang, J. Y., 2020. Research on the Characteristics of Adaptive Drilling and Coring into High Compacted Lunar Regolith Simulant (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      Tian, Y., Deng, Z. Q., Tang, D. W., et al., 2012. Structure Parameters Optimization and Simulation Experiment of Auger in Lunar Soil Drill⁃Sampling Device. Journal of Mechanical Engineering, 48(23): 10-15 (in Chinese with English abstract). doi: 10.3901/JME.2012.23.010
      Wu, W. R., Yu, D. Y., 2014. Development of Deep Space Exploration and Its Future Key Technologies. Journal of Deep Space Exploration, 1(1): 5-17 (in Chinese with English abstract).
      Xiao, L., He, X. X., Wu, T., et al., 2009. Properties and Simulation of Lunar Soil CUG⁃1A. Seventh Annual Conference of the Society of Space Science, Dalian (in Chinese with English abstract).
      Zhang, T., Ding, X. L., 2017. Drilling Forces Model for Lunar Regolith Exploration and Experimental Validation. Acta Astronautica, 131: 190-203. https://doi.org/10.1016/j.actaastro.2016.11.035
      Zhao, Z., Chen, T., Pang, Y., 2019. Optimum Parameter Matching Obtained by Experiments for Coring Drilling into Lunar Simulant. Advances in Space Research, 63(7): 2239-2244. https://doi.org/10.1016/j.asr.2018.12.025
      Zhao, Z. J., 2014. Lunar Surface Sampling Study on Mechanical Characteristics of Tool⁃Soil Interaction (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Zhu, Y. O., 2014. Mechanical Model on Interaction between Drill Bit and Lunar Soil and Finite Analysis (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      蔡黄河, 彭振斌, 2015. 以月球钻探为例探索地外星体钻探技术. 科技视界, (16): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201516003.htm
      高辉, 段隆臣, 李谦, 等, 2014. 模拟月壤表层采样试验研究. 地质科技通报, 33(6): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406025.htm
      顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
      李谦, 高辉, 谢兰兰, 等, 2021. 月球钻探取样技术研究进展. 钻探工程, 48(1): 15-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC202101004.htm
      刘德赟, 王露斯, 孙启臣, 等, 2018. 月球极区冻土模拟月壤钻进试验研究. 科学技术与工程, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040
      潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm
      庞勇, 冯亚杰, 孙启臣, 等, 2019. 月壤大颗粒对钻进力载影响的仿真及实验研究. 北京大学学报(自然科学版), 55(3): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201903001.htm
      唐钧跃, 2020. 高密实度模拟月壤自适应钻进取芯特性研究(博士学位论文). 哈尔滨: 哈尔滨工业大学.
      田野, 邓宗全, 唐德威, 等, 2012. 月壤钻探采样装置中的钻杆结构参数优化设计及模拟试验. 机械工程学报, 48(23): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223003.htm
      吴伟仁, 于登云, 2014. 深空探测发展与未来关键技术. 深空探测学报, 1(1): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201401003.htm
      肖龙, 贺新星, 吴涛, 等, 2009. 月壤的性质与模拟月壤CUG⁃1A. 大连: 空间科学学会第七次学术年会.
      赵振家, 2014. 月面表取采样机土作用力学特性研究(硕士学位论文). 长春: 吉林大学.
      朱燕鸥, 2014. 钻头‒月壤相互作用力学模型及仿真分析(硕士学位论文). 北京: 中国地质大学.
    • 加载中
    图(18) / 表(6)
    计量
    • 文章访问数:  386
    • HTML全文浏览量:  92
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-20
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回