Penetration Modular Test Based on Lunar Soil Simulant
-
摘要: 为了解采样机具与模拟月壤间的相互作用,同时验证月壤采样机具模块化建模的可行性.基于中国地质大学(武汉)研制的CUG-1A型模拟月壤,开展不同条件下机具贯入力载的试验研究,并依据试验结果建立理论模型进行验证.各机具在浅层模拟月壤贯入阻力平均增长率为19.9%,次浅层提升至38.18%,深层出现陡增达到63.43%;贯入速度对贯入阻力的平均误差为2.5%;不同入土角度下贯入阻力的平均增长率为62.85%;不同截面机具贯入阻力随截面面积增长而增长,值近似为1∶2∶3∶4.同时进行了机具结构模块化验证,理论模型与试验结果吻合度在85%以上.采样机具所受贯入阻力与贯入深度、方式和机具结构明显相关,可建立模块化理论模型准确预估不同条件机具的贯入阻力.Abstract: To understand the interaction between sampling machines and lunar soil simulant, and to verify the feasibility of modular modeling of lunar soil sampling machines. The experimental study on mechanical penetration load under different conditions was carried out, based on the CUG-1A lunar soil simulant developed by China University of Geosciences (Wuhan), and the theoretical model was established based on the experimental results for verification. The average growth rate of penetration resistance of each machine in the shallow simulation of lunar soil was 19.9%, which was increased to 38.18% in the shallow simulation, and 63.43% in the deep simulation. The average error of penetration velocity to penetration resistance was 2.5%; the average growth rate between penetration angle and penetration resistance was 62.85%; the penetration resistance of different cross-section machines was approximately 1∶2∶3∶4. At the same time, the modular verification of the machine structure was carried out, and the accuracy of the test and model can reach more than 85%. The penetration resistance of sampling machines is significantly correlated with penetration depth, mode and machine structure, and the modular theoretical model can be established to accurately predict the penetration resistance of machines under different conditions.
-
表 1 贯入阻力试验方案
Table 1. Penetration resistance test scheme
机具类型 贯入角度(°) 贯入速度(mm/s) 贯入深度(mm) 试验次数 空心方形、U形、L形、一字形 30①、40、45、50、60 5、10、15 60 4×5×3×3②=180 注:①以水平向左的方向为0°,顺时针方向转动为正向;②重复试验3次. 表 2 CUG⁃1A模拟月壤性质指标
Table 2. CUG⁃1A simulated lunar soil properties index
项目 数值 含水率ω0(%) 0.240 湿密度ρ(g/cm3) 1.700 干密度ρ(g/cm3) 1.696 相对密度 2.611 孔隙比E 0.569 孔隙率φ(%) 36 压缩系数α1-2κ(MPa) 0.09 压缩模量Es(MPa) 17.43 内聚力c(kPa) 1.36 内摩擦角φ(°) 24.36 表 3 不同机具最大贯入阻力
Table 3. Penetration resistance of different tools
贯入角度(°) 贯入速度(mm/s) 贯入阻力(N) 一字形 L形 U形 空心方形 30 5 7.41 14.53 19.38 26.70 30 10 7.05 14.87 24.04 32.35 30 15 7.34 14.20 21.40 25.65 45 5 7.18 18.70 31.15 38.85 45 10 10.14 18.44 29.83 37.66 45 15 9.51 16.22 26.79 40.66 60 5 11.87 20.72 32.82 44.92 60 10 12.08 27.52 45.97 55.42 60 15 9.00 27.82 36.42 53.41 表 4 不同贯入速度对贯入阻力误差
Table 4. Error of penetration resistance with different penetration velocities
贯入角度(°) 贯入速度(mm/s) 贯入阻力误差 一字形 L形 U形 空心方形 30 5 1.97% ‒0.02% ‒10.3% ‒5.43% 30 10 ‒2.98% 2.32% 11.26% 14.58% 30 15 1% ‒2.29% ‒0.95% ‒9.15% 45 5 ‒19.72% 5.13% 6.47% ‒0.53% 45 10 13.38% 3.67% 1.96% ‒3.58% 45 15 6.33% ‒8.81% ‒8.43% 4.11% 60 5 8.07% ‒18.28% ‒14.54% ‒12.35% 60 10 9.98% 8.55% 19.7% 8.14% 60 15 ‒18.05% 9.73% ‒5.16% 4.21% 表 5 U形与空心方形机具各角度贯入阻力增长率
Table 5. Growth rate of penetration resistance of U-shaped and hollow square machines
贯入角度 30° 40° 45° 50° 60° 贯入阻力增长率范围 U形 43.00% 46.53% 50.11% 58.34% 72.36% 43.00%~72.36% 空心方形 48.03% 52.68% 63.08% 74.82% 81.41% 48.03%~81.41% 表 6 不同机具结构模块化组合后的平均误差率
Table 6. The average error rate after modular combination of different machine structures
组合类型 贯入角度30°,贯入速度10 mm/s 贯入角度45°,贯入速度10 mm/s 贯入角度60°,贯入速度10 mm/s 0~15 mm 15~30 mm 30~60 mm 0~15 mm 15~30 mm 30~60 mm 0~15 mm 15~30 mm 30~60 mm U+一 578.23% ‒2.49% 12.00% ‒159.05% ‒36.06% ‒2.70% ‒470.58% ‒34.01% ‒0.42% L+L 670.13% ‒4.72% 7.96% ‒448.62% ‒3.39% 3.95% ‒602.46% ‒0.26% ‒0.43% 一+一 ‒305.00% ‒2.54% 7.70% 142.35% 35.38% 9.25% ‒593.20% ‒3.88% 5.49% -
Agui, J. H., Bucek, M., DeGennaro, A., et al., 2013. Lunar Excavation Experiments in Simulant Soil Test Beds: Revisiting the Surveyor Geotechnical Data. Journal of Aerospace Engineering, 26(1): 117-133. https://doi.org/10.1061/(asce)as.1943⁃5525.0000249 Cai, H. H., Peng, Z. B., 2015. Taking the Moon Drilling as an Example to Explore Exoplanet Drilling Technology. Science & Technology Vision, (16): 6-7 (in Chinese with English abstract). Chen, T., Zhao, Z., Wang, Q., et al., 2019. Modeling and Experimental Investigation of Drilling into Lunar Soils. Applied Mathematics and Mechanics, 40(1): 153-166. https://doi.org/10.1007/s10483⁃019⁃2410⁃8 Gao, H., Duan, L. C., Li, Q., et al., 2014. Surface Sampling Experiment for Lunar Soil Simulant. Geological Science and Technology Information, 33(6): 175-179 (in Chinese with English abstract). Green, A., Zacny, K., 2014. Effect of Mars Atmospheric Pressure on Percussive Excavation Forces. Journal of Terramechanics, 51: 43-52. https://doi.org/10.1016/j.jterra.2013.11.001 Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E⁃5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160 (in Chinese with English abstract). Johnson, L. L., King, R. H., 2010. Measurement of Force to Excavate Extraterrestrial Regolith with a Small Bucket⁃Wheel Device. Journal of Terramechanics, 47(2): 87-95. https://doi.org/10.1016/j.jterra.2009.08.002 King, R. H., Van Susante, P., Gefreh, M. A., 2011. Analytical Models and Laboratory Measurements of the Soil⁃Tool Interaction Force to Push a Narrow Tool through JSC⁃1A Lunar Simulant and Ottawa Sand at Different Cutting Depths. Journal of Terramechanics, 48(1): 85-95. https://doi.org/10.1016/j.jterra.2010.07.003 Li, Q., Xie, L. L., Li, J. P., 2019. Modular Motion⁃Structure Design Model for Planetary Surface Sampling. International Journal of Aerospace Engineering, 2019: 5987306. https://doi.org/10.1155/2019/5987306 Li, Q., Gao, H., Xie, L. L., et al., 2021. Review of Research about Lunar Drilling Technology. Drilling Engineering, 48(1): 15-34 (in Chinese with English abstract). Liu, D. Y., Wang, L. S., Sun, Q. C., et al., 2018. Drilling Experiment of Simulated Icy Soil of Lunar Polar Region. Science Technology and Engineering, 18(25): 256-261 (in Chinese with English abstract). Maciejewski, J., Jarzębowski, A., Tra̧mpczyński, W., 2003. Study on the Efficiency of the Digging Process Using the Model of Excavator Bucket. Journal of Terramechanics, 40(4): 221-233. https://doi.org/10.1016/j.jterra.2003.12.003 Obermayr, M., Dressler, K., Vrettos, C., et al., 2011. Prediction of Draft Forces in Cohesionless Soil with the Discrete Element Method. Journal of Terramechanics, 48(5): 347-358. https://doi.org/10.1016/j.jterra.2011.08.003 Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract). Pang, Y., Feng, Y. J., Sun, Q. C., et al., 2019. Simulation and Experimental Study on the Effect of Large Granular Rocks in Lunar Soil on Drilling Load. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(3): 397-404 (in Chinese with English abstract). Quan, Q. Q., Tang, J. Y., Yuan, F. P., et al., 2017. Drilling Load Modeling and Validation Based on the Filling Rate of Auger Flute in Planetary Sampling. Chinese Journal of Aeronautics, 30(1): 434-446. https://doi.org/10.1016/j.cja.2016.05.003 Tang, J. Y., 2020. Research on the Characteristics of Adaptive Drilling and Coring into High Compacted Lunar Regolith Simulant (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract). Tian, Y., Deng, Z. Q., Tang, D. W., et al., 2012. Structure Parameters Optimization and Simulation Experiment of Auger in Lunar Soil Drill⁃Sampling Device. Journal of Mechanical Engineering, 48(23): 10-15 (in Chinese with English abstract). doi: 10.3901/JME.2012.23.010 Wu, W. R., Yu, D. Y., 2014. Development of Deep Space Exploration and Its Future Key Technologies. Journal of Deep Space Exploration, 1(1): 5-17 (in Chinese with English abstract). Xiao, L., He, X. X., Wu, T., et al., 2009. Properties and Simulation of Lunar Soil CUG⁃1A. Seventh Annual Conference of the Society of Space Science, Dalian (in Chinese with English abstract). Zhang, T., Ding, X. L., 2017. Drilling Forces Model for Lunar Regolith Exploration and Experimental Validation. Acta Astronautica, 131: 190-203. https://doi.org/10.1016/j.actaastro.2016.11.035 Zhao, Z., Chen, T., Pang, Y., 2019. Optimum Parameter Matching Obtained by Experiments for Coring Drilling into Lunar Simulant. Advances in Space Research, 63(7): 2239-2244. https://doi.org/10.1016/j.asr.2018.12.025 Zhao, Z. J., 2014. Lunar Surface Sampling Study on Mechanical Characteristics of Tool⁃Soil Interaction (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Zhu, Y. O., 2014. Mechanical Model on Interaction between Drill Bit and Lunar Soil and Finite Analysis (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). 蔡黄河, 彭振斌, 2015. 以月球钻探为例探索地外星体钻探技术. 科技视界, (16): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201516003.htm 高辉, 段隆臣, 李谦, 等, 2014. 模拟月壤表层采样试验研究. 地质科技通报, 33(6): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406025.htm 顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432 李谦, 高辉, 谢兰兰, 等, 2021. 月球钻探取样技术研究进展. 钻探工程, 48(1): 15-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC202101004.htm 刘德赟, 王露斯, 孙启臣, 等, 2018. 月球极区冻土模拟月壤钻进试验研究. 科学技术与工程, 18(25): 256-261. doi: 10.3969/j.issn.1671-1815.2018.25.040 潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm 庞勇, 冯亚杰, 孙启臣, 等, 2019. 月壤大颗粒对钻进力载影响的仿真及实验研究. 北京大学学报(自然科学版), 55(3): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201903001.htm 唐钧跃, 2020. 高密实度模拟月壤自适应钻进取芯特性研究(博士学位论文). 哈尔滨: 哈尔滨工业大学. 田野, 邓宗全, 唐德威, 等, 2012. 月壤钻探采样装置中的钻杆结构参数优化设计及模拟试验. 机械工程学报, 48(23): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223003.htm 吴伟仁, 于登云, 2014. 深空探测发展与未来关键技术. 深空探测学报, 1(1): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201401003.htm 肖龙, 贺新星, 吴涛, 等, 2009. 月壤的性质与模拟月壤CUG⁃1A. 大连: 空间科学学会第七次学术年会. 赵振家, 2014. 月面表取采样机土作用力学特性研究(硕士学位论文). 长春: 吉林大学. 朱燕鸥, 2014. 钻头‒月壤相互作用力学模型及仿真分析(硕士学位论文). 北京: 中国地质大学.