Geochemical and Chronological Characteristics and Significance of Albite in Bajiaojing Area, Huili, Sichuan
-
摘要: 四川会理芭蕉箐地区位于康滇地轴中南段,是我国少有的元古宙产铀地区,其构造条件复杂,研究程度低,钠长岩作为本区重要的含铀岩石,对其更是鲜有报道,严重限制了进一步的铀矿勘查.在结合前人研究的基础上,通过对芭蕉箐地区1841铀矿化点的野外地质调查、钠长岩元素地球化学分析及锆石U-Pb年代学测试分析,发现研究区钠长岩分为岩浆钠长岩与交代钠长岩,样品富集Th、U、Zr、REE等元素,相对贫Ba、K、Sr、Rb等元素,测年结果显示两类钠长岩主要峰值年龄为~2.3 Ga与~1.8 Ga.钠长岩岩石来源主要为下地壳变质泥岩部分熔融且有幔源物质加入,形成于陆内拉张构造环境.其原岩的形成与2.4~2.3 Ga期间发生在扬子地台西南缘的碰撞事件有关,并在1.8 Ga左右经历岩浆作用形成钠长岩,同时铀元素在此处大量富集.其年代学数据记录的两次岩浆活动,是Columbia超大陆聚合在扬子地块西南缘的响应.Abstract: Located in the middle and southern part of the Kangdian axis, Bajiaojing area in Huili, Sichuan Province is a rare Proterozoic uranium mining area in China. However, the relevant study is insufficient due to its complex structural conditions, and hardly any research has been reported on albite, an important uranium bearing rock in this area, which seriously restricts further uranium exploration. On the basis of previous studies, through the field geological survey of 1841 uranium mineralization points in Bajiaojing area, the geochemical analysis of rock elements of albite and the test analysis of zircon U-Pb chronology, it is found that albite in the study area is divided into magmatic albite and metasomatic albite. The samples are enriched in Th, U, Zr and REE, and relatively depleted in Ba, K, Sr and Rb. The dating results show that the two main peak ages are ~2.3 Ga and ~1.8 Ga. The albite is mainly derived from the partial melting of metamorphic mudstone in the lower crust and the addition of mantle derived materials, which was formed in the tectonic environment of intracontinental rift. The formation of its protolith is related to the collision event in the southwest margin of the Yangtze platform during 2.4-2.3 Ga, and underwent magmatism at about 1.8 Ga to form albite, and U element is enriched here. The two magmatic activities recorded by its chronological data are the response of the convergence of Columbia supercontinent in the southwest margin of the Yangtze block.
-
Key words:
- Southwest margin of Yangtze block /
- Columbia supercontinent /
- albite /
- geochemistry /
- zircon U-Pb /
- Pb dating /
- petrology
-
图 1 研究区地质简图(据耿元生等,2017)
Fig. 1. Simplified tectonic map of Bajiaojing area (modified after Geng et al., 2017)
图 3 芭蕉箐1841铀矿化区钠长岩微量元素蛛网图(a)与稀土元素分布型式(b)(据Sun and McDonough, 1989)
Fig. 3. Spider map of trace elements (a) and ree distribution pattern (b) of albitite in Bajiaojing 1841 uranium mineralization area (modified after Sun and McDonough, 1989)
图 5 交代钠长岩DH01锆石Th/U比值(据Vavra et al., 1999)
Fig. 5. Zircon Th/U ratio of metasomatic albite DH01 (modified after Vavra et al., 1999)
图 8 岩浆钠长岩DB02锆石Th/U比值(据Vavra et al., 1999)
Fig. 8. Zircon Th/U ratio of magmatic albite DB02 (modified after Vavra et al., 1999)
图 10 芭蕉箐地区岩浆钠长岩AR-SiO2判别图解(底图据Wright, 1969)
Fig. 10. AR vs SiO2 diagram for classification of magmatic albite in Bajiaojing (modified after Wright, 1969)
图 11 岩浆钠长岩Yb+Ta-Rb构造环境判别图(底图据Pearce et al., 1984)
Fig. 11. Yb+Ta-Rb discrimination diagram of tectonic setting for magmatic albite (modified after Pearce et al., 1984)
图 12 芭蕉箐地区钠长岩A/MF-C/MF源区判别图解(底图据Altherr et al., 2000)
Fig. 12. Distinguishing diagram of A/MF-C/MF source area of albite in Bashojing (modified after Altherr et al., 2000) A/MF. Al2O3/(FeOT+MgO); C/MF. CaO/(FeOT+MgO)
表 1 钠长岩主量元素测试结果(%)
Table 1. Test results of major elements in albite (%)
编号 MgO Al2O3 SiO2 P2O5 Na2O K2O CaO TiO2 MnO FeO Fe2O3 H2O LOI 总量 A/CNK A/NK Mg# DH04 0.61 18.18 59.10 0.37 8.87 0.70 0.41 3.21 0.22 0.38 4.57 0.40 1.77 98.79 1.82 1.90 19.59 DB02 1.01 18.43 63.19 0.18 7.82 1.49 0.46 0.70 0.04 0.49 3.68 0.27 1.98 99.75 1.89 1.98 32.15 DB03 1.30 16.62 62.91 0.29 7.63 1.17 1.48 1.53 0.09 1.30 2.54 0.34 2.73 99.94 1.62 1.89 39.28 DB05 0.31 14.01 70.50 0.27 6.06 0.41 0.22 0.70 0.03 0.58 3.76 0.80 2.08 99.74 2.09 2.16 12.17 DB07 0.57 16.70 62.87 0.36 6.14 0.85 0.32 0.79 0.02 0.55 5.30 1.78 3.49 99.74 2.29 2.39 16.15 表 2 钠长岩微量元素测试结果(10‒6)
Table 2. Test results of trace elements in albite (10‒6)
编号 Sc Ni V Cr Cu Ga Rb Sr Y Zr Nb Ba Hf Ta Pb Th U DH04 22.4 22.0 170 77.6 3 592 14.5 13.7 32.3 123.0 339.0 17.50 98.4 5.66 1.39 365.00 9.74 2 506.00 DB02 37.6 15.7 260 128.0 10 107 25.2 32.3 72.5 167.0 1 640.0 6.57 237.0 12.90 0.76 1 383.00 20.70 1 520.00 DB03 29.2 16.0 155 98.8 9 859 21.4 22.1 53.8 182.0 1 690.0 14.40 116.0 14.10 1.46 1484.00 25.00 1 950.00 DB05 16.5 92.8 123 61.1 1 174 14.2 18.1 13.8 26.2 95.9 1.96 26.2 2.88 0.26 2.75 11.90 9.84 DB07 14.6 138.0 129 60.9 1 859 26.4 30.0 26.5 53.1 135.0 3.29 38.0 4.09 0.40 13.70 9.74 12.80 表 3 钠长岩稀土元素测试结果(10‒6)
Table 3. Test results of rare earth elements in albite (10‒6)
编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE/HREE (La/Yb)N δEu δCe DH04 40.00 114.0 17.20 77.5 26.50 10.10 31.70 5.76 29.80 5.14 11.00 1.24 6.38 0.78 377.10 3.11 4.50 1.06 1.06 DB02 27.00 184.0 29.00 159.0 55.50 28.60 54.50 10.10 54.60 8.68 20.40 2.29 10.70 1.04 645.41 2.98 1.81 1.57 1.43 DB03 25.70 188.0 29.10 149.0 54.10 27.30 54.10 9.73 53.50 8.57 19.90 2.28 10.70 1.07 633.05 2.96 1.72 1.53 1.48 DB05 8.75 18.2 2.75 11.5 3.66 0.90 4.94 0.86 5.12 0.93 2.62 0.38 2.31 0.33 63.25 2.62 2.72 0.65 0.90 DB07 215.00 398.0 49.90 161.0 26.00 3.67 25.40 2.75 10.80 1.79 5.33 0.64 3.67 0.52 904.47 16.77 42.02 0.43 0.91 表 4 交代钠长岩DH01锆石U-Pb同位素LA-ICPMS
Table 4. Zircon U-Pb isotope LA-ICPMS of metasomatic albitite DH01
测点号 含量(10‒6) 同位素比值 同位素年龄(Ma) 谐
和
度Th/U Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ DH01-01 112.73 444.57 0.14 0.002 7.08 0.119 0.38 0.003 1 876.9 27.8 1 820.2 14.2 1 768.7 14.8 96% 0.25 DH01-02 259.61 427.82 0.24 0.004 13.87 0.388 0.42 0.009 3 088.6 24.4 2 741.0 26.6 2 271.5 41.8 81% 0.51 DH01-03 233.19 317.45 0.11 0.002 5.01 0.084 0.32 0.003 1 901.9 39.4 1 882.3 17.2 1 869.0 17.9 97% 0.73 DH01-05 234.42 456.47 0.15 0.002 8.15 0.134 0.40 0.004 1 879.6 27.0 1 875.7 16.9 1 872.9 17.2 96% 0.51 DH01-06 182.57 269.52 0.15 0.002 8.78 0.160 0.43 0.005 1 898.2 30.9 1 892.1 16.5 1 875.4 21.5 99% 0.68 DH01-07 78.85 93.04 0.12 0.002 5.38 0.108 0.34 0.004 1 901.9 39.4 1 882.3 17.2 1 869.0 17.9 99% 0.85 DH01-08 77.70 108.08 0.11 0.002 5.29 0.119 0.34 0.004 1 854.0 41.2 1 867.7 19.2 1 880.9 20.4 99% 0.72 DH01-09 303.20 231.72 0.11 0.002 5.34 0.105 0.34 0.004 1 879.6 27.0 1 875.7 16.9 1 872.9 17.2 99% 1.31 DH01-10 237.26 155.15 0.11 0.002 5.31 0.106 0.34 0.004 1 854.0 31.5 1 870.9 17.1 1 884.4 18.0 99% 1.53 DH01-11 127.18 267.35 0.15 0.002 8.99 0.168 0.43 0.005 2 180.6 27.8 2 121.6 15.0 2 057.9 16.0 99% 0.48 DH01-12 178.54 220.29 0.11 0.002 5.30 0.090 0.34 0.003 1 854.0 29.2 1 868.9 14.5 1 882.8 16.2 99% 0.81 DH01-13 76.62 184.84 0.17 0.003 11.25 0.189 0.49 0.005 2 283.3 28.1 2 278.4 18.1 2 275.4 29.2 98% 0.41 DH01-14 105.39 188.86 0.12 0.002 5.82 0.103 0.35 0.004 2 190.7 28.2 2 241.5 16.6 2 286.2 22.8 99% 0.56 DH01-15 304.42 457.28 0.14 0.002 8.43 0.167 0.42 0.006 2 352.8 27.5 2 336.6 17.2 2 315.3 21.5 99% 0.67 DH01-16 163.96 286.41 0.19 0.003 13.44 0.262 0.53 0.007 2 309.3 31.6 2 315.1 16.7 2 319.0 20.6 99% 0.57 DH01-17 174.21 161.88 0.18 0.003 13.30 0.241 0.53 0.006 2 339.8 25.3 2 337.7 14.1 2 325.6 18.4 99% 1.08 DH01-18 136.12 274.35 0.15 0.003 8.97 0.156 0.44 0.005 2 347.8 25.6 2 344.6 14.9 2 330.5 21.2 99% 0.50 DH01-19 130.62 269.82 0.19 0.003 14.68 0.237 0.54 0.005 2 329.3 29.3 2 334.9 16.0 2 335.9 20.7 99% 0.48 DH01-20 206.31 335.00 0.15 0.002 9.00 0.137 0.43 0.004 2 538.9 33.3 2 556.5 20.2 2 568.7 33.0 99% 0.62 DH01-21 114.50 241.79 0.15 0.002 9.07 0.147 0.44 0.005 2 520.1 26.1 2 544.3 15.8 2 573.9 21.7 99% 0.47 DH01-22 94.97 152.15 0.14 0.002 8.09 0.148 0.43 0.005 2 684.9 29.9 2 701.2 17.2 2 720.5 24.3 98% 0.62 DH01-23 119.80 227.31 0.12 0.002 5.45 0.104 0.34 0.004 1 898.2 30.9 1 892.1 16.5 1 875.4 21.5 99% 0.53 DH01-24 73.25 103.01 0.17 0.003 11.40 0.246 0.49 0.008 2 783.0 25.5 2 794.6 15.5 2 800.3 23.0 99% 0.71 表 5 岩浆钠长岩DB02锆石U-Pb同位素LA-ICPMS
Table 5. Zircon U-Pb isotope LA-ICPMS of magmatic albitite DB02
测点号 含量(10‒6) Th/U 同位素比值 年龄(Ma) 谐
和
度Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ DB02-01 25.7 232.0 238.0 0.97 0.136 0.001 8 6.802 0.144 0.361 0.006 8 2 181.2 22.5 2 086.0 18.8 1 988.6 32.4 95% DB02-02 47.1 17.0 56.6 0.30 0.111 0.001 2 4.936 0.069 0.323 0.004 2 1 813.0 19.6 1 808.5 11.8 1 805.6 20.5 99% DB02-03 30.9 84.9 89.9 0.94 0.106 0.001 8 3.821 0.185 0.257 0.010 9 1 736.1 31.5 1 597.3 39.0 1 472.5 56.0 91% DB02-04 88.1 48.9 109.0 0.45 0.113 0.001 0 3.555 0.071 0.227 0.004 2 1 850.0 15.7 1 539.5 15.8 1 321.3 21.8 84% DB02-05 150.1 86.4 315.1 0.27 0.168 0.003 0 5.503 0.403 0.231 0.014 7 2 538.9 29.6 1 901.1 63.0 1 338.8 77.1 65% DB02-06 188.6 182.4 446.0 0.41 0.141 0.001 8 7.959 0.217 0.415 0.013 7 2 243.5 21.9 2 226.4 24.6 2 239.1 62.2 99% DB02-07 121.6 177.7 394.5 0.45 0.114 0.001 2 4.890 0.062 0.311 0.004 2 1 864.8 13.9 1 800.5 10.8 1 745.7 20.7 96% DB02-08 128.1 37.2 356.8 0.10 0.107 0.001 1 4.676 0.078 0.315 0.004 8 1 766.7 18.4 1 763.0 14.0 1 767.0 23.7 99% DB02-09 119.8 131.0 326.9 0.40 0.108 0.001 5 4.661 0.140 0.314 0.010 7 1 773.2 25.2 1 760.3 25.1 1 762.7 52.4 99% DB02-10 89.2 258.0 236.8 1.09 0.114 0.001 0 5.252 0.072 0.335 0.004 7 1 862.0 15.7 1 861.1 11.8 1 860.9 22.6 99% DB02-11 153.7 70.5 217.6 0.32 0.112 0.001 1 5.033 0.273 0.328 0.017 4 1 825.6 16.8 1 824.8 45.9 1 828.8 84.4 99% DB02-12 200.0 395.7 272.3 1.45 0.167 0.004 3 10.092 1.082 0.477 0.063 4 2 532.4 44.0 2 443.3 99.1 2 514.5 276.6 97% DB02-13 104.0 217.9 585.2 0.37 0.098 0.002 6 3.704 0.447 0.272 0.032 3 1 577.5 48.9 1 572.2 96.4 1 552.2 163.6 98% DB02-14 212.2 477.6 560.1 0.85 0.103 0.002 3 3.985 0.379 0.293 0.033 1 1 680.6 41.2 1 631.1 77.3 1 657.6 164.9 98% DB02-15 90.0 163.2 952.7 0.17 0.091 0.001 9 2.915 0.369 0.252 0.035 8 1 455.6 39.4 1 385.7 95.8 1 448.2 184.3 95% DB02-16 116.3 143.7 484.3 0.30 0.103 0.001 9 4.063 0.299 0.292 0.021 3 1 677.5 39.8 1 646.9 60.0 1 653.0 106.3 99% DB02-17 161.5 119.2 407.9 0.29 0.126 0.002 6 6.429 0.324 0.382 0.025 3 2 038.9 4.6 2 036.3 44.3 2 084.7 118.2 97% DB02-18 169.2 136.6 415.0 0.33 0.117 0.002 3 5.536 0.345 0.347 0.027 0 1 916.7 34.9 1 906.2 53.6 1 919.2 129.3 99% DB02-19 147.7 165.7 422.4 0.39 0.105 0.001 6 4.405 0.199 0.310 0.018 6 1 718.2 23.1 1 713.3 37.5 1 738.9 91.8 98% DB02-20 98.3 190.4 426.7 0.45 0.123 0.002 8 4.071 0.218 0.238 0.013 7 2 005.9 45.2 1 648.6 43.8 1 377.6 71.3 82% DB02-21 115.0 123.6 303.1 0.41 0.139 0.002 3 3.126 0.139 0.166 0.008 5 2 220.7 28.9 1 439.1 34.3 989.8 47.0 63% DB02-22 182.4 195.1 462.8 0.42 0.144 0.002 4 7.714 1.116 0.420 0.066 9 2 270.1 27.9 2 198.3 130.0 2 261.0 303.8 97% DB02-23 79.9 294.6 812.6 0.36 0.105 0.001 6 4.409 0.094 0.306 0.005 6 1 710.8 27.9 1 714.1 17.7 1 718.9 27.6 99% DB02-24 156.6 122.1 183.4 0.67 0.106 0.002 3 4.420 0.118 0.308 0.009 5 1 733.0 38.9 1 716.2 22.0 1 729.9 46.8 99% DB02-25 70.9 134.6 463.8 0.29 0.058 0.001 2 0.634 0.051 0.079 0.006 1 531.5 46.3 498.9 31.7 492.0 36.5 98% DB02-26 53.0 829.7 579.9 1.43 0.109 0.001 8 4.067 0.096 0.271 0.005 5 1 781.2 29.6 1 647.8 19.3 1 543.7 27.9 93% DB02-27 73.9 101.4 122.5 0.83 0.110 0.001 6 3.676 0.121 0.240 0.006 5 1 802.2 25.8 1 566.2 26.4 1 388.0 33.8 87% DB02-28 49.1 96.7 225.3 0.43 0.112 0.001 6 4.455 0.143 0.287 0.007 9 1 825.6 25.3 1 722.6 26.6 1 625.6 39.4 94% DB02-29 9.8 47.5 151.0 0.31 0.054 0.001 4 0.377 0.020 0.050 0.001 7 390.8 62.0 325.0 14.6 311.8 10.5 95% DB02-30 58.3 81.4 153.4 0.53 0.058 0.000 8 0.510 0.008 0.064 0.000 7 522.3 31.5 418.7 5.7 401.3 4.3 95% DB02-31 92.4 512.9 636.5 0.81 0.107 0.001 3 3.443 0.172 0.231 0.011 2 1 749.7 22.1 1 514.2 39.4 1 341.7 58.4 87% DB02-32 31.0 120.3 317.0 0.38 0.055 0.001 2 0.310 0.019 0.040 0.001 5 413.0 48.1 274.6 14.8 251.2 9.6 91% DB02-33 103.4 386.1 649.0 0.60 0.098 0.003 9 2.094 0.185 0.138 0.009 3 1 588.9 74.4 1 146.9 60.6 832.2 52.7 68% DB02-34 119.0 135.4 1 080.2 0.13 0.112 0.001 4 5.042 0.083 0.327 0.005 6 1 832.4 22.2 1 826.3 14.1 1 822.5 27.3 99% DB02-35 98.2 344.5 140.6 2.45 0.156 0.006 4 7.922 1.417 0.446 0.085 0 2 416.7 68.7 2 222.2 161.3 2 376.7 378.8 93% -
Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3 Chappell, B. M., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/S0263593300007720 Cui, X. Z., 2020. Precambrian Tectonic Evolution of the Southwestern Yangtze Block and Its Response to the Supercontinent Cycle (Dissertation). Chengdu University of Tecnology, Chengdu (in Chinese with English abstract). Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (Ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China: Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169: 308-322. https://doi.org/10.1016/j.jseaes.2018.10.026 Deng, Q., Wang, Z. J., Ren, G. M., et al., 2020. Identification of the -2.09 Ga and -1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent. Earth Science, 45(9): 3295-3312 (in Chinese with English abstract). Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151-2174 (in Chinese with English abstract). Geng, Y. S., Liu, Y. Q., Gao, L. Z., et al., 2012. Geochronology of the Mesoproterozoic Tong'an Formation in Southwestern Margin of Yangtze Craton: New Evidence from Zircon LA-ICP-MS U-Pb Ages. Acta Geologica Sinica, 86(9): 1479-1490 (in Chinese with English abstract). Guan, J. L., Zheng, L. L., Liu, J. H., et al., 2011. Zircons SHRIMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China and Its Geological Significance. Acta Geologica Sinica, 85(4): 482-490 (in Chinese with English abstract). Han, Q. S., Peng, S. B., Kusky, T. M., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13-38. https://doi.org/10.1016/j.precamres.2017.03.004 Hu, R. Z., Tao, Y., Zhong, H., et al., 2005. Mineralization Systems of a Mantle Plume: A Case Study from the Emeishan Igneous Province, Southwest China. Earth Science Frontiers, 12(1): 42-54 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.01.007 Jochum, K. P., 1996. Rhodium and other Platinum-Group Elements in Carbonaceous Chondrites. Geochimica et Cosmochimica Acta, 60(17): 3353-3357. https://doi.org/10.1016/0016-7037(96)00186-X Li, T., Xu, Z. Q., Song, H., et al., 2021. Characteristics of Uranium Mineralization in Bajiaoqing Area, Huili, Sichuan. Uranium Geology, 37(2): 205-215 (in Chinese with English abstract). Liu, Z. T., Ding, J., Qin, J. H., et al., 2010. Status of Copper Resources in Southwestern China and Suggestion on Prospecting. Geological Bulletin of China, 29(9): 1371-1382 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.09.014 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426 (in Chinese with English abstract). Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. https://doi.org/10.1016/S1342-937X(05)70883-2 Song, H., 2014. Precambrian Copper-Iron-Gold-Uranium Polymetallic Deposits and Their Regional Metallogeny in Southwestern Margin of Yangtze Block (Dissertation). Chengdu University of Tecnology, Chengdu (in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. Tu, G. C., 1989. On The Alkali-Rich Intrusive Rocks. Mineral Resources and Geology, 3(3): 1-4, 16 (in Chinese with English abstract). Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. https://doi.org/10.1007/s004100050492 Wang, D. B., Yin, F. G., Sun, Z. M., et al., 2013. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Mafic Intrusion on the Western Margin of the Yangtze Block and Their Implications. Geological Bulletin of China, 32(4): 617-630 (in Chinese with English abstract). Wang, K., Dong, S. W., 2019. New Insights into Paleoproterozoic Tectonics of the Yangtze Block in the Context of Early Nuna Assembly: Possible Collisional Granitic Magmatism in the Zhongxiang Complex, South China. Precambrian Research, 334: 105452. https://doi.org/10.1016/j.precamres.2019.105452 Wang, S. W., Liao, Z. W., Sun, X. M., et al., 2014. The Yanshanian Lithospheric Evolution in the Kangdian Area: Restriction from SHRIMP Zircons U-Pb Age and Geochemistry of Mafic Dykes in Dongchuan, Yunan Province, SW China. Acta Geologica Sinica, 88(3): 299-317 (in Chinese with English abstract). Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269-279. https://doi.org/10.1016/j.epsl.2015.11.005 Wang, W., Lu, G. M., Huang, S. F., et al., 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52, 203 (in Chinese with English abstract). Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. https://doi.org/10.1017/s0016756800058222 Wu, Y., Qin, M. K., Guo, D. F., et al., 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433 (in Chinese with English abstract). Xiao, J., Zhao, Z. D., Zhu, X. Y., et al., 2021. Detrital Zircon Chronology and Element Geochemistry of the Dongchuan Group in Yunnan Province and Its Geological Significance. Acta Petrologica Sinica, 37(4): 1270-1286 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.04.18 Xu, D. E., 1992. Geological Significance of the Age of U-Bearing Minerals on the Kangdian Axis. Acta Geologica Sichuan, 12(4): 329-333 (in Chinese with English abstract). Yin, F. G., Sun, Z. M., Ren, G. M., et al., 2012. Geological Record of Paleo-and Mesoproterozoic Orogenesis in the Western Margin of Upper Yangtze Block. Acta Geologica Sinica, 86(12): 1917-1932 (in Chinese with English abstract). Zhang, C. J., Chen, Y. L., Li, J. C., et al., 2015. The Discovery of Coarse-Grained Uraninite in Kangdian Axis and Its Geological Significance. Geological Bulletin of China, 34(12): 2219-2226 (in Chinese with English abstract). Zhao, R. Y., 2016. Geological Characteristics and Mineralization of the Jiling Sodium Metasomatic Uranium Deposit in the Longshoushan Metallogenic Belt, Gansu Province (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). Zhao, X. F., Zhou, M. F., 2011. Fe-Cu Deposits in the Kangdian Region, SW China: A Proterozoic IOCG (Iron-Oxide-Copper-Gold) Metallogenic Province. Mineralium Deposita, 46(7): 731-747. https://doi.org/10.1007/s00126-011-0342-y Zhou, B. G., Wang, S. W., Sun, X. M., et al., 2012. SHRIMP U-Pb Age and Its Significance of Zircons in Welded Tuff of Wangchang Formation in Dongchuan Area, Yunnan Province, SW China. Geological Review, 58(2): 359-368 (in Chinese with English abstract). Zhu, H. P., Zhou, B. G., Wang, S. W., et al., 2011. Detrital Zircon U-Pb Dating by LA-ICP-MS and Its Geological Significance in Western Margin of Yangtze Terrane. Journal of Mineralogy and Petrology, 31(1): 70-74 (in Chinese with English abstract). 崔晓庄, 2020. 扬子陆块西南缘前寒武纪构造演化及其对超大陆旋回的响应(博士学位论文). 成都: 成都理工大学. 邓奇, 汪正江, 任光明, 等, 2020. 扬子地块西北缘~2.09 Ga和~1.76 Ga花岗质岩石: Columbia超大陆聚合‒裂解的岩浆记录. 地球科学, 45(9): 3295-3312. doi: 10.3799/dqkx.2020.182 耿元生, 旷红伟, 柳永清, 等, 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201710001.htm 耿元生, 柳永清, 高林志, 等, 2012. 扬子克拉通西南缘中元古代通安组的形成时代: 锆石LA-ICPMS U-Pb年龄. 地质学报, 86(9): 1479-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202402007.htm 关俊雷, 郑来林, 刘建辉, 等, 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202204014.htm 胡瑞忠, 陶琰, 钟宏, 等, 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200501005.htm 李涛, 徐争启, 宋昊, 等, 2021. 四川会理芭蕉箐地区铀矿化特征研究. 铀矿地质, 37(2): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102007.htm 刘增铁, 丁俊, 秦建华, 等, 2010. 中国西南地区铜矿资源现状及对地质勘查工作的几点建议. 地质通报, 29(9): 1371-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201009014.htm 邱啸飞, 杨红梅, 赵小明, 等, 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44(2): 415-426. doi: 10.3799/dqkx.2018.198 宋昊, 2014. 扬子地块西南缘前寒武纪铜‒铁‒金‒铀多金属矿床及区域成矿作用(博士学位论文). 成都: 成都理工大学. 涂光炽, 1989. 关于富碱侵入岩. 矿产与地质, 3(3): 1-4, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198903000.htm 王冬兵, 尹福光, 孙志明, 等, 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 32(4): 617-630. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201304011.htm 王生伟, 廖震文, 孙晓明, 等, 2014. 康滇地区燕山期岩石圈演化: 来自东川基性岩脉SHIRMP锆石U-Pb年龄和地球化学制约. 地质学报, 88(3): 299-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201403001.htm 王伟, 卢桂梅, 黄思访, 等, 2019. 扬子陆块古‒中元古代地质演化与Columbia超大陆重建. 矿物岩石地球化学通报, 38(1): 30-52, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901004.htm 武勇, 秦明宽, 郭冬发, 等, 2020. 康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因. 地球科学, 45(2): 419-433. doi: 10.3799/dqkx.2019.058 肖剑, 赵志丹, 祝新友, 等, 2021. 云南东川群碎屑锆石年代学和元素地球化学及其地质意义. 岩石学报, 37(4): 1270-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104018.htm 胥德恩, 1992. 康滇地轴铀矿物年龄的地质意义. 四川地质学报, 12(4): 329-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199204010.htm 尹福光, 孙志明, 任光明, 等, 2012. 上扬子陆块西南缘早‒中元古代造山运动的地质记录. 地质学报, 86(12): 1917-1932. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201212006.htm 张成江, 陈友良, 李巨初, 等, 2015. 康滇地轴巨粒晶质铀矿的发现及其地质意义. 地质通报, 34(12): 2219-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512008.htm 赵如意, 2016. 甘肃省龙首山成矿带芨岭钠交代型铀矿地质特征与成矿作用研究(博士学位论文). 西安: 长安大学. 周邦国, 王生伟, 孙晓明, 等, 2012. 云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义. 地质论评, 58(2): 359-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906005.htm 朱华平, 周邦国, 王生伟, 等, 2011. 扬子地台西缘康滇克拉通中碎屑锆石的LA-ICP-MS U-Pb定年及其地质意义. 矿物岩石, 31(1): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202006006.htm -