• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海州湾弱透水层孔隙水的化学特征与盐分演变

    李静 朱佳俊 梁杏 刘彦 江欣悦 杜永昌

    李静, 朱佳俊, 梁杏, 刘彦, 江欣悦, 杜永昌, 2024. 海州湾弱透水层孔隙水的化学特征与盐分演变. 地球科学, 49(3): 939-951. doi: 10.3799/dqkx.2022.232
    引用本文: 李静, 朱佳俊, 梁杏, 刘彦, 江欣悦, 杜永昌, 2024. 海州湾弱透水层孔隙水的化学特征与盐分演变. 地球科学, 49(3): 939-951. doi: 10.3799/dqkx.2022.232
    Li Jing, Zhu Jiajun, Liang Xing, Liu Yan, Jiang Xinyue, Du Yongchang, 2024. Chemical Signatures and Salinity Evolution of Aquitard Porewater in the Haizhou Bay. Earth Science, 49(3): 939-951. doi: 10.3799/dqkx.2022.232
    Citation: Li Jing, Zhu Jiajun, Liang Xing, Liu Yan, Jiang Xinyue, Du Yongchang, 2024. Chemical Signatures and Salinity Evolution of Aquitard Porewater in the Haizhou Bay. Earth Science, 49(3): 939-951. doi: 10.3799/dqkx.2022.232

    海州湾弱透水层孔隙水的化学特征与盐分演变

    doi: 10.3799/dqkx.2022.232
    基金项目: 

    国家自然科学基金项目 41977167

    广西重点研发计划 桂科AB21196026

    详细信息
      作者简介:

      李静(1985-),女,副教授,博士,从事水文地质学的教学与科研工作. ORCID:0000-0002-4361-9829. E-mail:jinglicug@163.com

    • 中图分类号: P641

    Chemical Signatures and Salinity Evolution of Aquitard Porewater in the Haizhou Bay

    • 摘要: 为查明海岸带弱透水层孔隙水的盐分来源与演变机制,在连云港海州湾钻探采集了4个钻孔的粘性土柱,采用压榨法采集孔隙水,测定了孔隙水化学‒同位素组分,建立了二维剖面孔隙水全新世以来的溶质运移数值模型.由陆向海孔隙水的总溶解固体由0.9增加到41.4 g/L,垂向上浅层高、深层低.孔隙水Cl/Br比为170~533(均值267),87Sr/86Sr比值为0.709 3~0.711 6,Cl与δ18O呈正相关关系,表明孔隙咸水为海相成因,同时还受到硅酸盐矿物风化和阳离子交换作用影响.全新世弱透水层孔隙水为10~5 ka BP海侵时期的古海水,向下入渗造成更新世孔隙水咸化.4 ka BP海退后,孔隙水接受淡水补给,但古海水并未被完全驱替.近海岸处孔隙水受持续蒸发影响而形成盐水.数值模拟表明海侵‒海退事件是控制弱透水层孔隙水盐分演变的主要因素,海侵时海水以“指状”模式向下入侵,造成了咸淡水的不均匀分布.

       

    • 图  1  研究区钻孔分布

      地下水样品参考自岳冬冬和苏小四(2016)

      Fig.  1.  Location of the studied boreholes

      图  2  钻孔H1~H4典型地质剖面

      剖面线见图 1

      Fig.  2.  Geological section from borehole H1 to H4

      图  3  弱透水层孔隙水主要离子与氢氧同位素垂向剖面

      Fig.  3.  Profiles of chemical components and stable isotopes in aquitard porewater

      图  4  弱透水层孔隙水Cl vs. Br (a)、Cl vs. Cl/Br (b)

      Fig.  4.  Cl vs. Br (a)、Cl vs. Cl/Br (b) of aquitard porewater

      图  5  H4钻孔沉积物TOC与Br关系(a)、TOC与Cl/Br垂向变化(b)

      Fig.  5.  The relationship between TOC in H4 sediment and Br in porewater (a)、profiles of TOC and Cl/Br ratios (b)

      图  6  弱透水层孔隙水δ2H vs. δ18O (a)、Cl vs. δ18O (b)

      Fig.  6.  δ2H vs. δ18O (a)、Cl vs. δ18O (b) of aquitard porewater

      图  7  弱透水层孔隙水Na+与Cl(a)、Na/Cl与Cl(b)、Ca2+与Cl(c)、Mg2+与Cl(d)、SO42‒与Cl(e)、Ca+Mg‒HCO3‒SO4与Na+K‒Cl(f)关系

      Fig.  7.  The relationship of Na+ vs. Cl (a)、Na/Cl vs. Cl (b)、Ca2+ vs. Cl (c)、Mg2+ vs. Cl (d)、SO42‒ vs. Cl (e)、Ca+Mg‒HCO3‒SO4 vs. Na+K‒Cl(f)in aquitard porewater

      图  8  弱透水层孔隙水Sr2+与Cl (a)、87Sr/86Sr与Sr2+ (b)关系

      Fig.  8.  The relationship between Sr2+ and Cl (a)、87Sr/86Sr and Sr2+ (b) in aquitard porewater

      图  9  全新世以来海州湾典型剖面模拟与实测的Cl浓度(mg/L)

      a~f. 距今10~5 ka时的Cl分布(海水淹没本区,孔隙水咸化);g~i. 距今4~2 ka时的Cl分布(海退时期孔隙水淡化);j. 模拟的现今Cl与实测结果(1 ka时近海岸形成蒸发海水);k. 子模型a运移1 ka时的浓度分布

      Fig.  9.  The measured and simulated Cl concentration (mg/L) in the typical section of Haizhou bay since Holocene

      表  1  模型的参数与边界条件

      Table  1.   Parameters and boundary conditions in the model

      岩性 渗透系数
      K(m/d)
      扩散系数
      De(m2/s)
      运移时间 边界条件
      亚粘土
      (局部夹粉细砂)
      0.42 2.0×10‒10 海侵时期10~5 ka 上边界:海水淹没部分,C$ {}_{{}^{\mathrm{C}{\mathrm{l}}^{-}}} $=19 000 mg/L;陆相部分:开放边界;
      粘土(局部夹粉细砂) 0.08 2.0×10‒10 海退时期4~1 ka 泄湖区:C$ {}_{{}^{\mathrm{C}{\mathrm{l}}^{-}}} $=25 000 mg/L
      下边界:无通量边界
      粉细砂 0.86 1.0×10‒9 1 ka BP,近岸形成泻湖 左边界:流入边界,C$ {}_{{}^{\mathrm{C}{\mathrm{l}}^{-}}} $=100 mg/L右边界:流出边界
      下载: 导出CSV
    • Batlle-Aguilar, J., Cook, P. G., Harrington, G. A., 2016. Comparison of Hydraulic and Chemical Methods for Determining Hydraulic Conductivity and Leakage Rates in Argillaceous Aquitards. Journal of Hydrology, 532: 102-121. https://doi.org/10.1016/j.jhydrol.2015.11.035
      Cartwright, I., Weaver, T. R., Fulton, S., et al., 2004. Hydrogeochemical and Isotopic Constraints on the Origins of Dryland Salinity, Murray Basin, Victoria, Australia. Applied Geochemistry, 19(8): 1233-1254. https://doi.org/10.1016/j.apgeochem.2003.12.006
      Chen, G., Sun, Y. J., Xu, Z. M., et al., 2019. Assessment of Shallow Groundwater Contamination Resulting from a Municipal Solid Waste Landfill—A Case Study in Lianyungang, China. Water, 11(12): 2496. https://doi.org/10.3390/w11122496
      Chen, X. H., Li, R. H., Lan, X. H., et al., 2020. Late Quaternary Stratigraphic Sequence and Depositional Response in the Western Bohai Sea. Earth Science, 45(7): 2684-2696 (in Chinese with English abstract).
      Craig, H., 1961. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science, 133(3467): 1833-1834. https://doi.org/10.1126/science.133.3467.1833
      Deng, Y. F., Yue, X. B., Zhang, T. W., et al., 2015. Consolidation Behaviors of Soft Marine Clay in Lianyungang under Desalination Environment of Pore Water. Chinese Journal of Geotechnical Engineering, 37(1): 47-53 (in Chinese with English abstract).
      Fernández, A. M., Sánchez-Ledesma, D. M., Tournassat, C., et al., 2014. Applying the Squeezing Technique to Highly Consolidated Clayrocks for Pore Water Characterisation: Lessons Learned from Experiments at the Mont Terri Rock Laboratory. Applied Geochemistry, 49: 2-21. https://doi.org/10.1016/j.apgeochem.2014.07.003
      Gao, M. S., Luo, Y. M., 2016. Change of Groundwater Resource and Prevention and Control of Seawater Intrusion in Coastal Zone. Bulletin of Chinese Academy of Sciences, 31(10): 1197-1203 (in Chinese with English abstract).
      Ge, Q., Liang, X., Jin, M. G., et al., 2017. Cl- as a Chemical Fingerprint of Solute Transport in the Aquitard-Aquifer System of the North Jiangsu Coastal Plain, China. Geofluids, 2017: 1-16. https://doi.org/10.1155/2017/6131547
      Han, D. M., Cao, G. L., Currell, M. J., et al., 2020. Groundwater Salinization and Flushing during Glacial-Interglacial Cycles: Insights from Aquitard Porewater Tracer Profiles in the North China Plain. Water Resources Research, 56(11): e2020WR027879. https://doi.org/10.1029/2020wr027879
      Harrington, G. A., Gardner, W. P., Smerdon, B. D., et al., 2013. Palaeohydrogeological Insights from Natural Tracer Profiles in Aquitard Porewater, Great Artesian Basin, Australia. Water Resources Research, 49(7): 4054-4070. https://doi.org/10.1002/wrcr.20327
      He, Z. K., Ma, C. M., Zhou, A. G., et al., 2018. Using Hydrochemical and Stable Isotopic (δ2H, δ18O, δ11B, and δ37Cl) Data to Understand Groundwater Evolution in an Unconsolidated Aquifer System in the Southern Coastal Area of Laizhou Bay, China. Applied Geochemistry, 90: 129-141. https://doi.org/10.1016/j.apgeochem.2018.01.003
      Hendry, M. J., Barbour, S. L., Novakowski, K., et al., 2013. Paleohydrogeology of the Cretaceous Sediments of the Williston Basin Using Stable Isotopes of Water. Water Resources Research, 49(8): 4580-4592. https://doi.org/10.1002/wrcr.20321
      Huang, J. O., Xian, Y., Li, W., et al., 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582 (in Chinese with English abstract).
      Kang, B., 2017. The Study of Groundwater Evolution and Rational Exploitation and Utilizing in Jiangsu Coastal Area (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Katz, A., Starinsky, A., Marion, G. M., 2011. Saline Waters in Basement Rocks of the Kaapvaal Craton, South Africa. Chemical Geology, 289(1-2): 163-170. https://doi.org/10.1016/j.chemgeo.2011.08.002
      Kwong, H. T., Jiao, J. J., Liu, K., et al., 2015. Geochemical Signature of Pore Water from Core Samples and Its Implications on the Origin of Saline Pore Water in Cangzhou, North China Plain. Journal of Geochemical Exploration, 157: 143-152. https://doi.org/10.1016/j.gexplo.2015.06.008
      Larsen, F., Tran, L. V., Van Hoang, H., et al., 2017. Groundwater Salinity Influenced by Holocene Seawater Trapped in Incised Valleys in the Red River Delta Plain. Nature Geoscience, 10(5): 376-381. https://doi.org/10.1038/ngeo2938
      Li, J., Gong, X. L., Liang, X., et al., 2021. Salinity Evolution of Aquitard Porewater Associated with Transgression and Regression in the Coastal Plain of Eastern China. Journal of Hydrology, 603: 127050. https://doi.org/10.1016/j.jhydrol.2021.127050
      Li, J., Liang, X., Jin, M. G., et al., 2013. Geochemical Signature of Aquitard Pore Water and Its Paleo-Environment Implications in Caofeidian Harbor, China. Geochemical Journal, 47(1): 37-50. https://doi.org/10.2343/geochemj.2.0238
      Li, J., Liang, X., Jin, M. G., et al., 2017. Origin and Evolution of Aquitard Porewater in the Western Coastal Plain of Bohai Bay, China. Ground Water, 55(6): 917-925. https://doi.org/10.1111/gwat.12590
      Liu, J. R., Song, X. F., Yuan, G. F., et al., 2014. Stable Isotopic Compositions of Precipitation in China. Tellus B: Chemical and Physical Meteorology, 66(1): 22567. https://doi.org/10.3402/tellusb.v66.22567
      Liu, S., Tang, Z. H., Gao, M. S., et al., 2017. Evolutionary Process of Saline-Water Intrusion in Holocene and Late Pleistocene Groundwater in Southern Laizhou Bay. Science of the Total Environment, 607-608: 586-599. https://doi.org/10.1016/j.scitotenv.2017.06.262
      Liu, Y., Gong, X. L., Li, J., et al., 2021. Salinization Process of Shallow Aquitard Porewater in North Jiangsu Coastal Zone. Journal of Water Resources and Water Engineering, 32(1): 57-62, 71 (in Chinese with English abstract).
      Post, V. E. A., Van der Plicht, H., Meijer, H. A. J., 2003. The Origin of Brackish and Saline Groundwater in the Coastal Area of the Netherlands. Netherlands Journal of Geosciences, 82(2): 133-147. https://doi.org/10.1017/s0016774600020692
      Priestley, S. C., Kleinig, T., Love, A. J., et al., 2017. Palaeohydrogeology and Transport Parameters Derived from 4He and Cl Profiles in Aquitard Pore Waters in a Large Multilayer Aquifer System, Central Australia. Geofluids, 2017: 1-17. https://doi.org/10.1155/2017/9839861
      Qiu, H. S., 2020. Analysis of Groundwater Permeability Coefficient in the Eastern Part of Jiangsu Province. Construction & Design for Engineering, (24): 32-33 (in Chinese with English abstract).
      Stueber, A. M., Walter, L. M., 1991. Origin and Chemical Evolution of Formation Waters from Silurian-Devonian Strata in the Illinois Basin, USA. Geochimica et Cosmochimica Acta, 55(1): 309-325. https://doi.org/10.1016/0016-7037(91)90420-A
      Van Pham, H., Van Geer, F. C., Tran, V. B., et al., 2019. Paleo-Hydrogeological Reconstruction of the Fresh-Saline Groundwater Distribution in the Vietnamese Mekong Delta since the Late Pleistocene. Journal of Hydrology: Regional Studies, 23: 100594. https://doi.org/10.1016/j.ejrh.2019.100594
      Wang, Y., Jiao, J. J., Cherry, J. A., et al., 2013. Contribution of the Aquitard to the Regional Groundwater Hydrochemistry of the Underlying Confined Aquifer in the Pearl River Delta, China. Science of the Total Environment, 461-462: 663-671. https://doi.org/10.1016/j.scitotenv.2013.05.046
      Xue, Y. Q., Wu, J. C., Ye, S. J., et al., 2000. Hydrogeological and Hydrogeochemical Studies for Salt Water Intrusion on the South Coast of Laizhou Bay, China. Groundwater, 38(1): 38-45. https://doi.org/10.1111/j.1745-6584.2000.tb00200.x
      Yang, L., Gong, X. L., Lu, X. R., et al., 2015. Distribution and Genesis of High-Fluoride Groundwater in Northern Lianyungang Area. Geology in China, 42(4): 1161-1169 (in Chinese with English abstract).
      Yi, L., Yu, H. J., Ortiz, J. D., et al., 2012. Late Quaternary Linkage of Sedimentary Records to Three Astronomical Rhythms and the Asian Monsoon, Inferred from a Coastal Borehole in the South Bohai Sea, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 329-330: 101-117. https://doi.org/10.1016/j.palaeo.2012.02.020
      Yue, D. D., Su, X. S., 2016. Chemistry and Stable Isotope Characteristics of Yishu River Downstream Groundwater. Science Technology and Engineering, 16(16): 13-19 (in Chinese with English abstract).
      Zhang, C. Z., Ge, D. M., 1982. The Characteristics of the Change of the Hai Zhou Gulf. Marine Sciences, 6(3): 11-17 (in Chinese with English abstract)
      Zhang, Y., Fu, C. C., Mao, L., et al., 2017. Hydrochemical Characteristics and Formation Mechanism of the Groundwater in Yancheng, Jiangsu Province. Resources and Environment in the Yangtze Basin, 26(4): 598-605 (in Chinese with English abstract).
      陈晓辉, 李日辉, 蓝先洪, 等, 2020. 渤海西部晚第四纪地层层序特征及沉积响应. 地球科学, 45(7): 2684-2696. doi: 10.3799/dqkx.2020.014
      邓永锋, 岳喜兵, 张彤炜, 等, 2015. 连云港海相软土在孔隙水盐分溶脱环境下的固结特性. 岩土工程学报, 37(1): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501006.htm
      高茂生, 骆永明, 2016. 我国重点海岸带地下水资源问题与海水入侵防控. 中国科学院院刊, 31(10): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201610010.htm
      黄金瓯, 鲜阳, 黎伟, 等, 2021. 典型滨海平原区地下水流系统水化学场演化及成因: 以杭嘉湖平原为例. 地球科学, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230
      康博, 2017. 江苏沿海地区地下水演化与合理开发利用研究(博士学位论文). 长春: 吉林大学.
      刘彦, 龚绪龙, 李进, 等, 2021. 苏北海岸带浅部弱透水层孔隙水咸化过程. 水资源与水工程学报, 32(1): 57-62, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ202101009.htm
      邱怀松, 2020. 苏北东部地区地下水渗透系数分析. 工程建设与设计, (24): 32-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS202024017.htm
      杨磊, 龚绪龙, 陆徐荣, 等, 2015. 连云港北部地区高氟地下水分布特征及成因. 中国地质, 42(4): 1161-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201504029.htm
      岳冬冬, 苏小四, 2016. 沂沭河下游平原地下水化学及氢氧稳定同位素特征. 科学技术与工程, 16(16): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201616003.htm
      张传藻, 葛殿铭, 1982. 海州湾岸线变化特征. 海洋科学, 6(3): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX198203003.htm
      张岩, 付昌昌, 毛磊, 等, 2017. 江苏盐城地区地下水水化学特征及形成机理. 长江流域资源与环境, 26(4): 598-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201704013.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  369
    • HTML全文浏览量:  142
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-21
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回