Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation
-
摘要: 岩石力学层控制天然裂缝发育程度与成因机制,同样地,裂缝发育也会影响岩石力学参数的大小与各向异性.受成岩与构造作用的双重影响,岩石力学层会发生迁移,因此,控制裂缝发育的岩石力学层及适用于预测天然裂缝分布的岩石力学层可能不再存在.本文提出了一种采用储层地质力学方法分析构造因素控制下的岩石力学层迁移规律模拟方法.通过野外观测建立三维裂缝离散网络模型,采用岩石力学实验测量岩石与裂缝面的力学参数,编制三循环法模拟程序研究不同尺寸、不同方位的裂缝性岩体等效力学参数,提出了裂缝性储层地质力学建模最优网格单元大小确定方法,并建立了裂缝参数与岩体力学参数间的数学模型.最后,通过不同时期古应力场数值模拟,预测裂缝的密度、产状,实现了构造因素控制下岩石力学层迁移规律数值模拟.结合鄂尔多斯盆地西缘裂缝组合样式及后期应力场模拟的精度要求,确定地质力学建模最优网格单元大小为28 m;在地质力学建模中,过小的网格单元尺度不能完整刻画单元内的裂缝发育模式.从燕山期至喜马拉雅期到现今,伴随着天然裂缝的发育,岩体杨氏模量总体呈下降趋势,泊松比增大,并且岩石杨氏模量与泊松比间的空间差异性逐渐减小.Abstract: The rock mechanical stratigraphy controls the development degree and genetic mechanism of natural fractures. Similarly, the development of fractures also affects the size and anisotropy of rock mechanical parameters. Affected by diagenesis and tectonics, the rock mechanics layer has migrated. Therefore, the rock mechanics layer that controls the development of fractures and the rock mechanics layer suitable for predicting the distribution of natural fractures may no longer exist. This paper proposes a method based on reservoir geomechanics modeling to analyze the evolution of rock mechanics layer under the control of structural factors. A three-dimensional fracture discrete network model was established through field observations, combined with rock mechanics experiments to determine the mechanical parameters of the rock and fracture surfaces, the method for determining the optimal representation unit size of the fractured reservoir mechanical parameters was determined, and the three-dimensional geomechanical model of the fractured reservoir was established. A three-cycle method is proposed to characterize the equivalent mechanical parameters of fractured reservoirs with different sizes and different orientations. The Young's modulus discriminant index and Poisson's ratio discriminant index are used to characterize the scale effect and anisotropy of the mechanical parameters of fractured reservoirs, and the evolution of rock mechanics layer is analyzed. The results show that the fracture combination pattern on the western edge of Ordos basin and the accuracy requirements of the later stress field simulation determine the optimal element size for geomechanical modeling to be 28 m. In geomechanical modeling, too small grid element scale can not completely describe the fracture development mode in the element. The development of natural fractures from the Yanshanian period to the Himalayan period to the present has resulted in an overall decrease in the equivalent Young's modulus and an overall increase in the Poisson's ratio of the rock mass in the Ordos Basin. The difference between the equivalent Young's modulus and the Poisson's ratio of the rock mass has decreased over time.
-
图 1 (a)研究区构造位置;(b)鄂尔多斯盆地东西向剖面;(c)元284井长6油层组岩性综合柱状图
图a据Darby and Ritts(2002)修改. N.新近系;E.古近系;K.白垩系;J.侏罗系;T.三叠系;P.二叠系;C.石炭系;O.奥陶系;∈.寒武纪;Pt.元古宇
Fig. 1. (a) Structural location of the study area; (b) east-west section of the Ordos Basin; (c) comprehensive histogram of lithology of Chang 6 reservoir of the Yuan 284 Well
图 4 鄂尔多斯盆地西缘石沟驿剖面延长组野外露头裂缝观测照片
野外剖面的位置见图 1. a、b. 裂缝的组合样式;c、d. 野外裂缝产状统计
Fig. 4. Natural fractures of the Yanchang Formation on the Shigouyi section of the western margin of the Ordos Basin
图 8 (a)不同模拟单元的半径、裂缝面密度与Ey关系;(b)不同模拟单元的半径与μy关系;(c)裂缝面密度与合理模拟单元半径的关系(ρA为裂缝的面密度)
Fig. 8. (a) The relationship between the side length and Ey of different simulation units; (b) the relationship between the side length and μy of different simulation units; (c) the relationship between the areal fracture density and reasonable side length of the simulation unit (ρA is the areal fracture density)
表 1 研究区长6油层组岩石三轴力学实验数据
Table 1. Triaxial mechanical experimental data of rocks in the Chang 6 oil reservoir group of the study area
井号 岩性 深度
(m)试样
编号密度
(g/cm3)围压
(MPa)弹性模量
(104MPa)泊松比 抗压强度
(MPa)元290井 砂岩 2 106.27 H1 2.49 0 11.665 0.059 75.15 H2 2.39 10 22.897 0.237 130.84 H3 2.38 20 23.904 0.190 159.55 H4 2.40 30 21.352 0.171 182.25 元414井 砂岩 2 007.10 I1 2.48 0 19.260 0.061 102.29 I2 2.50 10 28.468 0.200 191.39 I3 2.49 20 26.078 0.202 190.87 I4 2.50 30 29.033 0.105 244.98 元284井 泥岩 2 205.45 J1 2.62 0 16.522 0.269 58.61 J2 2.62 10 21.308 0.216 93.66 J3 2.62 20 23.087 0.204 132.59 J4 2.65 30 19.535 0.392 162.26 -
Andhumoudine, A. B., Nie, X., Zhou, Q. B., et al., 2021. Investigation of Coal Elastic Properties Based on Digital Core Technology and Finite Element Method. Advances in Geo-Energy Research, 5(1): 53-63. https://doi.org/10.46690/ager.2021.01.06 Chai, Y. T., Yin, S. D., 2021.3D Displacement Discontinuity Analysis of In-Situ Stress Perturbation near a Weak Faul. Advances in Geo-Energy Research, 5(3): 286-296. https://doi.org/10.46690/ager.2021.03.05 Chen, S. H., Qiang, S., 2004. Composite Element Model for Discontinuous Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 41(5): 865-870. https://doi.org/10.1016/j.ijrmms.2004.01.009 Darby, B. J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage: The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1-2): 13-24. https://doi.org/10.1016/S0012-821X(02)01026-9 Dashti, R., Rahimpour-Bonab, H., Zeinali, M., 2018. Fracture and Mechanical Stratigraphy in Naturally Fractured Carbonate Reservoirs-A Case Study from Zagros Region. Marine and Petroleum Geology, 97: 466-479. https://doi.org/10.1016/j.marpetgeo.2018.06.027 Dershowitz, W. S., Einstein, H. H., 1988. Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21(1): 21-51. https://doi.org/10.1007/BF01019674 Esmaieli, K., Hadjigeorgiou, J., Grenon, M., 2010. Estimating Geometrical and Mechanical REV Based on Synthetic Rock Mass Models at Brunswick Mine. International Journal of Rock Mechanics and Mining Sciences, 47(6): 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010 Fan, J. M., Chen, X. D., Lei, Z. D., et al., 2019. Characteristics of Natural and Hydraulic Fractures in Tight Oil Reservoir in Ordos Basin and Its Implication to Field Development. Journal of China University of Petroleum (Edition of Natural Science), 43(3): 98-106 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2019.03.011 Fan, X., Kulatilake, P. H. S. W., Chen, X., 2015. Mechanical Behavior of Rock-like Jointed Blocks with Multi-Non-Persistent Joints under Uniaxial Loading: A Particle Mechanics Approach. Engineering Geology, 190: 17-32. https://doi.org/10.1016/j.enggeo.2015.02.008 Faraji, M., Rezagholilou, A., Ghanavati, M., et al., 2021. Breakouts Derived from Image Logs Aid the Estimation of Maximum Horizontal Stress: A Case Study from Perth Basin, Western Australia. Advances in Geo-Energy Research, 5(1): 8-24. https://doi.org/10.46690/ager.2021.01.03 Feng, J. W., Dai, J. S., Ma, Z. R., et al., 2011. The Theoretical Model between Fracture Parameters and Stress Field of Low-Permeability Sandstones. Acta Petrolei Sinica, 32(4): 664-671 (in Chinese with English abstract). Feng, Y. W., Chen, Y., Zhao, Z. Y., et al., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601-3614 (in Chinese with English abstract). doi: 10.1007/s12182-020-00522-1?utm_source=TrendMD Guo, P., Yao, L. H., Ren, D. S., 2016. Simulation of Three-Dimensional Tectonic Stress Fields and Quantitative Prediction of Tectonic Fracture within the Damintun Depression, Liaohe Basin, Northeast China. Journal of Structural Geology, 86: 211-223. https://doi.org/10.1016/j.jsg.2016.03.007 Heuze, F. E., 1980. Scale Effects in the Determination of Rock Mass Strength and Deformability. Rock Mechanics, 12(3-4): 167-192. https://doi.org/10.1007/BF01251024 Ji, Z. Z., Dai, J. S., Wang, B. F., 2010. Q Uantitative Relationship between Crustal Stress and Parameters of Tectonic Fracture. Acta Petrolei Sinica, 31(1): 68-72 (in Chinese with English abstract). Jiang, L., Qiu, Z., Wang, Q. C., et al., 2016. Joint Development and Tectonic Stress Field Evolution in the Southeastern Mesozoic Ordos Basin, West Part of North China. Journal of Asian Earth Sciences, 127: 47-62. https://doi.org/10.1016/j.jseaes.2016.06.017 Jing, L., 2003. A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3): 283-353. https://doi.org/10.1016/S1365-1609(03)00013-3 Ju, W., Wang, J. L., Fang, H. H., et al., 2019. Paleotectonic Stress Field Modeling and Prediction of Natural Fractures in the Lower Silurian Longmaxi Shale Reservoirs, Nanchuan Region, South China. Marine and Petroleum Geology, 100: 20-30. https://doi.org/10.1016/j.marpetgeo.2018.10.052 Khani, A., Baghbanan, A., Hashemolhosseini, H., 2013. Numerical Investigation of the Effect of Fracture Intensity on Deformability and REV of Fractured Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 63: 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006 Kulatilake, P. H. S. W., Ucpirti, H., Wang, S., et al., 1992. Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-Persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses. Rock Mechanics and Rock Engineering, 25(4): 253-274. https://doi.org/10.1007/BF01041807 Lamarche, J., Lavenu, A. P. C., Gauthier, B. D. M., et al., 2012. Relationships between Fracture Patterns, Geodynamics and Mechanical Stratigraphy in Carbonates (South-East Basin, France). Tectonophysics, 581: 231-245. https://doi.org/10.1016/j.tecto.2012.06.042 Laubach, S. E., Olson, J. E., Gross, M. R., 2009. Mechanical and Fracture Stratigraphy. AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094 Li, C. S., Zhang, W. X., Lei, Y., et al., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574 (in Chinese with English abstract). Li, Y. Y., Shang, Y. J., Yang, P., 2018. Modeling Fracture Connectivity in Naturally Fractured Reservoirs: A Case Study in the Yanchang Formation, Ordos Basin, China. Fuel, 211: 789-796. https://doi.org/10.1016/j.fuel.2017.09.109 Liang, Z. Z., Wu, N., Li, Y. C., et al., 2019. Numerical Study on Anisotropy of the Representative Elementary Volume of Strength and Deformability of Jointed Rock Masses. Rock Mechanics and Rock Engineering, 52(11): 4387-4402. https://doi.org/10.1007/s00603-019-01859-9 Liu, J. S., Ding, W. L., Gu, Y., et al., 2018. Methodology for Predicting Reservoir Breakdown Pressure and Fracture Opening Pressure in Low-Permeability Reservoirs Based on an in Situ Stress Simulation. Engineering Geology, 246: 222-232. https://doi.org/10.1016/j.enggeo.2018.09.010 Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300 (in Chinese with English abstract). Liu, J. S., Ding, W. L., Yang, H. M., et al., 2017.3D Geomechanical Modeling and Numerical Simulation of In-Situ Stress Fields in Shale Reservoirs: A Case Study of the Lower Cambrian Niutitang Formation in the Cen'gong Block, South China. Tectonophysics, 712-713: 663-683. https://doi.org/10.1016/j.tecto.2017.06.030 Liu, J. S., Mei, L. F., Ding, W. L., et al., 2023. Asymmetric Propagation Mechanism of Hydraulic Fracture Networks in Continental Reservoirs. GSA Bulletin, 135(3-4): 678-688. https://doi.org/10.1130/b36358.1 Liu, J. S., Yang, H. M., Bai, J. P., et al., 2021. Numerical Simulation to Determine the Fracture Aperture in a Typical Basin of China. Fuel, 283: 118952. https://doi.org/10.1016/j.fuel.2020.118952 Liu, J. S., Yang, H. M., Wu, X. F., et al., 2020. The in Situ Stress Field and Microscale Controlling Factors in the Ordos Basin, Central China. International Journal of Rock Mechanics and Mining Sciences, 135: 104482. https://doi.org/10.1016/j.ijrmms.2020.104482 Liu, J. S., Yang, H. M., Xu, K., et al., 2022. Genetic Mechanism of Transfer Zones in Rift Basins: Insights from Geomechanical Models. GSA Bulletin, 134(9-10): 2436-2452. https://doi.org/10.1130/b36151.1 Lyu, W. Y., Zeng, L. B., Zhou, S. B., et al., 2019. Natural Fractures in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in the Southwestern Ordos Basin, China. AAPG Bulletin, 103(10): 2343-2367. https://doi.org/10.1306/0130191608617115 McGinnis, R. N., Ferrill, D. A., Morris, A. P., et al., 2017. Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration. Journal of Structural Geology, 95: 160-170. https://doi.org/10.1016/j.jsg.2017.01.001 Ni, P. P., Wang, S. H., Wang, C. G., et al., 2017. Estimation of REV Size for Fractured Rock Mass Based on Damage Coefficient. Rock Mechanics and Rock Engineering, 50(3): 555-570. https://doi.org/10.1007/s00603-016-1122-x Salimzadeh, S., Usui, T., Paluszny, A., et al., 2017. Finite Element Simulations of Interactions between Multiple Hydraulic Fractures in a Poroelastic Rock. International Journal of Rock Mechanics and Mining Sciences, 99: 9-20. https://doi.org/10.1016/j.ijrmms.2017.09.001 Sun, D. S., Zhuo, X. Z., Dan, Y., et al., 2021. Measurement and Distribution of Horizontal Minimum Principle Stress of Shale Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 45(5): 80-87 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.05.009 Wu, N., Liang, Z. Z., Li, Y. C., et al., 2019. Effect of Confining Stress on Representative Elementary Volume of Jointed Rock Masses. Geomechanics and Engineering, 18(6): 627-638. Wu, Q., Kulatilake, P. H. S. W., 2012. REV and Its Properties on Fracture System and Mechanical Properties, and an Orthotropic Constitutive Model for a Jointed Rock Mass in a Dam Site in China. Computers and Geotechnics, 43: 124-142. https://doi.org/10.1016/j.compgeo.2012.02.010 Wu, Z. H., Zuo, Y. J., Wang, S. Y., et al., 2017. Numerical Study of Multi-Period Palaeotectonic Stress Fields in Lower Cambrian Shale Reservoirs and the Prediction of Fractures Distribution: A Case Study of the Niutitang Formation in Feng'gang No. 3 Block, South China. Marine and Petroleum Geology, 80: 369-381. https://doi.org/10.1016/j.marpetgeo.2016.12.008 Xu, X. Y., Wang, W. F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768 (in Chinese with English abstract). Yang, T. H., Tham, L. G., Tang, C. A., et al., 2004. Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks. Rock Mechanics and Rock Engineering, 37(4): 251-275. https://doi.org/10.1007/s00603-003-0022-z Zeng, L. B., Gong, L., Guan, C., et al., 2022. Natural Fractures and Their Contribution to Tight Gas Conglomerate Reservoirs: A Case Study in the Northwestern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 210: 110028. https://doi.org/10.1016/j.petrol.2021.110028 Zeng, L. B., Li, X. Y., 2009. Fractures in Sandstone Reservoirs with Ultra-Low Permeability: A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bulletin, 93(4): 461-477. https://doi.org/10.1306/09240808047 Zeng, W. T., Ding, W. L., Zhang, J. C., et al., 2013. Fracture Development in Paleozoic Shale of Chongqing Area (South China). Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Fractures Distribution. Journal of Asian Earth Sciences, 75: 267-279. https://doi.org/10.1016/j.jseaes.2013.07.015 Zhang, W., Chen, J. P., Liu, C., et al., 2012. Determination of Geometrical and Structural Representative Volume Elements at the Baihetan Dam Site. Rock Mechanics and Rock Engineering, 45(3): 409-419. https://doi.org/10.1007/s00603-011-0191-0 Zhang, W., Chen, J. P., Chen, H. E., et al., 2013. Determination of RVE with Consideration of the Spatial Effect. International Journal of Rock Mechanics and Mining Sciences, 61: 154-160. https://doi.org/10.1016/j.ijrmms.2013.02.013 Zhao, W. T., Hou, G. T., Hari, K. R., 2016a. Two Episodes of Structural Fractures and Their Stress Field Modeling in the Ordos Block, Northern China. Journal of Geodynamics, 97: 7-21. https://doi.org/10.1016/j.jog.2016.02.005 Zhao, J. L., Xu, H., Tang, D. Z., et al., 2016b. Coal Seam Porosity and Fracture Heterogeneity of Macrolithotypes in the Hancheng Block, Eastern Margin, Ordos Basin, China. International Journal of Coal Geology, 159: 18-29. https://doi.org/10.1016/j.coal.2016.03.019 Zhao, J. L., Tang, D. Z., Xu, H., et al., 2016c. Characteristic of in Situ Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China. Rock Mechanics and Rock Engineering, 49(8): 3307-3322. https://doi.org/10.1007/s00603-016-0969-1 Zhao, J. Y., An, X. P., Wang, J., et al., 2018. A Quantitative Evaluation for Well Pattern Adaptability in Ultra-Low Permeability Oil Reservoirs: A Case Study of Triassic Chang 6 and Chang 8 Reservoirs in Ordos Basin. Petroleum Exploration and Development, 45(3): 482-488 (in Chinese with English abstract). Zhao, W. T., Hou, G. T., 2017. Fracture Prediction in the Tight-Oil Reservoirs of the Triassic Yanchang Formation in the Ordos Basin, Northern China. Petroleum Science, 14(1): 1-23. doi: 10.1007/s12182-016-0141-2 Zhou, W. Y., Jiao, Y. Q., Zhao, J. H., 2017. Sediment Provenance of the Intracontinental Ordos Basin in North China Craton Controlled by Tectonic Evolution of the Basin-Orogen System. The Journal of Geology, 125(6): 701-711. https://doi.org/10.1086/693861 樊建明, 陈小东, 雷征东, 等, 2019. 鄂尔多斯盆地致密油藏天然裂缝与人工裂缝特征及开发意义. 中国石油大学学报(自然科学版), 43(3): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201903011.htm 冯建伟, 戴俊生, 马占荣, 等, 2011. 低渗透砂岩裂缝参数与应力场关系理论模型. 石油学报, 32(4): 664-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm 冯艳伟, 陈勇, 赵振宇, 等, 2021. 鄂尔多斯盆地中部地区马家沟组断裂控制天然气运移方向的流体包裹体证据. 地球科学, 46(10): 3601-3614. doi: 10.3799/dqkx.2020.384 季宗镇, 戴俊生, 汪必峰, 2010. 地应力与构造裂缝参数间的定量关系. 石油学报, 31(1): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201001013.htm 李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007 刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm 孙东生, 禚喜准, 淡永, 等, 2021. 页岩储层水平最小主应力实测与分布规律. 中国石油大学学报(自然科学版), 45(5): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202105009.htm 徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768. doi: 10.3799/dqkx.2019.175 赵继勇, 安小平, 王晶, 等, 2018. 超低渗油藏井网适应性定量评价方法——以鄂尔多斯盆地三叠系长6、长8油藏为例. 石油勘探与开发, 45(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803015.htm -