• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征

    南富森 李宗省 张小平 梁鹏飞 熊雪婷

    南富森, 李宗省, 张小平, 梁鹏飞, 熊雪婷, 2023. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 48(3): 1195-1204. doi: 10.3799/dqkx.2022.238
    引用本文: 南富森, 李宗省, 张小平, 梁鹏飞, 熊雪婷, 2023. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 48(3): 1195-1204. doi: 10.3799/dqkx.2022.238
    Nan Fusen, Li Zongxing, Zhang Xiaoping, Liang Pengfei, Xiong Xueting, 2023. Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou. Earth Science, 48(3): 1195-1204. doi: 10.3799/dqkx.2022.238
    Citation: Nan Fusen, Li Zongxing, Zhang Xiaoping, Liang Pengfei, Xiong Xueting, 2023. Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou. Earth Science, 48(3): 1195-1204. doi: 10.3799/dqkx.2022.238

    黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征

    doi: 10.3799/dqkx.2022.238
    基金项目: 

    第二次青藏高原综合科学考察研究项目专题 2019QZKK0405

    国家自然科学基金项目 42077187

    中国科学院青年交叉团队项目 JCTD-2022-18

    国家重点研发计划项目专题 2020YFA0607702

    中国科学院“西部之光”交叉团队项目-重点实验室合作研究专项;甘肃省创新群体项目 20JR10RA038

    详细信息
      作者简介:

      南富森(1997-),男,硕士研究生,主要研究方向为寒区旱区土壤物理化学循环.ORCID:0000-0003-1919-7926. E-mail:nanfsn@163.com

      通讯作者:

      李宗省,E-mail: lizxhhs@163.com

      张小平,E-mail: zxp296@163.com

    • 中图分类号: P951

    Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou

    • 摘要: 研究土壤粒径分形特征,可为地区土壤质量评价提供科学依据.利用分形理论分析了黄河北岸兰州段荒漠‒草原过渡带土壤粒径分形特征.(1)区域土壤颗粒主要为粉粒和极细砂粒,随荒漠化加重和土壤深度增加,土壤粗粒化,质地均匀性降低,粒径分布(PSD)频率曲线异质程度增大;(2)荒漠化加重和土壤深度增加降低了单重分形维数Dv和多重分形谱参数D1D1/D0D2、△α、△f;(3)DvD1D2D1/D0、△α和△f同黏粒、粉粒呈正相关,同砂粒呈负相关;黏粒、粉粒、DvD1D2D1/D0、△α和△f与荒漠化减弱程度呈正相关,砂粒与其呈负相关.土壤分形维数能反映区域土壤结构和变化,可为地区生态治理与巩固提升提供技术指导.

       

    • 图  1  研究区概况

      Fig.  1.  Location of the study area

      图  2  采样点土壤质地

      Fig.  2.  Soil texture at sampling sites

      图  3  不同植被类型区土壤颗粒组成

      Fig.  3.  Soil particle composition in different vegetation types

      图  4  不同植被类型区土壤PSD频率曲线

      Fig.  4.  Soil PSD frequency curve in different vegetation types

      图  5  不同植被类型区土壤PSD单重分形维数

      Fig.  5.  Single fractal dimension of soil PSD in different vegetation types

      图  6  不同植被类型区土壤PSD多重分形谱函数

      Fig.  6.  Multifractal spectrum function of soil PSD in different vegetation types

      图  7  土壤分形维数同颗粒组成的相关关系

      红色椭圆代表正相关;蓝色椭圆代表负相关;相关系数绝对值越高,椭圆越窄,系数值为1时为一条直线,系数小于0.01时为一个点;*为P < 0.05;**为P < 0.01

      Fig.  7.  Correlation between soil fractal dimension and soil particle composition

      图  8  不同植被类型区土壤颗粒组成及分形维数的主成分分析

      Fig.  8.  PCA of soil particle composition and fractal dimension in different vegetation types

      表  1  不同植被类型区土壤PSD多重分形参数

      Table  1.   Multifractal parameters of soil PSD in different vegetation types

      指标 土壤深度(cm) 荒漠 草原化荒漠 荒漠草原
      D0 0~20 1.000±0.000a 1.000±0.000a 1.000±0.000a
      20~40 1.000±0.000a 1.000±0.000a 1.000±0.000a
      D1 0~20 0.991±0.006ab 0.997±0.003a 0.997±0.002a
      20~40 0.983±0.006b 0.995±0.003a 0.996±0.006a
      D2 0~20 0.982±0.012ab 0.993±0.006a 0.994±0.005a
      20~40 0.967±0.011b 0.991±0.006a 0.992±0.012a
      D1/D0 0~20 0.991±0.006ab 0.997±0.003a 0.997±0.002a
      20~40 0.983±0.006b 0.995±0.003a 0.996±0.006a
      注:不同小写字母代表两组数据间存在显著差异性,其中P < 0.05.
      下载: 导出CSV
    • Dai, L., Wang, G. L., He, Y. J., 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420 (in Chinese with English abstract).
      Dai, Y. J., Dong, Z., Li, H. L., et al., 2019. Effects of Checkerboard Barriers on the Distribution of Aeolian Sandy Soil Particles and Soil Organic Carbon. Geomorphology, 338: 79-87. https://doi.org/10.1016/j.geomorph.2019.04.016
      Dai, Y. J., Li, J. R., Guo, J. Y., et al., 2017. Soil Particle Multi⁃Fractals and Soil Organic Carbon Distributions and Correlations under Different Shrubs in Ulan Buh Desert. Research of Environmental Sciences, 30(7): 1069-1078 (in Chinese with English abstract).
      Feng, R., Guo, Y. F., Zhang, X., et al., 2017. Soil Mechanical Composition of Two Main Soil Types in Aohan Banner. Agricultural Engineering, 7(6): 100-103 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1795.2017.06.029
      Gao, J. L., Gao, Y., Luo, F. M., et al., 2014. Response of Surface Soil Grain Size Characteristics to Wind Erosion Desertification. Science & Technology Review, 32(25): 20-25 (in Chinese with English abstract).
      Guo, S. J., Yang, Z. J., Wang, D. Z., et al., 2018. The Fractural Characteristics of Soil Particle Size in the Oasis⁃Desert Transition Zone of Minqin. Soil and Water Conservation in China, (10): 53-56, 68 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0941.2018.10.017
      Guo, S. W., Zhong, B., Xu, W. N., et al., 2022. Fractal Characteristics of Silt Loam Soil Particle Size in Different Land Use Types: A Case Study of Xialao River Small Watershed in Western Hubei. Science of Soil and Water Conservation, 20(1): 25-32 (in Chinese with English abstract).
      Han, L. W., Srocke, F., Masek, O., et al., 2020. A Graphical⁃User⁃Interface Application for Multifractal Analysis of Soil and Plant Structures. Computers and Electronics in Agriculture, 174: 105454. https://doi.org/10.1016/j.compag.2020.105454
      He, Y., 2020. Study on Soil Quality and Soil Erosion Characteristics in Middle⁃Wertern Qilian Mountains (Dissertation). Lanzhou University, Lanzhou, 29-33 (in Chinese with English abstract).
      Hu, Y. F., Liu, J. Y., Zhuang, D. F., et al., 2015. Fractal Dimension of Soil Particle Size Distribution under Different Land Use/Land Coverage. Acta Pedologica Sinica, 42(2): 336-339 (in Chinese with English abstract).
      Jiang, J. Y., Liu, R. T., Zhang, A. N., 2021. Comparative Analysis of Soil Fractal Dimension and Soil Physical and Chemical Properties between Caragana Korshinskii Shrub Plantations in Arid and Semi⁃Arid Desert Steppe. Research of Soil and Water Conservation, 28(4): 54-61, 69 (in Chinese with English abstract).
      Kozak, E., Sokołowska, Z., Stępniewski, W., et al., 1996. A Modified Number⁃Based Method for Estimating Fragmentation Fractal Dimensions of Soils. Soil Science Society of America Journal, 60(5): 1291-1297. https://doi.org/10.2136/sssaj1996.03615995006000050002x
      Lan, L. Y., Ma, L. L., Guo, X. M., et al., 2022. Soil Particle Distribution and Fractal Characteristics of Different Grassland Types in Southern Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 44(1): 222-232 (in Chinese with English abstract).
      Li, G. Q., Zhao, P. P., Shao, W. S., et al., 2018. Effects of Fencing on Soil Particle Size Fractal Dimension and the Physicochemical Properties of Agropyron Mongolicum Community in Desert Steppe. Acta Agrestia Sinica, 26(3): 551-558 (in Chinese with English abstract).
      Li, K., Ni, R. Q., Lv, C. F., et al., 2022. The Effect of Robinia Pseudoacacia Expansion on the Soil Particle Size Distribution on Mount Tai, China. CATENA, 208: 105774. https://doi.org/10.1016/j.catena.2021.105774
      Li, K., Yang, H. X., Han, X., et al., 2018. Fractal Features of Soil Particle Size Distributions and Their Potential as an Indicator of Robinia Pseudoacacia Invasion1. Scientific Reports, 8: 7075. https://doi.org/10.1038/s41598⁃018⁃25543⁃0
      Liu, H. M., Lü, S. J., Ren, Q. N., et al., 2021. The Study on Particles Sizes and Spatial Distribution of Sandy Soil under Haloxylon ammodendron Forest in Badain Jaran Desert. Acta Agrestia Sinica, 29(6): 1249-1256 (in Chinese with English abstract).
      Ma, H. Y., Yong, Y. M., Liu, Z. S., 2012. Comprehensive Evaluation of Returning Cropland to Forest and Grassland in the Arid and Semi⁃Arid Region: A Case Study of Yuzhong County. Pratacultural Science, 29(9): 1359-1367 (in Chinese with English abstract).
      Qi, F., Zhang, R. H., Liu, X., et al., 2018. Soil Particle Size Distribution Characteristics of Different Land⁃Use Types in the Funiu Mountainous Region. Soil and Tillage Research, 184: 45-51. https://doi.org/10.1016/j.still.2018.06.011
      Qi, Y. B., Chang, Q. R., Hui, Y. H., 2007. Fractal Features of Soil Particles in Desertification Reversing Process by Artificial Vegetation, Acta Pedologica Sinica, 44(3): 566-570 (in Chinese with English abstract). doi: 10.3321/j.issn:0564-3929.2007.03.027
      Wan, Q., Wang, J., Wang, X. T., et al., 2022. Effects of Different Meadow Use Types on the Fractal Characteristics of Soil Particle in the Qinghai⁃Tibet Plateau. Acta Ecologica Sinica, 42(5): 1716-1726 (in Chinese with English abstract).
      Wang, D., Fu, B. J., Cheng, L. D., et al., 2007. Fractal Analysis on Soil Particle Size Distribution Sunder Different Land⁃Use Types: A Case Study in the Loess Hilly Areas of the Loess Plateau, China. Acta Ecologica Sinica, 27(7): 3081-3089 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0933.2007.07.050
      Wang, X. D., Liu, S. Z., Liu, G. C., 2005. Fractal Characteristics of Soil under Different Land⁃Use Patterns in the Arid and Semi⁃Arid Region of the Western Tibet Plateau, China. Wuhan University Journal of Natural Sciences, 10(4): 785-790. https://doi.org/10.1007/BF02830395
      Wei, C. Y., Li, C. A., Kang, C. G., et al., 2015. Grain⁃Size Characteristics and Genesis of the Huangshan Loess in Songnen Plain Area. Earth Science, 40(12): 1945-1954 (in Chinese with English abstract).
      Wu, C. C., Wang, S. J., 2021. Sensitivity Evaluation of Soil Erosion in Lanzhou Section of the Yellow River Basin. Science Technology and Engineering, 21(29): 12390-12397 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.29.006
      Xu, J. H., 2002. Mathematical Methods in Contemporary Geography. Higher Education Press, Beijing (in Chinese).
      Yang, Z. Q., Qing, F. C., Li, L., et al., 2021. Relationship Between Soil Particle Multifractals and Water Holding Capacity Under Different Erosion Degrees in Feldspathic Sandstone Region. Soils, 53(3): 620-627(in Chinese with English abstract).
      Yue, P., Zhang, Q., Zhao, W., et al., 2015. Influence of Environmental Factors on Land⁃Surface Water and Heat Exchange During Dry and Wet Periods in the Growing Season of Semiarid Grassland on the Loess Plateau. Science China (Series D), 45(8): 1229-1242 (in Chinese with English abstract).
      Zhang, A. H., Ding, J. L., Wang, J. Z., et al., 2019. Fractal and Multifractal Analysis on Saline Soil Particle Size Distribution in Arid Oasis. Arid Zone Research, 36(2): 314-322 (in Chinese with English abstract).
      Zhao, W. Z., Liu, Z. M., Cheng, G. D., 2002. Fractal Dimension of Soil for Sand Desertification, Acta Pedologica Sinica, 39(6): 877-881 (in Chinese with English abstract). doi: 10.3321/j.issn:0564-3929.2002.06.014
      戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345
      代豫杰, 李锦荣, 郭建英, 等, 2017. 乌兰布和沙漠不同灌丛土壤颗粒多重分形特征及其与有机碳分布的关系. 环境科学研究, 30(7): 1069-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201707010.htm
      冯瑞, 郭月峰, 张霞, 等, 2017. 敖汉旗两种主要土壤类型的土壤机械组成. 农业工程, 7(6): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGE201706042.htm
      高君亮, 高永, 罗凤敏, 等, 2014. 表土粒度特征对风蚀荒漠化的响应. 科技导报, 32(25): 20-25. doi: 10.3981/j.issn.1000-7857.2014.25.002
      郭树江, 杨自辉, 王多泽, 等, 2018. 民勤绿洲‒荒漠过渡带土壤粒径分形特征研究. 中国水土保持, (10): 53-56, 68. doi: 10.3969/j.issn.1000-0941.2018.10.017
      郭士维, 钟斌, 许文年, 等, 2022. 不同土地利用方式下粉壤土粒径分形特征: 以鄂西典型小流域下牢溪为例. 中国水土保持科学, 20(1): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC202201004.htm
      贺燕, 2020. 祁连山区中西部土壤质量及侵蚀特征研究(硕士学位论文). 兰州: 兰州大学, 29-33.
      胡云锋, 刘纪远, 庄大方, 等, 2005. 不同土地利用/土地覆盖下土壤粒径分布的分维特征. 土壤学报, 42(2): 336-339. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200502024.htm
      蒋嘉瑜, 刘任涛, 张安宁, 2021. 干旱与半干旱荒漠草原区柠条灌丛土壤分形维数与理化性质对比分析. 水土保持研究, 28(4): 54-61, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104009.htm
      兰龙焱, 马丽丽, 郭晓敏, 等, 2022. 赣南不同草地类型区土壤粒径分布及分形特征. 江西农业大学学报, 44(1): 222-232. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND202201024.htm
      李国旗, 赵盼盼, 邵文山, 等, 2018. 封育对荒漠草原沙芦草群落土壤粒径分形维数及理化性质的影响. 草地学报, 26(3): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201803005.htm
      刘红梅, 吕世杰, 任倩楠, 等, 2021. 巴丹吉林沙漠梭梭林下沙质土壤的粒径变化和空间分布特征研究. 草地学报, 29(6): 1249-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU202106016.htm
      马海芸, 雍雅明, 刘宗盛, 2012. 干旱半干旱区退耕还林还草工程效益综合评价: 以榆中县为例. 草业科学, 29(9): 1359-1367. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201209008.htm
      齐雁冰, 常庆瑞, 惠泱河, 2007. 人工植被恢复荒漠化逆转过程中土壤颗粒分形特征. 土壤学报, 44(3): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200703026.htm
      宛倩, 王杰, 王向涛, 等, 2022. 青藏高原不同草地利用方式对土壤粒径分形特征的影响. 生态学报, 42(5): 1716-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202205005.htm
      王德, 傅伯杰, 陈利顶, 等, 2007. 不同土地利用类型下土壤粒径分形分析: 以黄土丘陵沟壑区为例. 生态学报, 27(7): 3081-3089. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200707052.htm
      魏传义, 李长安, 康春国, 等, 2015. 哈尔滨黄山黄土粒度特征及其对成因的指示. 地球科学, 40(12): 1945-1954. doi: 10.3799/dqkx.2015.175
      武翠翠, 王世杰, 2021. 黄河流域兰州段土壤侵蚀敏感性评价. 科学技术与工程, 21(29): 12390-12397. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202129006.htm
      徐建华, 2002. 现代地理学中的数学方法. 北京: 高等教育出版社.
      杨振奇, 秦富仓, 李龙, 等, 2021. 砒砂岩区不同侵蚀程度表土多重分形特征与持水特性关系. 土壤, 53(3): 640-647. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202103023.htm
      岳平, 张强, 赵文, 等, 2015. 黄土高原半干旱草地生长季干湿时段环境因子对陆面水、热交换的影响. 中国科学(D辑), 45(8): 1229-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508012.htm
      张桉赫, 丁建丽, 王敬哲, 等, 2019. 干旱区绿洲盐渍土粒径分布单重分形和多重分形特征. 干旱区研究, 36(2): 314-322. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201902006.htm
      赵文智, 刘志民, 程国栋, 2002. 土地沙质荒漠化过程的土壤分形特征. 土壤学报, 39(6): 877-881. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200206013.htm
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  587
    • HTML全文浏览量:  590
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-27
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回