• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地热水中多种甲基硫代砷酸盐的同时定量测定

    郭清海 孟越 严克涛

    郭清海, 孟越, 严克涛, 2023. 地热水中多种甲基硫代砷酸盐的同时定量测定. 地球科学, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250
    引用本文: 郭清海, 孟越, 严克涛, 2023. 地热水中多种甲基硫代砷酸盐的同时定量测定. 地球科学, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250
    Guo Qinghai, Meng Yue, Yan Ketao, 2023. Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water. Earth Science, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250
    Citation: Guo Qinghai, Meng Yue, Yan Ketao, 2023. Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water. Earth Science, 48(3): 1138-1145. doi: 10.3799/dqkx.2022.250

    地热水中多种甲基硫代砷酸盐的同时定量测定

    doi: 10.3799/dqkx.2022.250
    基金项目: 

    国家自然科学基金项目 42077278

    国家自然科学基金项目 41861134028

    详细信息
      作者简介:

      郭清海,(1978-),男,教授,博士生导师,主要从事高温地热系统地球化学方向的研究工作.ORCID:0000-0001-6602-9664. E-mail:qhguo2006@gmail.com

    • 中图分类号: P314

    Simultaneous Quantitative Analysis of Multiple Methylthiolated Arsenates in Geothermal Water

    • 摘要: 地热水中的砷含量常远超过其他类型天然水体,其形态分析具有重要环境地球化学意义;甲基硫代砷酸盐在特定水环境条件下可能成为砷的一种不可忽视的形态,但其环境地球化学研究几为空白.本研究合成了甲基硫代砷酸盐标准,建立了可同时定量测试天然水中多种甲基硫代砷酸盐(包括一甲基一硫代砷酸盐、一甲基二硫代砷酸盐、一甲基三硫代砷酸盐、二甲基一硫代砷酸盐、二甲基二硫代砷酸盐)及砷的其他常见形态的离子色谱‒电感耦合等离子体质谱联用系统(IC-ICP-MS)及其方法,并分析了典型地热水样品中砷的形态分布,可为今后不同类型水环境中甲基硫代砷酸盐的地球化学研究奠定分析方法基础.

       

    • 图  1  三种甲基硫代砷酸盐合成产物溶液的ESI-HR-MS谱图

      Fig.  1.  Analytical ESI-HR-MS results of the solution samples of three synthetic solid methylthiolated arsenates

      图  2  甲基/无机硫代砷酸盐合成产物溶液的IC-ICP-MS谱图

      黑色倒三角为目标砷形态色谱峰;灰色倒三角为商业标准砷形态色谱峰

      Fig.  2.  Analytical IC-ICP-MS results of the solution samples of synthetic solid methylated and inorganic thioarsenates

      图  3  高初始S/As比条件下MMA(Ⅴ)巯基化最终产物的IC-ICP-MS谱图

      初始S/As摩尔比为20;pH为3;反应时间为4 h;实线为产物谱图,虚线为砷或硫的标准物质在本测试方法下的谱图

      Fig.  3.  Analytical IC-ICP-MS results of final products of MMA(Ⅴ) thiolation at a high initial S/As ratio

      图  4  高初始S/As比条件下MMA(Ⅴ)巯基化反应最终产物的ESI-HR-MS谱图

      初始S/As摩尔比为20;pH为3;反应时间为4 h

      Fig.  4.  Analytical ESI-HR-MS results of final products of MMA(Ⅴ) thiolation at a high initial S/As ratio

      图  5  四种标准砷形态测试标准曲线

      Fig.  5.  Calibration curves for quantitative analysis of four standard arsenic species

      图  6  龙陵邦腊掌代表性地热水样品中甲基硫代砷酸盐形态分析结果

      Fig.  6.  Analytical results of methylthiolated arsenates in a typical geothermal water sample collected from the Banglazhang hydrothermal area, Longling

      表  1  各种甲基硫代砷酸盐及其脱质子产物的理论质荷比

      Table  1.   Theoretic mass to charge ratios of various methylthiolated arsenates and their deprotonated products

      砷形态 化学结构式 理论m/z
      一甲基一硫代砷酸盐(MMMTA) H2AsS(CH3)O2 -
      HAsS(CH3)O2- 154.915 3
      AsS(CH3)O22- 76.954 0
      二甲基一硫代砷酸盐(DMMTA) HAsS(CH3)2O -
      AsS(CH3)2O- 152.936 1
      二甲基二硫代砷酸盐(DMDTA) HAsS2(CH3)2 -
      AsS2(CH3)2- 168.913 2
      下载: 导出CSV
    • Ackerman, A. H., Creed, P. A., Parks, A. N., et al., 2005. Comparison of a Chemical and Enzymatic Extraction of Arsenic from Rice and an Assessment of the Arsenic Absorption from Contaminated Water by Cooked Rice. Environmental Science & Technology, 39(14): 5241-5246. https://doi.org/10.1021/es048150n
      Burton, E. D., Johnston, S. G., Planer-Friedrich, B., 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      Guo, Q. H., Cao, Y. W., Li, J. X., et al., 2015. Natural Attenuation of Geothermal Arsenic from Yangbajain Power Plant Discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62: 164-170. https://doi.org/10.1016/j.apgeochem.2015.01.017
      Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High‐Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297 (in Chinese with English abstract).
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008
      Hansen, H. R., Raab, A., Jaspars, M., et al., 2004. Sulfur-Containing Arsenical Mistaken for Dimethylarsinous Acid [DMA(Ⅲ)]and Identified as a Natural Metabolite in Urine: Major Implications for Studies on Arsenic Metabolism and Toxicity. Chemical Research in Toxicology, 17(8): 1086-1091. https://doi.org/10.1021/tx049978q
      Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chemical Research in Toxicology, 28(9): 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268
      Naranmandura, H., Suzuki, N., Suzuki, K. T., 2006. Trivalent Arsenicals are Bound to Proteins during Reductive Methylation. Chemical Research in Toxicology, 19(8): 1010-1018. https://doi.org/10.1021/tx060053f
      Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      Stauder, S., Raue, B., Sacher, F., 2005. Thioarsenates in Sulfidic Waters. Environmental Science & Technology, 39(16): 5933-5939. https://doi.org/10.1021/es048034k
      Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
      Styblo, M., Serves, S. V., Cullen, W. R., et al., 1997. Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 10(1): 27-33. https://doi.org/10.1021/tx960139g
      Suess, E., Wallschläger, D., Planer-Friedrich, B., 2015. Anoxic, Ethanolic, and Cool-An Improved Method for Thioarsenate Preservation in Iron-Rich Waters. Applied Geochemistry, 62: 224-233. https://doi.org/10.1016/j.apgeochem.2014.11.017
      Suess, E., Planer-Friedrich, B., 2012. Thioarsenate Formation Upon Dissolution of Orpiment and Arsenopyrite. Chemosphere, 89(11): 1390-1398. https://doi.org/10.1016/j.chemosphere.2012.05.109
      Suess, E., Wallschläger, D., Planer-Friedrich, B., 2011. Stabilization of Thioarsenates in Iron-Rich Waters. Chemosphere, 83(11): 1524-1531. https://doi.org/10.1016/j.chemosphere.2011.01.045
      Suzuki, K. T., Iwata, K., Naranmandura, H., Suzuki, N., 2007. Metabolic Differences between Two Dimethylthioarsenicals in Rats. Toxicology and Applied Pharmacology, 218(2): 166-173. https://doi.org/10.1016/j.taap.2006.10.027
      Suzuki, K. T., Mandal, B. K., Katagiri, A., et al., 2004. Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology, 17(7): 914-921. https://doi.org/10.1021/tx049963s
      Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
      Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42(1): 228-234. https://doi.org/10.1021/es0707815
      Wang, M. D., Guo, Q. H., Guo, W., et al., 2016. Synthesis, Identification and Quantitative Analysis of Aqueous Thioarsenates. Chinese Journal of Analytical Chemistry, 44(11): 1715-1720 (in Chinese with English abstract).
      Wang, Y., Xu, L. Y., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenite at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 43 (in Chinese).
      Xiao, F., Jia, Y. F., 2015. Study on the Adsorption Behavior of Thioarsenate at the Water-Mineral Interface in an Anaerobic Environment. Journal of Jilin University (Earth Science Edition), 45 (Suppl. 1): 42 (in Chinese).
      Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High‐Temperature, Sulfide‐Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. doi: 10.3799/dqkx.2017.021
      王敏黛, 郭清海, 郭伟, 等, 2016. 硫代砷化物的合成、鉴定和定量分析方法研究. 分析化学, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
      王莹, 许丽英, 贾永锋, 2015. 厌氧环境中硫代亚砷在水‒矿物界面的吸附行为研究. 吉林大学学报(地球科学版), 45(Suppl. 1): 43. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002167.htm
      肖翻, 贾永锋, 2015. 厌氧环境中硫代As (Ⅴ) 在水‒矿物界面的吸附研究. 吉林大学学报(地球科学版), 45 (Suppl. 1): 42. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506002166.htm
      庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学, 41(9): 1499-1510. doi: 10.3799/dqkx.2016.513
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  458
    • HTML全文浏览量:  420
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-14
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回