• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    祁连山不同草地类型区土壤有机碳组份的差异

    梁冰妍 徐海燕 吴晓东 种碧莹 甘子鹏 薛守业

    梁冰妍, 徐海燕, 吴晓东, 种碧莹, 甘子鹏, 薛守业, 2024. 祁连山不同草地类型区土壤有机碳组份的差异. 地球科学, 49(4): 1487-1497. doi: 10.3799/dqkx.2022.261
    引用本文: 梁冰妍, 徐海燕, 吴晓东, 种碧莹, 甘子鹏, 薛守业, 2024. 祁连山不同草地类型区土壤有机碳组份的差异. 地球科学, 49(4): 1487-1497. doi: 10.3799/dqkx.2022.261
    Liang Bingyan, Xu Haiyan, Wu Xiaodong, Chong Biying, Gan Zipeng, Xue Shouye, 2024. Differences of Soil Organic Carbon Components in Different Grassland Types of Qilian Mountain. Earth Science, 49(4): 1487-1497. doi: 10.3799/dqkx.2022.261
    Citation: Liang Bingyan, Xu Haiyan, Wu Xiaodong, Chong Biying, Gan Zipeng, Xue Shouye, 2024. Differences of Soil Organic Carbon Components in Different Grassland Types of Qilian Mountain. Earth Science, 49(4): 1487-1497. doi: 10.3799/dqkx.2022.261

    祁连山不同草地类型区土壤有机碳组份的差异

    doi: 10.3799/dqkx.2022.261
    基金项目: 

    国家自然科学基金项目 41861011

    国家自然科学基金项目 41871060

    详细信息
      作者简介:

      梁冰妍(1997-),女,硕士研究生,主要从事土壤生态学研究.ORCID:0000-0002-4948-366X. E-mail:11200071@stu.lzjtu.edu.cn

      通讯作者:

      徐海燕,E-mail:hyxu12@163.com

    • 中图分类号: P66

    Differences of Soil Organic Carbon Components in Different Grassland Types of Qilian Mountain

    • 摘要: 为明确高寒地区土壤有机碳库的组成及稳定程度,选择祁连山地区3种草地类型区(高寒草甸、高寒草原和高寒沼泽草甸)为研究对象,分层对0~50 cm土壤中重组、轻组组分进行分离提取,测定并分析重组有机碳(heavy fraction organic carbon,HFOC)和轻组有机碳(light fraction organic carbon,LFOC)含量.结果表明,不同草地类型对土壤HFOC和LFOC含量及其分配的影响不同,HFOC、LFOC含量在土层间均具有明显的垂直变化,呈上高下低趋势,各区域间差异明显;高寒沼泽草甸LFOC含量最高,高寒草原次之,高寒草甸最低,即不同草地类型区土壤有机碳库稳定程度大小依次为:高寒草甸 > 高寒草原 > 高寒沼泽草甸;土壤pH、含水率、TC、SOC、TN含量与C/N值与土壤HFOC、LFOC含量呈极显著相关(p < 0.01).综上,祁连山草地生态系统土壤有机碳库组成及稳定程度受草地类型、土壤理化性质及环境变量影响.

       

    • 图  1  研究区位置及采样点分布

      Z1,Z2,Z3为高寒沼泽草甸;Y1,Y2,Y3为高寒草原;D1,D2,D3为高寒草甸.青藏高原植被分类数据来源(Wang et al., 2016

      Fig.  1.  Location and sampling site distribution of the study area

      图  2  不同草地类型区0~50 cm深度土壤颗粒组成

      Fig.  2.  Compositions of soil particles in 0-50 cm soil depth in different grassland types

      图  3  不同草地类型区重、轻组有机碳含量垂直分布

      a.高寒沼泽草甸;b.高寒草原;c.高寒草甸

      Fig.  3.  Vertical distribution of heavy and light fraction organic carbon in different grassland types

      图  4  不同草地类型区轻组有机碳分配比例变化

      Fig.  4.  Changes of distribution proportion of light fraction organic carbon in different grassland types

      图  5  重组有机碳、轻组有机碳与土壤变量间的相关性

      HFOC.重组有机碳;LFOC.轻组有机碳;TC.总碳;SOC.土壤有机碳;TN.总氮;C/N.碳氮比

      Fig.  5.  Correlations between heavy fraction organic carbon, light fraction organic carbon and soil variables

      表  1  采样点信息

      Table  1.   Information of sampling points

      样点 经度 纬度 海拔(m) 草地类型 主要植物种类 地上生物量(g/cm3) 地下生物量(g/cm3)
      Z1 98°44′ 38°46′ 4 072 高寒沼泽草甸 高山嵩草、黑褐穗薹草 141.60 6 602.55
      Z2 98°45′ 38°47′ 4 002 高寒沼泽草甸 高山嵩草、华扁穗草 182.24 6 207.64
      Z3 98°48′ 38°49′ 3 900 高寒沼泽草甸 高山嵩草、黑褐穗薹草 148.00 6 034.39
      Y1 99°0′ 38°50′ 3 670 高寒草原 高山嵩草、矮生嵩草 183.84 3 337.58
      Y2 99°4′ 38°46′ 3 586 高寒草原 矮生嵩草、紫花针茅 204.64 3 601.27
      Y3 99°12′ 38°42′ 3 485 高寒草原 矮生嵩草、黄花棘豆 188.16 4 585.99
      D1 99°31′ 38°28′ 3 267 高寒草甸 矮生嵩草、紫花针茅 416.64 2 484.08
      D2 99°37′ 38°24′ 3 187 高寒草甸 矮生嵩草、青藏薹草 400.96 1 327.39
      D3 99°46′ 38°18′ 3 062 高寒草甸 矮生嵩草、垂穗披碱草 690.08 2 961.78
      下载: 导出CSV

      表  2  不同草地类型区土壤变量与理化性质特征

      Table  2.   Characteristics of soil variables and physicochemical properties in different grassland types

      植被类型 土壤深度
      (cm)
      pH 电导率
      (s·m-1)
      含水率
      (%)
      总碳TC
      (g·kg-1)
      有机碳SOC
      (g·kg-1)
      总氮TN
      (g·kg-1)
      碳氮比
      C/N
      高寒沼泽草甸 0~10 7.21±0.17 Ba 15.78±3.03 Aa 82.47±2.07 Aa 111.85±1.68 Aa 105.12±3.06 Aa 8.97±0.26 Aa 11.81±0.14 Aa
      10~20 7.50±0.16 Ba 11.33±1.87 Aa 56.73±7.05 Ab 68.68±6.63 Aa 59.44±3.10 Aa 4.72±0.40 Aa 12.39±1.05 Aa
      20~30 7.47±0.30 Ba 11.17±3.10Aa 33.26±3.60 Ac 47.74±11.25 Ab 37.23±12.16 Ab 3.61±1.12 Ab 10.17±0.29 Aa
      30~40 7.62±0.32 Ba 10.90±0.17 Ba 27.88±1.68 Ac 38.40±11.46 Bb 28.46±13.29 Bb 2.64±1.29 Bb 11.45±1.52 Aa
      40~50 7.72±0.33 Ba 9.60±0.48 Ba 23.86±1.44 Ac 41.52±14.66 Ab 30.78±16.70 Ab 2.92±1.49 Ab 9.96±0.40 Aa
      高寒草原 0~10 8.03±0.09 Ac 18.50±2.00 Aa 29.08±4.39 Ba 58.35±11.29 Ba 53.03±11.49 Ba 4.63±0.81 Ba 11.23±0.49 Aa
      10~20 8.40±0.05 Ab 12.71±0.82 Ab 33.05±6.01 Aa 28.25±2.55 Bb 22.58±2.63 Bb 2.30±0.20 Bb 9.74±0.30 Aa
      20~30 8.60±0.04 Aa 12.28±0.57 Ab 22.01±2.81 Aa 21.18±2.30 Ab 14.67±0.57 Ab 1.58±0.08 Ab 9.29±0.11 Aa
      30~40 8.72±0.03 Aa 11.73±0.27 Ab 20.33±0.77 Ba 20.35±3.24 Ab 11.60±0.86 Ab 1.31±0.09 Ab 8.86±0.06 Ab
      40~50 8.78±0.04 Aa 11.31±0.08 Ab 16.19±1.07 Bb 19.17±3.86 Ab 8.44±0.60 Ab 0.88±0.09 Ab 9.78±0.93 Aa
      高寒草甸 0~10 7.84±0.17 Ac 18.63±2.27 Aa 36.12±2.80 Ba 59.41±8.11 Ba 53.75±9.21 Ba 5.29±0.63 Ba 9.94±0.66 Aa
      10~20 8.17±0.13 Ab 19.07±2.16 Aa 27.04±0.74 Bb 47.93±5.63 Aa 40.37±3.87 Aa 4.19±0.31 Aa 9.64±0.71 Aa
      20~30 8.40±0.12 Aa 19.29±2.86 Aa 22.29±1.98 Ab 43.03±4.47 Aa 28.70±3.76 Ab 3.11±0.31 Ab 9.16±0.54 Aa
      30~40 8.65±0.11 Aa 19.03±1.99 Aa 20.21±1.55 Ab 38.78±3.58 Aa 20.13±2.13 Ab 2.14±0.18 Ac 9.34±0.21 Aa
      40~50 8.73±0.05 Aa 23.01±4.87 Aa 18.80±1.14 Ac 37.95±4.27 Aa 18.08±3.23 Ac 1.86±0.31 Ac 9.66±0.09 Aa
      注:同一列A、B表示不同草地类型区域同一土壤深度的平均值差异显著(p < 0.05).同列中a、b表示同一草地类型不同土壤深度的平均值差异显著(p < 0.05).
      下载: 导出CSV
    • Cao, H. C., Chen, R. R., Wang, L. B., et al., 2016. Soil pH, Total Phosphorus, Climate and Distance are the Major Factors Influencing Microbial Activity at a Regional Spatial Scale. Scientific Reports, 6(1): 25815. https://doi.org/10.1038/srep25815
      Chaopricha, N. T., Marín-Spiotta, E., 2014. Soil Burial Contributes to Deep Soil Organic Carbon Storage. Soil Biology and Biochemistry, 69: 251-264. https://doi.org/10.1016/j.soilbio.2013.11.011
      Chen, L. Y., Liang, J. Y., Qin, S. Q., et al., 2016. Determinants of Carbon Release from the Active Layer and Permafrost Deposits on the Tibetan Plateau. Nature Communications, 7: 13046. https://doi.org/10.1038/ncomms13046
      Dai, G. H., Ma, T., Zhu, S. S., et al., 2018. Large-Scale Distribution of Molecular Components in Chinese Grassland Soils: The Influence of Input and Decomposition Processes. Journal of Geophysical Research: Biogeosciences, 123(1): 239-255. https://doi.org/10.1002/2017jg004233
      Dixon, A. P., Faber-Langendoen, D., Josse, C., et al., 2014. Distribution Mapping of World Grassland Types. Journal of Biogeography, 41(11): 2003-2019. https://doi.org/10.1111/jbi.12381
      Fang, J. Y., Geng, X. Q., Zhao, X., et al., 2018. How Many Areas of Grasslands are There in China? Chinese Science Bulletin, 63(17): 1731-1739 (in Chinese). doi: 10.1360/N972018-00032
      Gao, S., Su, C. L., Xie, X. J., et al., 2022. Distribution Characteristics and Influencing Factors of Nitrogen in Unsaturated Zone in Salinized Area of Hetao Plain. Earth Science, 47(2): 568-576 (in Chinese with English abstract).
      Giller, G. C., 1996. Carbon Turnover (δ13C) and Nitrogen Mineralization Potential of Particulate Light Soil Organic Matter after Rainforest Clearing. Soil Biology and Biochemistry, 28(12): 1555-1567. https://doi.org/10.1016/S0038-0717(96)00264-7
      Huang, D. Q., Yu, L., Zhang, Y. S., et al., 2011. Above-Ground Biomass and Its Relationship to Soil Moisture of Natural Grassland in the Northern Slopes of the Qilian Mountains. Acta Prataculturae Sinica, 20(3): 20-27 (in Chinese with English abstract).
      Huang, Q. M., Lü, M. K., Nie, Y. Y., et al., 2020. Characteristics of Light Fraction Organic Matter in Surface Soil of Different Altitude Forests in Wuyi Mountain. Acta Ecologica Sinica, 40(17): 6215-6222 (in Chinese with English abstract).
      Janzen, H. H., Campbell, C. A., Brandt, S. A., et al., 1992. Light-Fraction Organic Matter in Soils from Long-Term Crop Rotations. Soil Science Society of America Journal, 56(6): 1799-1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x
      Jia, J., Cao, Z. J., Liu, C. Z., et al., 2019. Climate Warming Alters Subsoil But not Topsoil Carbon Dynamics in Alpine Grassland. Global Change Biology, 25(12): 4383-4393. https://doi.org/10.1111/gcb.14823
      Li, N., Wang, G. X., Yang, Y., et al., 2011. Plant Production, and Carbon and Nitrogen Source Pools, are Strongly Intensified by Experimental Warming in Alpine Ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Biochemistry, 43(5): 942-953. https://doi.org/10.1016/j.soilbio.2011.01.009
      Li, Y. Y., Dong, S. K., Wen, L., et al., 2013. The Effects of Fencing on Carbon Stocks in the Degraded Alpine Grasslands of the Qinghai-Tibetan Plateau. Journal of Environmental Management, 128: 393-399. https://doi.org/10.1016/j.jenvman.2013.05.058
      Li. J., Wen, Y. C., Li, X. H., et al., 2018. Soil Labile Organic Carbon Fractions and Soil Organic Carbon Stocks as Affected by Long-Term Organic and Mineral Fertilization Regimes in the North China Plain. Soil and Tillage Research, 175: 281-290. https://doi.org/10.1016/j.still.2017.08.008
      Liao, Y., Yang, Z. F., Xia, X. Q., et al., 2011. Research on Temperature Sensitivity of Soil Respiration and Different Active Organic Carbon Fractions of Qinghai-Tibet Plateau Permafrost. Earth Science Frontiers, 18(6): 85-93 (in Chinese with English abstract).
      Liu, L. L., Greaver, T. L., 2010. A Global Perspective on Belowground Carbon Dynamics under Nitrogen Enrichment. Ecology Letters, 13(7): 819-828. https://doi.org/10.1111/j.1461-0248.2010.01482.x
      Liu, G. M., Zhang, X. L., Wu, T. H., et al., 2019. Seasonal Changes in Labile Organic Matter as a Function of Environmental Factors in a Relict Permafrost Region on the Qinghai-Tibetan Plateau. CATENA, 180: 194-202. https://doi.org/10.1016/j.catena.2019.04.026
      Ma, T., Dai, G. H., Zhu, S. S., et al., 2019. Distribution and Preservation of Root- and Shoot-Derived Carbon Components in Soils across the Chinese-Mongolian Grasslands. Journal of Geophysical Research: Biogeosciences, 124(2): 420-431. https://doi.org/10.1029/2018jg004915
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Meijboom, F. W., 1995. Density Fractionation of Soil Macroorganic Matter Using Silica Suspensions. Soil Biology and Biochemistry, 27(8): 1109-1111. https://doi.org/10.1016/0038-0717(95)00028-d
      Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071
      Shang, W., Wu, X. D., Zhao, L., et al., 2016. Seasonal Variations in Labile Soil Organic Matter Fractions in Permafrost Soils with Different Vegetation Types in the Central Qinghai-Tibet Plateau. CATENA, 137: 670-678. https://doi.org/10.1016/j.catena.2015.07.012
      Shi, Y., Baumann, F., Ma, Y., et al., 2012. Organic and Inorganic Carbon in the Topsoil of the Mongolian and Tibetan Grasslands: Pattern, Control and Implications. Biogeosciences, 9(6): 2287-2299. https://doi.org/10.5194/bg-9-2287-2012
      Spawn, S. A., Sullivan, C. C., Lark, T. J., et al., 2020. Harmonized Global Maps of above and Belowground Biomass Carbon Density in the Year 2010. Scientific Data, 7(1): 112. https://doi.org/10.1038/s41597-020-0444-4
      Tang, L., Dong, S. K., Liu, S. L., et al., 2015. The Relationship between Soil Physical Properties and Alpine Plant Diversity on Qinghai-Tibet Plateau. Eurasian Journal of Soil Science (EJSS), 4(2): 88. https://doi.org/10.18393/ejss.31228
      Tao, L. H., 2016. The Dynamic of Ecological Parameters of Alpine Meadow and Its Relationship with Altitude (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Wang, Z. W., Wang, Q., Zhao, L., et al., 2016. Mapping the Vegetation Distribution of the Permafrost Zone on the Qinghai-Tibet Plateau. Journal of Mountain Science, 13(6): 1035-1046. https://doi.org/10.1007/s11629-015-3485-y
      Wu, J. G., Zhang, X. Q., Wang, Y. H., et al., 2002. The Effects of Land Use Changes on the Distribution of Soil Organic Carbon in Physical Fractionation of Soil. Scientia Silvae Sinicae, 38(4): 19-29 (in Chinese with English abstract).
      Wu, T. Y., Jeff, J. S., Li, F. M., et al., 2004. Influence of Cultivation and Fertilization on Total Organic Carbon and Carbon Fractions in Soils from the Loess Plateau of China. Soil and Tillage Research, 77(1): 59-68. https://doi.org/10.1016/j.still.2003.10.002
      Wu, X. D., Zhao, L., Hu, G. J., et al., 2018. Permafrost and Land Cover as Controlling Factors for Light Fraction Organic Matter on the Southern Qinghai-Tibetan Plateau. Science of the Total Environment, 613/614: 1165-1174. https://doi.org/10.1016/j.scitotenv.2017.09.052
      Xie, J. S., Yang, Y. S., Xie, M. S., et al., 2008. Effects of Vegetation Restoration on Soil Organic Matter of Light Fraction in Eroded Deraded Red Soil in Subtropics of China. Acta Pedologica Sinica, 29(4): 534-536. doi: 10.1097/00005373-198904000-00024
      Yang, Y. H., Fang, J. Y., Tang, Y. H., et al., 2008. Storage, Patterns and Controls of Soil Organic Carbon in the Tibetan Grasslands. Global Change Biology, 14(7): 1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x
      Yang, Y., Chen, R. S., Ji, X. B., 2007. Variations of Glaciers in the Yeniugou Watershed of Heihe River Basin from 1956 to 2003. Journal of Glaciology and Geocryology, 29(1): 100-106 (in Chinese with English abstract).
      Zhang, F., Fan, C. Y., Mu, C. C., et al., 2021. Influences of Snow Cover on the Thermal State of the Active Layer in the Upper Reaches of the Heihe River in the Qilian Mountains. Journal of Glaciology and Geocryology, 43(6): 1628-1640 (in Chinese with English abstract).
      Zhang, G., Cao, Z. P., Hu, C. J., 2011. Soil Organic Carbon Fractionation Methods and Their Applications in Farmland Ecosystem Research: A Review. Chinese Journal of Applied Ecology, 22(7): 1921-1930 (in Chinese with English abstract).
      Zhang, L. G., Chen, X., Xu, Y. J., et al., 2020. Soil Labile Organic Carbon Fractions and Soil Enzyme Activities after 10 Years of Continuous Fertilization and Wheat Residue Incorporation. Scientific Reports, 10: 11318. https://doi.org/10.1038/s41598-020-68163-3
      Zhang, L. M., Xu, M. G., Lou, Y. L., et al., 2014. Soil Organic Carbon Fractionation Methods. Soil and Fertilizer Sciences in China, (4): 1-6 (in Chinese with English abstract).
      方精云, 耿晓庆, 赵霞, 等, 2018. 我国草地面积有多大? 科学通报, 63(17): 1731-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201817014.htm
      高爽, 苏春利, 谢先军, 等, 2022. 河套平原盐渍化地区非饱和带氮的分布特征及影响因素. 地球科学, 47(2): 568-576. doi: 10.3799/dqkx.2021.036
      黄德青, 于兰, 张耀生, 等, 2011. 祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究. 草业学报, 20(3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201103004.htm
      黄桥明, 吕茂奎, 聂阳意, 等, 2020. 武夷山不同海拔森林表层土壤轻组有机质特征. 生态学报, 40(17): 6215-6222. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202017034.htm
      廖艳, 杨忠芳, 夏学齐, 等, 2011. 青藏高原冻土土壤呼吸温度敏感性和不同活性有机碳组分研究. 地学前缘, 18(6): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201106013.htm
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      陶林浩, 2016. 海拔对高寒草甸生态参数季节性变化的影响: 以野牛沟流域为例(硕士学位论文). 兰州: 兰州大学.
      吴建国, 张小全, 王彦辉, 等, 2002. 土地利用变化对土壤物理组分中有机碳分配的影响. 林业科学, 38(4): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200204003.htm
      阳勇, 陈仁升, 吉喜斌, 2007. 近几十年来黑河野牛沟流域的冰川变化. 冰川冻土, 29(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200701014.htm
      张凤, 范成彦, 牟翠翠, 等, 2021. 积雪对祁连山区黑河上游活动层热状态的影响研究. 冰川冻土, 43(6): 1628-1640. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202106002.htm
      张国, 曹志平, 胡婵娟, 2011. 土壤有机碳分组方法及其在农田生态系统研究中的应用. 应用生态学报, 22(7): 1921-1930. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201107038.htm
      张丽敏, 徐明岗, 娄翼来, 等, 2014. 土壤有机碳分组方法概述. 中国土壤与肥料, (4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201404001.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  219
    • HTML全文浏览量:  47
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-03
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回