Response of Different Types of Vegetation Changes to Drought in Eastern Inner Mongolia Based on Transfer Function Analysis
-
摘要: 为了量化不同类型植被与干旱的响应关系,首先采用回归模式降尺度方法获取内蒙古地区1982-2019年1 km分辨率的归一化植被指数(normalized difference vegetation index,NDVI)数据集,并计算标准化降水蒸发指数(standardized precipitation evapotranspiration index,SPEI)以表征干旱状况;然后,利用转移函数分析(transfer function analysis,TFA)频域技术进行内蒙古东部不同类型植被变化对干旱响应的存在性、强度和时滞性的研究.发现在年、6个月和3个月尺度上,草地、灌木、阔叶林和针叶林NDVI与SPEI的相干性分别为0.44、0.57、0.31,0.43、0.60、0.32,0.30、0.19、0.14和0.20、0.13、0.10;各类型植被NDVI对干旱的响应强度表现为灌木 > 草地 > 阔叶林 > 针叶林;草地、灌木、阔叶林和针叶林在3个时间尺度上滞后干旱的时间分别为31 d、20 d、12 d,77 d、28 d、34 d,120 d、69 d、57 d和179 d、103 d、65 d.研究结果表明:草地和灌木与干旱的相干性显著,响应强度较大,响应速度更快;而针叶林和阔叶林与干旱的相干性较低,其对干旱的抵抗力较强,对干旱的响应时间较长,受干旱影响较小.Abstract: To quantify the response relationships between different types of vegetation and drought, firstly, the dataset of normalized difference vegetation index (NDVI) with a resolution of 1 km in Inner Mongolia from 1982 to 2019 was obtained through regression model downscaling method and standardized precipitation evapotranspiration index (SPEI) was calculated for characterizing drought conditions. Then, the frequency domain technique of transfer function analysis (TFA) was used to explore the existence, intensity and time delay of the response of different types of vegetation changes to drought in eastern Inner Mongolia. It was found that the coherence between NDVI and SPEI of grassland, shrub, broad-leaved forest and coniferous forest was 0.44, 0.57, 0.31, 0.43, 0.60, 0.32, 0.30, 0.19, 0.14 and 0.20, 0.13, 0.10 on annual, 6 months and 3 months scales, respectively. The response intensity of NDVI of various types of vegetation to drought showed that the shrub was stronger than that of grassland. The following was broad-leaved forest. The response intensity of NDVI of coniferous forest was weakest. The lag times of the NDVI of grassland, shrub, broad-leaved forest and coniferous forest on drought at three time scales for were 31, 20, 12 days, 77, 28, 34 days, 120, 69, 57 days and 179, 103, 65 days, respectively. The results show that grassland and shrub have significant coherence with drought, strong response intensity and faster response speed. However, coniferous forest and broad-leaved forest have low coherence with drought, strong resistance to drought, long response time to drought and less affected by drought.
-
Key words:
- NDVI /
- SPEI /
- drought /
- transfer function analysis /
- response relationships /
- remote sensing /
- ecology
-
表 1 1999年1~12月SPOT NDVI与降尺度后的GIMMS NDVI的相关系数
Table 1. Correlation coefficients between SPOT NDVI and the downscaled GIMMS NDVI from January to December in 1999
月份 皮尔逊相关系数(r) 1月 0.78 2月 0.79 3月 0.88 4月 0.92 5月 0.96 6月 0.98 7月 0.98 8月 0.98 9月 0.97 10月 0.93 11月 0.88 12月 0.81 -
An, Q., He, H. X., Nie, Q. W., et al., 2020. Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water, 12(6): 1715. https://doi.org/10.3390/w12061715 Barbosa, H. A., Lakshmi Kumar, T. V., Paredes, F., et al., 2019. Assessment of Caatinga Response to Drought Using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008-2016). ISPRS Journal of Photogrammetry and Remote Sensing, 148: 235-252. https://doi.org/10.1016/j.isprsjprs.2018.12.014 Beguería, S., Vicente-Serrano, S. M., Fergus, R., et al., 2014. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. International Journal of Climatology, 34(10): 3001-3023. https://doi.org/10.1002/joc.3887 Cai, S. H., Song, X. N., Hu, R. H., et al., 2021. Ecosystem-Dependent Responses of Vegetation Coverage on the Tibetan Plateau to Climate Factors and Their Lag Periods. ISPRS International Journal of Geo-Information, 10(6): 394. https://doi.org/10.3390/ijgi10060394 Cao, X., Liu, Y., Liu, Q. X., et al., 2018. Estimating the Age and Population Structure of Encroaching Shrubs in Arid/Semiarid Grasslands Using High Spatial Resolution Remote Sensing Imagery. Remote Sensing of Environment, 216: 572-585. https://doi.org/10.1016/j.rse.2018.07.025 Claassen, J. A., Meel-van den Abeelen, A. S., Simpson, D. M., et al., 2016. Transfer Function Analysis of Dynamic Cerebral Autoregulation: A White Paper from the International Cerebral Autoregulation Research Network. Journal of Cerebral Blood Flow and Metabolism, 36(4): 665-680. https://doi.org/10.1177/0271678x15626425 Cui, L. F., Wang, L. C., Qu, S., et al., 2020. Impacts of Temperature, Precipitation and Human Activity on Vegetation NDVI in Yangtze River Basin, China. Earth Science, 45(6): 1905-1917 (in Chinese with English abstract). Dai, S. P., Zhang, B., Wang, H. J., et al., 2010. Analysis on the Spatio-Temporal Variation of Grassland Cover Using SPOT NDVI in Qilian Mountains. Progress in Geography, 29(9): 1075-1080 (in Chinese with English abstract). Holben, B. N., 1986. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. International Journal of Remote Sensing, 7(11): 1417-1434. https://doi.org/10.1080/01431168608948945 Huth, R., 2002. Statistical Downscaling of Daily Temperature in Central Europe. Journal of Climate, 15(13): 1731-1731. https://doi.org/10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2 doi: 10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2 Jia, K., Liang, S. L., Zhang, L., et al., 2014. Forest Cover Classification Using Landsat ETM+ Data and Time Series MODIS NDVI Data-Science Direct. International Journal of Applied Earth Observation and Geoinformation, 33: 32-38. https://doi.org/10.1016/j.jag.2014.04.015 Jones, J. A., Creed, I. F., Hatcher, K. L., et al., 2012. Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites. BioScience, 62(4): 390-404. https://doi.org/10.1525/bio.2012.62.4.10 Khatri-Chhetri, P., Hendryx, S. M., Hartfield, K. A., et al., 2021. Assessing Vegetation Response to Multi-Scalar Drought across the Mojave, Sonoran, Chihuahuan Deserts and Apache Highlands in the Southwest United States. Remote Sensing, 13(6): 1103. https://doi.org/10.3390/rs13061103 Kong, D. D., Zhang, Q., Gu, X. H., et al., 2016. Vegetation Responses to Drought at Different Time Scales in China. Acta Ecologica Sinica, 36(24): 7908-7918 (in Chinese with English abstract). Li, C. L., Filho, W. L., Yin, J., et al., 2018. Assessing Vegetation Response to Multi-Time-Scale Drought across Inner Mongolia Plateau. Journal of Cleaner Production, 179: 210-216. https://doi.org/10.1016/j.jclepro.2018.01.113 Li, Q. P., Ding, Y. H., 2004. Research Progress in the Effect of Vegetation Change on Regional Climate. Journal of Nanjing Institute of Meteorology, (1): 131-140 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7097.2004.01.018 Liu, J., Wen, Z. M., Gang, C. C., 2020. Normalized Difference Vegetation Index of Different Vegetation Cover Types and Its Responses to Climate Change in the Loess Plateau. Acta Ecologica Sinica, 40(2): 678-691 (in Chinese with English abstract). Liu, S. L., Wang, T., Kang, W. P., et al., 2019. Vegetation Change and Its Response to Drought in InnerMongolia of Northern China from 1998 to 2013. Sciences in Cold and Arid Regions, 11(6): 448-460. https://doi.org/10.3724/SP.J.1226.2019.00448 Liu, Y. Q., 2016. Impacts of Vegetation on Drought Trends. Chinese Journal of Atmospheric Sciences, 40(1): 142-156 (in Chinese with English abstract). Miao, B. L., Li, Z. Y., Liang, C. Z., et al., 2018. Temporal and Spatial Heterogeneity of Drought Impact on Vegetation Growth on the Inner Mongolian Plateau. The Rangeland Journal, 40(2): 113-128. https://doi.org/10.1071/RJ16097 Mu, S. J., Li, J. L., Chen, Y. Z., et al., 2012. Spatial Differences of Variations of Vegetation Coverage in Inner Mongolia during 2001-2010. Acta Geographica Sinica, 67(9): 1255-1268 (in Chinese with English abstract). Peng, S., Ding, Y., Liu, W., et al., 2019. 1 km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth System Science Data, 11(4): 1931-1946. https://doi.org/10.5194/essd-11-1931-2019 Prieto, G. A., Parker, R. L., Vernon, F. L., 2009. A Fortran 90 Library for Multitaper Spectrum Analysis. Computers and Geosciences, 35(8): 1701-1710. https://doi.org/10.1016/j.cageo.2008.06.007 Qin, Y., Zhang, T. B., Yi, G. H., et al., 2021. Remote Sensing Monitoring and Analysis of Influencing Factors of Drought in Inner Mongolia Growing Season since 2000. Journal of Natural Resources, 36(2): 459-475 (in Chinese with English abstract). doi: 10.31497/zrzyxb.20210215 Shu, L. L., Tao, W., Wen, P. K., et al., 2019. Vegetation Change and Its Response to Drought in Inner Mongolia of Northern China from 1998 to 2013. Sciences in Cold and Arid Regions, 11(6): 448-460. Sun, Y. L., Guo, P., Yan, X. D., et al., 2010. Dynamics of Vegetation Cover and Its Relationship with Climate Change and Human Activities in Inner Mongolia. Journal of Natural Resources, 25(3): 407-414 (in Chinese with English abstract). Tollefson, J., 2021. IPCC Climate Report: Earth is Warmer than It's been in 125, 000 Years. Nature, 596(7871): 171-172. https://doi.org/10.1038/d41586-021-02179-1 Tong, S. Q., 2019. Spatio-Temporal Variations and Prediction of Meteorological Drought in Inner Mongolia under Climate Change (Dissertation). Northeast Normal University, Changchun (in Chinese with English abstract). Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7): 1696-1718. https://doi.org/10.1175/2009JCLI2909.1 Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., et al., 2013. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proceedings of the National Academy of Sciences of the United States of America, 110(1): 52-57. https://doi.org/10.1073/pnas.1207068110 Vicente-Serrano, S. M., Schrier, G. V., Beguería, S., et al., 2015. Contribution of Precipitation and Reference Evapotranspiration to Drought Indices under Different Climates. Journal of Hydrology, 526: 42-54. https://doi.org/10.1016/j.jhydrol.2014.11.025 Wang, Q. C., Li, F. X., Liu, B. K., et al., 2015. Variation in Drought and Its Response to Climate Warming in Qinghai Plateau in Recent 50 Years. Arid Zone Research, 32(1): 65-72 (in Chinese with English abstract). Xiang, F. F., Wang, L. C., Yao, R., et al., 2018. The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area. Earth Science, 43(S1): 42-52 (in Chinese with English abstract). Yang, J. Z., Zhou, X., Xiong, J., et al., 2020. Evaluation of NDVI Downscaling Adaptability in Wujiang River Basin, Guizhou. Remote Sensing Information, 35(6): 129-137 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3177.2020.06.019 Yang, L. L., 2016. Spatial-Temporal Variation of NDVI and Analysis of Climate Response in the Source Region of the Yellow River from 2000 to 2014 (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). Yang, S. C., Yang, H. S., 2019. Drought Evolution and Vegetation Response in Inner Mongolia from 1982 to 2013. Journal of Natural Disasters, 28(1): 175-183 (in Chinese with English abstract). Zhang, R., Zuckerman, J. H., Giller, C. A., et al., 1998. Transfer Function Analysis of Dynamic Cerebral Autoregulation in Humans. American Journal of Physiology Heart Circulatory Physiology, 43(1): H233-H241. https://doi.org/10.1152/ajpheart.1998.274.1.H233 Zhang, Y. R., Liu, X. T., Gao, W. Q., et al., 2021. Dynamic Changes of Forest Vegetation Carbon Storage and the Characteristics of Carbon Sink (Source) in the Natural Forest Protection Project Region for the Past 20 Years. Acta Ecologica Sinica, 41(13): 5093-5105 (in Chinese with English abstract). Zhong, S. B., Sun, Z. H., Di, L. P., 2021. Characteristics of Vegetation Response to Drought in the CONUS Based on Long-Term Remote Sensing and Meteorological Data. Ecological Indicators, 127: 107767. https://doi.org/10.1016/j.ecolind.2021.107767 Zhou, J., Jia, L., Menenti, M., et al., 2021. Characterizing Vegetation Response to Rainfall at Multiple Temporal Scales in the Sahel-Sudano-Guinean Region Using Transfer Function Analysis. Remote Sensing of Environment, 252: 112108. https://doi.org/10.1016/j.rse.2020.112108 Zuo, D. P., Han, Y. N., Xu, Z. X., et al., 2021. Time-Lag Effects of Climatic Change and Drought on Vegetation Dynamics in an Alpine River Basin of the Tibet Plateau, China. Journal of Hydrology, 600(9): 126532. https://doi.org/10.1016/j.jhydrol.2021.126532 崔利芳, 王伦澈, 屈赛, 等, 2020. 气温、降水量和人类活动对长江流域植被NDVI的影响. 地球科学, 45(6): 1905-1917. doi: 10.3799/dqkx.2019.171 戴声佩, 张勃, 王海军, 等, 2010. 基于SPOT NDVI的祁连山草地植被覆盖时空变化趋势分析. 地理科学进展, 29(9): 1075-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202208002.htm 孔冬冬, 张强, 顾西辉, 等, 2016. 植被对不同时间尺度干旱事件的响应特征及成因分析. 生态学报, 36(24): 7908-7918. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201624002.htm 李巧萍, 丁一汇, 2004. 植被覆盖变化对区域气候影响的研究进展. 南京气象学院学报, (1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200401018.htm 刘静, 温仲明, 刚成诚, 2020. 黄土高原不同植被覆被类型NDVI对气候变化的响应. 生态学报, 40(2): 678-691. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202002027.htm 刘永强, 2016. 植被对干旱趋势的影响. 大气科学, 40(1): 142-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201601013.htm 穆少杰, 李建龙, 陈奕兆, 等, 2012. 2001—2010年内蒙古植被覆盖度时空变化特征. 地理学报, 67(9): 1255-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201209014.htm 覃艺, 张廷斌, 易桂花, 等, 2021. 2000年以来内蒙古生长季旱情变化遥感监测及其影响因素分析. 自然资源学报, 36(2): 459-475. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202102015.htm 孙艳玲, 郭鹏, 延晓冬, 等, 2010. 内蒙古植被覆盖变化及其与气候、人类活动的关系. 自然资源学报, 25(3): 407-414. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201003006.htm 佟斯琴, 2019. 气候变化背景下内蒙古地区气象干旱时空演变及预估研究(博士学位论文). 长春: 东北师范大学. 汪青春, 李凤霞, 刘宝康, 等, 2015. 近50 a来青海干旱变化及其对气候变暖的响应. 干旱区研究, 32(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201902016.htm 向菲菲, 王伦澈, 姚瑞, 等, 2018. 三峡库区气候变化特征及其植被响应. 地球科学, 43(S1): 42-52. doi: 10.3799/dqkx.2018.912 杨江州, 周旭, 熊军, 等, 2020. 贵州乌江流域NDVI降尺度适应性评价. 遥感信息, 35(6): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX202006020.htm 杨玲莉, 2016. 2000~2014年黄河源区植被NDVI时空变化特征与气候变化响应分析(硕士学位论文). 成都: 成都理工大学. 杨舒畅, 杨恒山, 2019. 1982-2013年内蒙古地区干旱变化及植被响应. 自然灾害学报, 28(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201901021.htm 张逸如, 刘晓彤, 高文强, 等, 2021. 天然林保护工程区近20年森林植被碳储量动态及碳汇(源)特征. 生态学报, 41(13): 5093-5105. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202113004.htm -