• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑造山带海德乌拉辉绿岩成因及其地质意义

    孙立强 王凯兴 戴佳文 刘晓东 刘文恒 余驰达 雷勇亮 陈耀新 林俊杰

    孙立强, 王凯兴, 戴佳文, 刘晓东, 刘文恒, 余驰达, 雷勇亮, 陈耀新, 林俊杰, 2024. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, 49(4): 1261-1276. doi: 10.3799/dqkx.2022.270
    引用本文: 孙立强, 王凯兴, 戴佳文, 刘晓东, 刘文恒, 余驰达, 雷勇亮, 陈耀新, 林俊杰, 2024. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, 49(4): 1261-1276. doi: 10.3799/dqkx.2022.270
    Sun Liqiang, Wang Kaixing, Dai Jiawen, Liu Xiaodong, Liu Wenheng, Yu Chida, Lei Yongliang, Chen Yaoxin, Lin Junjie, 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276. doi: 10.3799/dqkx.2022.270
    Citation: Sun Liqiang, Wang Kaixing, Dai Jiawen, Liu Xiaodong, Liu Wenheng, Yu Chida, Lei Yongliang, Chen Yaoxin, Lin Junjie, 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276. doi: 10.3799/dqkx.2022.270

    东昆仑造山带海德乌拉辉绿岩成因及其地质意义

    doi: 10.3799/dqkx.2022.270
    基金项目: 

    国家自然科学基金面上项目 42072095

    青海省科学技术厅重点研发与转化计划 2021-SF-157

    东华理工大学博士启动基金 DHBK2018024

    详细信息
      作者简介:

      孙立强(1986-),男,讲师,博士,主要从事岩浆岩成因和铀矿床成因的研究.ORCID:0000-0002-4809-6043. E-mail:sunlq@ecut.edu.cn

    • 中图分类号: P581

    Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications

    • 摘要: 古特提斯洋在东昆仑造山带的闭合时间仍存在争议.对东昆仑东段海德乌拉地区产出的辉绿岩开展了系统的研究工作.LA-ICP-MS锆石U-Pb同位素定年的结果显示,海德乌拉辉绿岩形成于238±2 Ma.在地球化学组成上,该辉绿岩具有较高的TiO2(1.75%~2.46%)、Fe2O3T(8.88%~12.30%)含量和较低的MgO含量(2.76%~6.34%);富集不相容元素,相对亏损Nb、Ta、Sr、Ti;Sr-Nd同位素组成较为富集且均一,(87Sr/86Sr)i为0.711 61~0.712 95,εNdt)为-3.2~-2.8.上述特征表明海德乌拉辉绿岩形成于板片俯冲环境,其源区为由俯冲板片释放的流体交代所形成的富集地幔.结合前人的研究成果,认为古特提斯阿尼玛卿洋的北向俯冲至少持续到中三叠世末期;随后,洋盆在晚三叠世早期闭合;在不晚于228 Ma时,东昆仑东段地区进入后碰撞伸展的环境.

       

    • 图  1  东昆仑造山带区域地质简图

      图据赵旭等,2018修改. 基性岩数据来自:(1)Hu et al.(2016);(2)奥琮等(2015);(3)熊富浩等(2011);(4)Liu et al.(2017);(5)陈国超等(2017);(6)Liu et al.(2004);(7)赵旭等(2018);(8)孔会磊等(2018);(9)孔会磊等(2017);(10)Zhao et al.(2019);(11)本文数据

      Fig.  1.  Simplified geological map of the East Kunlun orogenic belt (EKOB)

      图  2  海德乌拉地区地质简图(a)、辉绿岩野外露头照片(b~c)和显微照片(d)

      图a据雷勇亮等(2021)略作修改. Pl.斜长石,Cpx.单斜辉石. 部分辉石已发生蚀变

      Fig.  2.  Simplified geological map of the Haidewula area (a), representative field outcrop photographs (b-c) and photomicrograph (d) of the Haidewula diabase

      图  3  海德乌拉辉绿岩锆石年龄谐和图(a, b)及代表性锆石的CL图像(c)

      图a中灰色测点未参与加权平均年龄的计算

      Fig.  3.  U-Pb concordia diagrams (a, b) and representative cathodoluminescence (CL) images of zircons from the Haidewula diabase

      图  4  海德乌拉辉绿岩Zr/TiO2-SiO2图解(a)和Nb/Y-SiO2图解(b)(据Winchester and Floyd, 1977)

      东昆仑造山带基性岩数据来源:中二叠世坑得弄舍辉长岩引自Zhao et al.(2019);早三叠世白日其利镁铁质岩墙引自熊富浩等(2011);中三叠世按纳格角闪辉长岩引自赵旭等(2018);晚三叠世冰沟富闪辉长岩引自Liu et al.(2017);晚三叠世野牛沟镁铁质岩墙引自Hu et al.(2016)

      Fig.  4.  Zr/TiO2 versus SiO2 diagram (a) and Nb/Y versus SiO2 diagram (b) for the Haidewula diabase (after Winchester and Floyd, 1977)

      图  5  海德乌拉辉绿岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)

      Fig.  5.  Primitive mantle-normalized spider diagram (a) and chondrite-normalized REE pattern (b) for the Haidewula diabase

      图  6  海德乌拉辉绿岩εNd(t)-(87Sr/86Sr)i图解(a)和εNd(t)-年龄图解(b)

      图a中曲线为基性岩浆与地壳物质以不同比例同化混染后产物的同位素组成变化趋势线,百分数代表地壳物质比例,端元组分分别为阿尼玛卿洋晚古生代MORB、OIB和东昆仑地区强过铝质S型花岗岩的平均成分,具体参数见附表 4;图a中同位素组成均校正到t= 238 Ma.阿尼玛卿洋晚古生代MORB和OIB数据郭安林等(2007a)马丽艳等(2007),东昆仑地区S型花岗岩数据余能等(2005)巴金等(2012),东昆仑造山带基性岩数据来源见图 4

      Fig.  6.  εNd(t) versus (87Sr/86Sr)i diagram (a) and εNd(t) versus age diagram (b)

      图  7  海德乌拉辉绿岩SiO2-Zr/Nb图解(a)、Zr/Nb-Nb/La图解(b)、SiO2-Zr/Hf图解(c)、SiO2-Sm/Yb图解

      图中箭头方向代表岩浆成分随地壳混染程度增强的变化趋势;图(b)中CC和UCC分别代表大陆地壳平均成分和大陆上地壳平均成分(Rudnick and Gao, 2003

      Fig.  7.  SiO2 vs. Zr/Nb diagram (a), Zr/Nb versus Nb/La diagram (b), SiO2 vs. Zr/Hf diagram (c), and SiO2 vs. Sm/Yb diagram (d) for the Haidewula diabase

      图  8  Nb/Yb-Th/Yb图解(a)(据Pearce, 2008)和La/Nb-Nb/Th (b)(据Yang et al., 2019)

      图中DM、EM、OIB、E-MORB、N-MORB分别代表亏损地幔、富集地幔、洋岛玄武岩、富集洋中脊玄武岩和正常洋中脊玄武岩,东昆仑造山带基性岩数据来源见图 4

      Fig.  8.  Nb/Yb versus Th/Yb diagram (a) (after Pearce, 2008) and La/Nb versus Nb/Th diagram (b) (after Yang et al., 2019)

      图  9  Th/Zr-Nb/Zr图解(据Kepezhinskas et al., 1997)

      图中N-MORB、E-MORB、OIB数据引自Sun and McDonough(1989),东昆仑造山带基性岩数据来源见图 4

      Fig.  9.  Th/Zr versus Nb/Zr diagram (after Kepezhinskas et al., 1997)

      图  10  东昆仑造山带中二叠世-三叠纪时期基性岩年龄统计图(a)和构造演化模式图(b~d)

      图a中基性岩数据来源见表 1

      Fig.  10.  Temporal distribution of Middle Permian-Triassic basic igneous rocks in the EKOB (a) and schematic cartoons of the tectonic evolution of the EKOB from Middle Permian to Triassic (b-d)

      表  1  东昆仑造山带中二叠世-三叠纪基性岩形成时代统计

      Table  1.   Temporal distribution of Middle Permian-Triassic basic igneous rocks in the EKOB

      产出位置 岩性 形成时代 参考文献
      坑得弄舍 辉长岩 266±2 Ma Zhao et al.(2019)
      五龙沟小干沟 辉绿岩 263±4Ma 张宇婷(2018)
      加当 辉长岩 263±3 Ma 孔会磊等(2018)
      白日其利 镁铁质岩墙 251±2 Ma 熊富浩等(2011)
      加当 橄榄辉长岩 250±3 Ma 孔会磊等(2017)
      五龙沟水闸东沟 富闪基性岩脉 248±1 Ma 张宇婷(2018)
      五龙沟黑石沟 辉绿岩 244±2 Ma 张宇婷(2018)
      按纳格 角闪辉长岩 242±2 Ma 赵旭等(2018)
      约格鲁 辉长岩 239±6 Ma Liu et al.(2004)
      海德乌拉 辉绿岩 238±2 Ma 本文
      小尖山 辉长岩 228±1 Ma 奥琮等(2015)
      冰沟 富闪辉长岩 226±2Ma Liu et al.(2017)
      石沟外滩 角闪辉长岩 222±3 Ma 罗照华等(2002)
      加鲁河 角闪辉长岩 220±4 Ma 陈国超等(2017)
      野牛沟 镁铁质岩脉 218±3 Ma Hu et al.(2016)
      下载: 导出CSV
    • Ao, C., Sun, F. Y., Li, B. L., et al., 2015. U-Pb Dating, Geochemistry and Tectonic Implications of Xiaojianshan Gabbro in Qimantage Mountain, Eastern Kunlun Orogenic Belt. Geotectonica et Metallogenia, 39(6): 1176-1184(in Chinese with English abstract).
      Ba, J., Chen, N. S., Wang, Q. Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(S1): 80-92(in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2017. Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia'nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and Its Geological Significance. Geotectonica et Metallogenia, 41(6): 1097-1115(in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2019. Lithospheric Extension of the Post-Collision Stage of the Paleo-Tethys Oceanic System in the East Kunlun Orogenic Belt: Insights from Late Triassic Plutons. Earth Science Frontiers, 26(4): 191-208(in Chinese with English abstract).
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      Deniel, C., 1998. Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interactions in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 144(3-4): 281-303. https://doi.org/10.1016/s0009-2541(97)00139-3
      Dong, Y., He, D., Sun, S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216(in Chinese with English abstract).
      Goldstein, S. L., O'Nions, R. K., Hamilton, P. J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236. doi: 10.1016/0012-821X(84)90007-4
      Guo, A. L., Zhang, G. W., Sun, Y. G., et al., 2007a. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract).
      Guo, A. L., Zhang, G. W., Sun, Y. G., et al., 2007b. Geochemistry and Spatial Distribution of OIB and MORB in A'nyemaqen Ophiolite Zone: Evidence of Majixueshan Ancient Ridge-Centered Hotspot. Scientia Sinica (Terrae), 37(S1): 249-261(in Chinese).
      Guo, Z. F., Deng, J. F., Xu, Z. Q., et al., 1998. Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermedate-Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China. Geoscience, 12(3): 344-352 (in Chinese with English abstract).
      Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      Huang, H. Q., Niu, Y., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/J.CHEMGEO.2014.01.010
      Huang, X. K., Wei, J. H., Li, H., et al., 2021. Zircon U-Pb Geochronological, Elemental and Sr-Nd-Hf Isotopic Constraints on Petrogenesis of Late Triassic Quartz Diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037-2056(in Chinese with English abstract).
      Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139–155. doi: 10.1016/0012-821X(80)90125-9
      Jahn, B. M., Condie, K. C., 1995. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonicpelites. Geochimica et Cosmochimica Acta, 59(11): 2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
      Ju, Y. J., Zhang, X. L., Lai, S. C., et al., 2017. Permian–Triassic Highly-Fractionated I-Type Granites from the Southwestern Qaidam Basin (NW China): Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1): 51-62. https://doi.org/10.1007/s12583-017-0745-5
      Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and SR-ND-PB Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3
      Khan Junaid, Yao Huazhou, Zhao Junhong, Li Qiwei, Xiang Wenshuai, Jiang Junsheng, Tahir Asma, 2023. Petrogenesis and Tectonic Implications of the Tertiary Choke Shield Basalt and Continental Flood Basalt from the Central Ethiopian Plateau. Journal of Earth Science, 34(1): 86-100. https://doi.org/10.1007/s12583-022-1729-7
      Kong, H. L., Li, J. C., Li, Y. Z., et al., 2017. Zircon LA-ICP-MS U-Pb Dating and Its Geological Significance of the Jiadang Gabbro in the Eastern Section of East Kunlun, Qinghai Province. Geology and Exploration, 53(5): 889-902(in Chinese with English abstract).
      Kong, H. L., Li, J. C., Li, Y. Z., et al., 2018. Zircon U-Pb Dating and Geochemistry of the Jiadang Olivine Gabbro in the Eastern Section of East Kunlun, Qinghai Province and Their Geological Significance. Acta Geologica Sinica, 92(5): 964-978(in Chinese with English abstract).
      Kong, J. J., Niu, Y. L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implications for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364: 105513. https://doi.org/10.1016/j.lithos.2020.105513
      Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4: 713-716. https://doi.org/10.1038/ngeo1250
      Lei, Y. L., Dai, J. W., Bai, Q., et al., 2021. Genesis and Implications of Peraluminous A-Type Rhyolite in the Haidewula Area, East Kunlun Orogen. Acta Petrologica Sinica, 37(7): 1964-1982(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.02
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. The Depositional Sequence and Prototype Basin for Lower Triassic Hongshuichuan Formation in the Eastern Segment of East Kunlun Mountains. Geological Bulletin of China, 34(12): 2302-2314(in Chinese with English abstract).
      Liew, T. C., Hofmann, A. W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. https://doi.org/10.1007/BF00402106
      Liu, B., Ma, C., Huang, J., et al., 2017. Petrogenesis and Tectonic Implications of Upper Triassic Appinite Dykes in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Lithos, 284-285: 766-778. https://doi.org/10.1016/j.lithos.2017.05.016
      Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(8): 828-834. https://doi.org/10.1007/BF02889756
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Z. Q., 2011. Study on the Geological Characteristics and Tectonic of Buqingshan Melanges Belt, the South Margin of East Kunlun Mountains (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Liu, Z. Q., Pei, X. Z., Li, R. B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract).
      Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821X(78)90021-3
      Luo, Z. H., Ke, S., Cao, Y. Q., et al., 2002. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Regional Geology of China, 21(6): 292-297(in Chinese with English abstract).
      Ma, L. Y., Niu, Z. J., Bai, Y. S., et al., 2007. Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. Earth Science, 32(1): 22-28(in Chinese with English abstract).
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract).
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Rawson, H., Keller, T., Fontijn, K., et al., 2016. Compositional Variability in Mafic Arc Magmas over Short Spatial and Temporal Scales: Evidence for the Signature of Mantle Reactive Melt Channels. Earth and Planetary Science Letters, 456: 66-77. https://doi.org/10.1016/j.epsl.2016.09.056
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., Holland, H. D., Turekian, K, K., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford, 3: 1-64.
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Wang, M., Pei, X. Z., Li, R. B., et al., 2019. Early Indosinian High-Mg# and High-Sr/Y Ratio Granodiorites in the Xiahe Area, West Qinling, Central China: Petrogenesis and Geodynamic Implications. Lithos, 332-333: 162-174. https://doi.org/10.1016/j.lithos.2019.03.005
      Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902(in Chinese with English abstract).
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006GC001283
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin. 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract).
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171: 847-863. https://doi.org/10.1144/jgs2013-038
      Xu, B., Li, Y. L., Shi, L. C., et al., 2020a. Magmatic Consanguinity of the Late Triassic Granites and Rhyolites in Eastern Qimantage: Constraints from Geochronology, Geochemistry and Nd-Pb Isotopes. Geological Review, 66(3): 686-698(in Chinese with English abstract).
      Xu, B., Wang, C. Y., Liu, J. D., et al., 2020b. The Petrogenesis of the Late Triassic Granites in the Heergetou Area, East Kunlun: Constraints from Geochronology, Geochemistry and Sr-Nd-Pb Isotopes. Acta Geologica Sinica, 94(12): 3643-3656(in Chinese with English abstract).
      Xu, X. B., Wang, L. X., Ma, C. Q., et al., 2021. Petrogenesis and Geological Implications of the Yangfengou Intermediate-Felsic Dykes in the Balong Area within the Eastern Kunlun Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 653-676(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. Q., et al., 2012. Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, 28(6): 1697-1709(in Chinese with English abstract).
      Yang, H., Ge, W., Dong, Y., et al., 2019. Permian Subduction of the Paleo-Pacific (Panthalassic) Oceanic Lithosphere beneath the Jiamusi Block: Geochronological and Geochemical Evidence from the Luobei Mafic Intrusions in Northeast China. Lithos, 332-333: 207-225. https://doi.org/10.1016/j.lithos.2019.03.004
      Yang, S., Pei, X. Z., Li, R. B., et al., 2016. Provenance Analysis and Structural Implications of Gequ Formation at the Buqingshan Area in the Eastern Segment of the East Kunlun Region. Geological Bulletin of China, 35(5): 674-686(in Chinese with English abstract).
      Yu, M., Dick, J. M., Feng, C., et al., 2020. The Tectonic Evolution of the East Kunlun Orogen, Northern Tibetan Plateau: A Critical Review with an Integrated Geodynamic Model. Journal of Asian Earth Sciences, 191: 104168. https://doi.org/10.1016/j.jseaes.2019.104168
      Yu, N., Jin, W., Ge, W. C., et al., 2005. Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun. World Geology, 24(2): 123-128(in Chinese with English abstract).
      Yu, Y. Y., Zong, K. Q., Yuan, Y., et al., 2022. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1081-1094. https://doi.org/10.1007/s12583-022-1706-1
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012. Petrogenesis and Tectonic Significance of the Late-Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908. https://doi.org/10.1017/S0016756811001142
      Zhang, Y. T., 2018. Research on Metallogenesis of Gold Deposits in the Wulonggou Ore Concentration Area, Central Segment of the East Kunlun Mountains, Qinghai Province (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Zhao, X., Fu, L., Wei, J. H., et al., 2019. Late Permian Back-Arc Extension of the Eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos, 340-341: 34-48. https://doi.org/10.1016/j.lithos.2019.05.006
      Zhao, X., Fu, L. B., Wei, J. H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract).
      Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360-361: 105446. https://doi.org/10.1016/j.lithos.2020.105446
      Zhu, Y. H., Zhu, Y. S., Lin, Q. X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science, 28(6): 653-659(in Chinese with English abstract).
      Zhu, Y. X., Wang, L. X., Ma, C., et al., 2022. Petrogenesis and Tectonic Implication of the Late Triassic A1-Type Alkaline Volcanics from the Xiangride Area, Eastern Segment of the East Kunlun Orogen (China). Lithos, 412-413: 106595. https://doi.org/10.1016/j.lithos.2022.106595.
      奥琮, 孙丰月, 李碧乐, 等, 2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U-Pb年代学及其构造意义. 大地构造与成矿学, 39(6): 1176-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506017.htm
      巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(S1): 80-92. doi: 10.3799/dqkx.2012.S1.008?viewType=HTML
      陈国超, 裴先治, 李瑞保, 等, 2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义. 大地构造与成矿学, 41(6): 1097-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706008.htm
      陈国超, 裴先治, 李瑞保, 等, 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904026.htm
      陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代: 早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
      封铿, 李瑞保, 裴先治, 等, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116?viewType=HTML
      郭安林, 张国伟, 孙延贵, 等, 2007a. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm
      郭安林, 张国伟, 孙延贵, 等, 2007b. 共和盆地周缘晚古生代镁铁质火山岩地球化学及空间分布: 玛积雪山三联点以及东古特提斯多岛洋启示. 中国科学(D辑: 地球科学), 37(增刊1): 249-261. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1026.htm
      郭正府, 邓晋福, 许志琴, 等, 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 344-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
      黄啸坤, 魏俊浩, 李欢, 等, 2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约. 地球科学, 46(6): 2037-2056. doi: 10.3799/dqkx.2020.286?viewType=HTML
      孔会磊, 李金超, 栗亚芝, 等, 2017. 青海东昆仑东段加当辉长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质与勘探, 53(5): 889-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201705006.htm
      孔会磊, 李金超, 栗亚芝, 等, 2018. 青海东昆仑东段加当橄榄辉长岩锆石U-Pb年代学、地球化学及地质意义. 地质学报, 92(5): 964-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201805005.htm
      雷勇亮, 戴佳文, 白强, 等, 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 37(7): 1964-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107002.htm
      李瑞保, 裴先治, 李佐臣, 等, 2015. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复. 地质通报, 34(12): 2302-2314. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512017.htm
      刘战庆, 2011. 东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究(博士学位论文). 西安: 长安大学.
      刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm
      罗照华, 柯珊, 曹永清, 等, 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm
      马丽艳, 牛志军, 白云山, 等, 2007. 青海南部二叠纪火山岩Sr、Nd、Pb同位素特征及地质意义. 地球科学, 32(1): 22-28. 海南部二叠纪火山岩Sr、Nd、Pb同位素特征及地质
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270?viewType=HTML
      吴元宝, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报. 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm
      徐博, 李玉龙, 史连昌, 等, 2020a. 祁漫塔格东段晚三叠世花岗岩与流纹岩岩浆同源性: 年代学、地球化学及Nd、Pb同位素制约. 地质论评, 66(3): 686-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003014.htm
      徐博, 王成勇, 刘建栋, 等, 2020b. 东昆仑河尔格头地区晚三叠世花岗岩成因: 年代学、地球化学及Sr-Nd-Pb同位素约束. 地质学报, 94(12): 3643-3656. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202012009.htm
      徐晓波, 王连训, 马昌前, 等, 2021. 东昆仑造山带巴隆地区羊粪沟中酸性岩脉成因及其地质意义. 矿物岩石地球化学通报, 40(3): 653-676. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103010.htm
      许志琴, 杨经绥, 李化启, 等, 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, 28(6): 1697-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm
      杨森, 裴先治, 李瑞保, 等, 2016. 东昆仑东段布青山地区上二叠统格曲组物源分析及其构造意义. 地质通报, 35(5): 674-686. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605005.htm
      余能, 金巍, 葛文春, 等, 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200502004.htm
      张宇婷, 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究(博士学位论文). 长春: 吉林大学.
      赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020?viewType=HTML
      朱云海, 朱耀生, 林启祥, 等, 2003. 东昆仑造山带海德乌拉一带早侏罗世火山岩特征及其构造意义. 地球科学, 28(6): 653-659. http://www.earth-science.net/article/id/1308?viewType=HTML
    • dqkxzx-49-4-1261-附表1-4.docx
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  482
    • HTML全文浏览量:  139
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-21
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回