• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木克拉通经历过格林威尔造山运动吗?来自碎屑锆石年代学的证据

    易子渊 魏国齐 郭召杰

    易子渊, 魏国齐, 郭召杰, 2023. 塔里木克拉通经历过格林威尔造山运动吗?来自碎屑锆石年代学的证据. 地球科学, 48(4): 1405-1420. doi: 10.3799/dqkx.2022.272
    引用本文: 易子渊, 魏国齐, 郭召杰, 2023. 塔里木克拉通经历过格林威尔造山运动吗?来自碎屑锆石年代学的证据. 地球科学, 48(4): 1405-1420. doi: 10.3799/dqkx.2022.272
    Yi Ziyuan, Wei Guoqi, Guo Zhaojie, 2023. Did Grenvillian Orogeny ever Happen in Tarim Craton? Evidence from Detrital Zircon Chronology. Earth Science, 48(4): 1405-1420. doi: 10.3799/dqkx.2022.272
    Citation: Yi Ziyuan, Wei Guoqi, Guo Zhaojie, 2023. Did Grenvillian Orogeny ever Happen in Tarim Craton? Evidence from Detrital Zircon Chronology. Earth Science, 48(4): 1405-1420. doi: 10.3799/dqkx.2022.272

    塔里木克拉通经历过格林威尔造山运动吗?来自碎屑锆石年代学的证据

    doi: 10.3799/dqkx.2022.272
    基金项目: 

    国家重点研发计划项目 2019YFC0605501

    详细信息
      作者简介:

      易子渊(1995-), 男, 博士生, 主要从事盆地分析与盆地动力学研究.ORCID: 0000-0002-5091-9029.E-mail: yiziyuan@pku.edu.cn

      通讯作者:

      郭召杰, ORCID: 0000-0002-4981-8183.E-mail: zjguo@pku.edu.cn

    • 中图分类号: P542

    Did Grenvillian Orogeny ever Happen in Tarim Craton? Evidence from Detrital Zircon Chronology

    • 摘要: 近年来,有学者认为塔里木克拉通经历过格林威尔期造山运动,但相关的岩浆、变质证据比较缺乏.造山事件会为附近的盆地提供大量碎屑物质,因此也会在碎屑锆石记录中有所反映.对塔西南铁克里克地区和塔东北库鲁克塔格地区新元古界的7件砂岩样品进行了碎屑锆石U-Pb定年,获得了1 135组碎屑锆石年龄数据.塔西南南华系的波龙组和雨塘组均发育有冰碛岩,通过碎屑锆石记录得到其最大沉积年龄分别为693.2±3.3 Ma和642.7±4.4 Ma,由此推测波龙组形成于Sturtian冰期,而雨塘组形成于Marinoan冰期.此外,结合前人发表的数据,整理得到完整的塔里木克拉通新元古界碎屑锆石U-Pb年龄数据库.数据分析显示:碎屑锆石年龄主要分布在700~900 Ma和1 800~2 100 Ma两个区间内,与典型的格林威尔期造山活动的时间980~1 250 Ma不符;阿克苏、库鲁克塔格和铁克里克3个露头区新元古界碎屑岩的物源区存在显著差异,表明在南华纪-震旦纪不存在全盆统一的物源,这与当时克拉通内发育大型造山带的假设不符.综上所述,通过对碎屑锆石记录的分析,认为格林威尔期的陆-陆碰撞型造山运动在塔里木克拉通的影响不显著.

       

    • 图  1  塔里木克拉通及周边地质简图(据Xu et al., 2013a修改)

      Fig.  1.  Simplified map of the Tarim craton and adjacent area (modified from Xu et al., 2013a)

      图  2  铁克里克地区波龙组野外照片

      图a缺少层理,图b和图c可见坠石、冻裂纹等指示冰川成因的构造

      Fig.  2.  Field pictures of the Bolong Formation

      图  3  采样地区地质简图

      a.塔西南铁克里克地区(Wang et al., 2015修改);b.塔东北库鲁克塔格地区(据He et al., 2014a修改)

      Fig.  3.  Simplified map of sample area

      图  4  测试样品的锆石U-Pb年龄谐和图

      Fig.  4.  U-Pb concordia diagrams of tested samples

      图  5  铁克里克地区与库鲁克塔格地区新元古界砂岩样品的碎屑锆石U-Pb年龄

      Fig.  5.  Histograms and kernel density estimate curves of detrital zircon U-Pb ages from the sandstones in the Tieklik and Quruqtagh areas

      图  6  塔里木克拉通不同露头区的新元古界地层柱

      年龄数据来自:1. He et al.(2014a);2. Xu et al.(2009);3. Xu et al.(2013b)

      Fig.  6.  Stratigraphic columns of Neoproterozoic in different areas in the Tarim craton

      图  7  塔里木克拉通新元古界碎屑锆石U-Pb年龄的总体分布

      格林威尔期与泛非期造山带的时间段数据分别来自Rivers(2015)Meert(2003)

      Fig.  7.  The overall distribution of the detrital zircon U-Pb ages of the Neoproterozoic in the Tarim craton

      图  8  阿克苏、库鲁克塔格以及铁克里克地区南华系和震旦系的碎屑锆石U-Pb年龄分布

      n =年龄点数(样品数)

      Fig.  8.  The distribution of detrital zircon U-Pb ages of the Nanhua and Sinian systems in the Aksu, Quruqtagh and Tieklik areas

      图  9  不同地区同时代样品碎屑锆石U-Pb年龄分布的2D-MDS图

      Fig.  9.  2D-MDS diagrams for detrital zircon U-Pb age spectra of coeval samples from different areas

      表  1  塔里木克拉通新元古界碎屑锆石U-Pb年龄数据汇总

      Table  1.   Summary of detrital zircon U-Pb age data of the Neoproterozoic in the Tarim craton

      露头区 年代 样品号 地层 测试数量 数据来源
      阿克苏地区 震旦系 10W07 苏盖特布拉克组 77 He et al., 2014a
      10A03 苏盖特布拉克组 87 He et al., 2014a
      10A04 苏盖特布拉克组 74 He et al., 2014a
      WSL4 苏盖特布拉克组 79 Li et al., 2015
      Y37 苏盖特布拉克组 86 Wu et al., 2018
      07A-33 苏盖特布拉克组 57 Zhu et al., 2011
      07A-34 苏盖特布拉克组 60 Zhu et al., 2011
      SA19-5 苏盖特布拉克组 149 Yi et al.,2022
      SA19-7 苏盖特布拉克组 148 Yi et al., 2022
      YN19-19 苏盖特布拉克组 146 Yi et al., 2022
      南华系 YN19-16 尤尔美纳克组 146 Yi et al., 2022
      YN19-21 尤尔美纳克组 126 Yi et al., 2022
      10W06 尤尔美纳克组 76 He et al., 2014a
      13A01 尤尔美纳克组 73 He et al., 2014a
      Y-YB1 尤尔美纳克组 91 Vandyk et al., 2019
      YR-1 尤尔美纳克组 80 Ding et al., 2015
      南华系 15A14 冬屋组 61 Lu et al., 2017
      10W01 冬屋组 70 He et al., 2014a
      10W05 冬屋组 70 He et al., 2014a
      QE-3 冬屋组 62 Ding et al., 2015
      YN19-18 冬屋组 116 Yi et al., 2022
      10W04 牧羊滩组 73 He et al., 2014a
      QE-2 牧羊滩组 75 Ding et al., 2015
      10W03 东巧恩布拉克组 79 He et al., 2014a
      YN19-13 东巧恩布拉克组 121 Yi et al., 2022
      YN19-27 西方山组 110 Yi et al., 2022
      YN19-9 西方山组 124 Yi et al., 2022
      YN19-6 西方山组 152 Yi et al., 2022
      YN19-5 西方山组 164 Yi et al., 2022
      QE-1 西方山组 46 Ding et al., 2015
      Q72 西方山组 83 Wu et al., 2018
      库鲁克塔格地区 震旦系 KL-24 水泉组 92 Ren et al., 2020
      KL-20 育肯沟组 78 Ren et al., 2020
      KL-37 扎摩克提组 100 Ren et al., 2020
      QR19-5 扎摩克提组 109 本文
      南华系 QR19-3 阿勒通沟组 115 本文
      QR19-4 阿勒通沟组 114 本文
      11K24 阿勒通沟组 40 He et al., 2014b
      11K26 阿勒通沟组 77 He et al., 2014b
      10K07 阿勒通沟组 93 He et al., 2014b
      10K09 阿勒通沟组 73 He et al., 2014b
      11K19 贝义西组 76 He et al., 2014b
      09DPL25 贝义西组 81 张英利等,2011
      铁克里克地区 震旦系 XZ19-5 库尔卡克组 157 本文
      南华系 XZ19-7 雨塘组 249 本文
      X5 雨塘组 101 Wu et al., 2019
      2013TR08 克里西组 69 Zhang et al., 2016
      XZ19-4 克里西组 158 本文
      XZ19-1 波龙组 171 本文
      XZ19-2 波龙组 62 本文
      X3 波龙组 96 Wu et al., 2019
      2015D27 波龙组 64 Zhang et al., 2016
      2015D28 波龙组 61 Zhang et al., 2016
      X1 牙拉古孜组 81 Wu et al., 2019
      10TK-75 恰克马克力克群 96 Wang et al., 2015
      12TK-14 恰克马克力克群 67 Wang et al., 2015
      下载: 导出CSV

      表  2  不同地区同时代样品碎屑锆石U-Pb年龄分布K-S测试结果

      Table  2.   K-S test for detrital zircon U-Pb age spectra of coeval samples from different areas

      阿克苏南华系 库鲁克塔格南华系 铁克里克南华系 阿克苏震旦系 库鲁克塔格震旦系 铁克里克震旦系
      阿克苏南华系 - 0 0 - - -
      库鲁克塔格南华系 0.331 69 - 0 - - -
      铁克里克南系华 0.503 64 0.333 00 - - - -
      阿克苏震旦系 - - - - 0.000 19 0
      库鲁克塔格震旦系 - - - 0.129 33 - 0.000 51
      铁克里克震旦系 - - - 0.260 42 0.190 68 -
      下载: 导出CSV
    • Bingen, B., Andersson, J., Söderlund, U., et al., 2008. The Mesoproterozoic in the Nordic Countries. Episodes, 31(1): 29-34. https://doi.org/10.18814/epiiugs/2008/v31i1/005
      Cawood, P. A., Korsch, R. J., 2008. Assembling Australia: Proterozoic Building of a Continent. Precambrian Research, 166(1/2/3/4): 1-35. https://doi.org/10.1016/j.precamres.2008.08.006
      Chen, H., Lin, X., Cheng, X., et al., 2019. The Late Neoproterozoic Sedimentary Sequences in the Yutang Section Southwest Tarim Basin and Their Tectonic Implications and Hydrocarbon Perspective: Insight from Basinology. Precambrian Research, 333: 105432. https://doi.org/10.1016/j.precamres.2019.105432
      Chen, H.J., Wu, C.L., Lei, M., et al., 2018. Petrogenesis and Implications for Neoproterozoic Granites in Kekesayi Area, South Altyn Continent. Earth Science, 43(4): 1278-1295(in Chinese with English abstract).
      Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
      Ding, H. F., Ma, D. S., Lin, Q. Z., et al., 2015. Age and Nature of Cryogenian Diamictites at Aksu, Northwest China: Implications for Sturtian Tectonics and Climate. International Geology Review, 57(16): 2044-2064. https://doi.org/10.1080/00206814.2015.1050463
      Fitzsimons, I. C. W., 2000. Grenville-Age Basement Provinces in East Antarctica: Evidence for Three Separate Collisional Orogens. Geology, 28(10): 879-882. https://doi.org/10.1130/0091-7613(2000)28879:gbpiea>2.0.co;2 doi: 10.1130/0091-7613(2000)28879:gbpiea>2.0.co;2
      Gao, L. Z, Guo, X.P., Ding, X.Z., et al., 2013. Nanhuan Glaciation Event and Its Stratigraphic Correlation in Tarim Plate, China. Acta Geoscientia Sinica, 34(1): 39-57(in Chinese with English abstract).
      Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Neoproterozoic to Paleozoic Long-Lived Accretionary Orogeny in the Northern Tarim Craton. Tectonics, 33(3): 302-329. https://doi.org/10.1002/2013tc003501
      Gu, P.Y., Ji, W.H., Chen, R.M., et al., 2020. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution. Earth Science, 45(9): 3268-3281(in Chinese with English abstract).
      Guo, Z.J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
      Guo, Z.J., Zhang, Z.C., Wang, J.J., 1998. Sm-Nd Isochron Age of Ophiolite Belt in the Northern Margin of Altun Mountain and Its Tectonic Significance. Chinese Science Bulletin, 43(18): 1981-1984(in Chinese). doi: 10.1360/csb1998-43-18-1981
      Hawkesworth, C., Cawood, P., Kemp, T., et al., 2009. A Matter of Preservation. Science, 323(5910): 49-50. https://doi.org/10.1126/science.1168549
      He, J., Zhu, W., Ge, R., 2014a. New Age Constraints on Neoproterozoic Diamicites in Kuruktag, NW China and Precambrian Crustal Evolution of the Tarim Craton. Precambrian Research, 241: 44-60. https://doi.org/10.1016/j.precamres.2013.11.005
      He, J., Zhu, W., Ge, R., et al., 2014b. Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton: Implications for Supercontinent Reconstruction and Crustal Evolution. Precambrian Research, 254: 194-209. https://doi.org/10.1016/j.precamres.2014.08.016
      He, Z. Y, Zhang, Z.M., Zong, K.Q., et al., 2012. Neoproterozoic Granulites from the Northeastern Margin of the Tarim Craton: Petrology, Zircon U-Pb Ages and Implications for the Rodinia Assembly. Precambrian Research, 212/213: 21-33. https://doi.org/10.1016/j.precamres.2012.04.01
      Li, Y.J., Sun, L.D., Hu, S.L., et al., 2003. 40Ar-39Ar Geochronology of the Granite and Diorite Revealed at the Bottom of Tacan 1, the Deepest Well in China. Acta Petrologica Sinica, 19(3): 530-536(in Chinese with English abstract).
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2007.04.021
      Li, Z., Qiu, N.S., Chang, J., et al., 2015. Precambrian Evolution of the Tarim Block and Its Tectonic Affinity to Other Major Continental Blocks in China: New Clues from U-Pb Geochronology and Lu-Hf Isotopes of Detrital Zircons. Precambrian Research, 270: 1-21. https://doi.org/10.1016/j.precamres.2015.09.011
      Lu, Y.Z., Zhu, W.B., Ge, R.F., et al., 2017. Neoproterozoic Active Continental Margin in the Northwestern Tarim Craton: Clues from Neoproterozoic (Meta) Sedimentary Rocks in the Wushi Area, Northwest China. Precambrian Research, 298: 88-106. https://doi.org/10.1016/j.precamres.2017.06.002
      Ma, S.P., Wang, Y.Z., Fang, X.L., 1989. The Sinian at North Slope, Western Kunlun Mountains. Xinjiang Geology, (4): 68-79(in Chinese with English Abstract).
      Meert, J.G., 2003. A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics, 362(1-4): 1-40. https://doi.org/10.1016/S0040-1951(02)00629-7
      Rainbird, R., Cawood, P., Gehrels, G., 2012. The Great Grenvillian Sedimentation Episode: Record of Supercontinent Rodinia's Assembly. Tectonics of Sedimentary Basins. John Wiley & Sons, Ltd., Chichester, UK, 583-601. https://doi.org/10.1002/9781444347166.ch29
      Ren, R., Guan, S.W., Zhang, S.C., et al., 2020. How did the Peripheral Subduction Drive the Rodinia Breakup: Constraints from the Neoproterozoic Tectonic Process in the Northern Tarim Craton. Precambrian Research, 339: 105612. https://doi.org/10.1016/j.precamres.2020.105612
      Rivers, T., 2015. Tectonic Setting and Evolution of the Grenville Orogen: An Assessment of Progress over the Last 40 Years. Geoscience Canada, 42(1): 77-124. https://doi.org/10.12789/geocanj.2014.41.057
      Santos, J. O. S., Rizzotto, G. J., Potter, P. E., et al., 2008. Age and Autochthonous Evolution of the Sunsás Orogen in West Amazon Craton Based on Mapping and U-Pb Geochronology. Precambrian Research, 165(3/4): 120-152. https://doi.org/10.1016/j.precamres.2008.06.009
      Tong, Q.L., Wei, W., Xu, B., 2013. Neoproterozoic Sedimentary Facies and Ice Age Division in the Southwest Margin of Tarim Plate. Scientia Sinica (Terrae), 43(5): 703-715(in Chinese). doi: 10.1360/zd-2013-43-5-703
      Vandyk, T.M., Wu, G., Davies, B.J., et al., 2019. Temperate Glaciation on a Snowball Earth: Glaciological and Palaeogeographic Insights from the Cryogenian Yuermeinak Formation of NW China. Precambrian Research, 331: 105362. https://doi.org/10.1016/j.precamres.2019.105362
      Vermeesch, P., 2004. How Many Grains are Needed for a Provenance Study? Earth and Planetary Science Letters, 224(3-4): 441-451. https://doi.org/10.1016/j.epsl.2004.05.037
      Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140-146. https://doi.org/10.1016/j.chemgeo.2013.01.010
      Wang, C., Liu, L., Wang, Y.H., et al., 2015. Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 257: 65-82. https://doi.org/10.1016/j.precamres.2014.11.022
      Wen, B., Evans, D. A. D., Wang, C., et al., 2018. A Positive Test for the Greater Tarim Block at the Heart of Rodinia: Mega-Dextral Suturing of Supercontinent Assembly. Geology, 46(8): 687-690. https://doi.org/10.1130/g40254.1
      Wu, G. H., Xiao, Y., He, J. Y., et al., 2019. Geochronology and Geochemistry of the Late Neoproterozoic A-Type Granitic Clasts in the Southwestern Tarim Craton: Petrogenesis and Tectonic Implications. International Geology Review, 61(3): 280-295. https://doi.org/10.1080/00206814.2017.1423521
      Wu, G.H., Xiao, Y., Bonin, B., et al. 2018. Ca. 850 Ma Magmatic Events in the Tarim Craton: Age, Geochemistry and Implications for Assembly of Rodinia Supercontinent. Precambrian Research, 305: 489-503. https://doi.org/10.1016/j.precamres.2017.10.020
      Wu, H.X., Zhang, F., Dilek, Y., et al., 2022. Mid-Neoproterozoic Collision of the Tarim Craton with the Yili-Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: A New Model. Earth-Science Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989
      Wu, L., Guan, S. W., Ren, R., et al., 2017. Sedimentary Evolution of Neoproterozoic Rift Basin in Northern Tarim. Petroleum Research, 2(4): 315-323. https://doi.org/10.1016/j.ptlrs.2017.03.004
      Wu, L., Guan, S. W., Ren, R., et al., 2021. Neoproterozoic Glaciations and Rift Evolution in the Northwest Tarim Craton, China: New Constraints from Geochronological, Geochemical, and Geophysical Data. International Geology Review, 63(1): 1-20. https://doi.org/10.1080/00206814.2019.1700399
      Xia, B., Zhang, L. F., Du, Z. X., et al., 2019. Petrology and Age of Precambrian Aksu Blueschist, NW China. Precambrian Research, 326: 295-311. https://doi.org/10.1016/j.precamres.2017.12.041
      Xiao, S.H., Bao, H.M., Wang, H.F., et al. 2004. The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 130(1-4): 1-26. https://doi.org/10.1016/j.precamres.2003.10.013
      Xu, B., Xiao, S. H, Zou, H.B., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
      Xu, B., Zou, H.B., Chen, Y., et al. 2013a. The Sugetbrak Basalts from Northwestern Tarim Block of Northwest China: Geochronology, Geochemistry and Implications for Rodinia Breakup and Ice Age in the Late Neoproterozoic. Precambrian Research, 236: 214-226. https://doi.org/10.1016/j.precamres.2013.07.009
      Xu, Z.Q., He, B.Z., Zhang, C.L., et al., 2013b. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001
      Ye, X. T., Zhang, C. L., Wang, A. G., et al., 2018. Early Paleozoic Slab Rollback in the North Altun, Northwest China: New Evidence from Mafic Intrusions and High-Mg Andesites. Lithosphere, 10(6): 687-707. https://doi.org/10.1130/l732.1
      Yi, Z.Y., Guo, Z.J., Wei, G.Q., 2022. A Two-Stage Plume-Induced Rifting in the Neoproterozoic North Tarim: Evidence from Detrital Zircon Study and Seismic Interpretation. Tectonophysics, 838: 229503. https://doi.org/10.1016/j.tecto.2022.229503
      Zhang, C.L., Ye, X.T., Zou, H.B., et al., 2016. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31-45. https://doi.org/10.1016/j.precamres.2016.04.011
      Zhang, Y.L., Wang, Z.Q., Yan, Z., et al., 2011. Tectonic Setting of Neoproterozoic Beiyixi Formation in Quruqtagh Area, Xinjiang: Evidence from Geochemistry of Clastic Rocks. Acta Petrologica Sinica, 27(6): 1785-1796(in Chinese with English abstract).
      Zhao, P., He, J. Y., Deng, C. L., et al., 2021. Early Neoproterozoic (870-820 Ma) Amalgamation of the Tarim Craton (Northwestern China) and the Final Assembly of Rodinia. Geology, 49(11): 1277-1282. https://doi.org/10.1130/g48837.1
      Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/g45719.1
      Zhou, T., Ge, R. F., Zhu, W. B., et al., 2021. Is There a Grenvillian Orogen in the Southwestern Tarim Craton? Precambrian Research, 354: 106053. https://doi.org/10.1016/j.precamres.2020.106053
      Zhu, W.B., Zheng, B.H., Shu, L.S., et al., 2011. Neoproterozoic Tectonic Evolution of the Precambrian Aksu Blueschist Terrane, Northwestern Tarim, China: Insights from LA-ICP-MS Zircon U-Pb Ages and Geochemical Data. Precambrian Research, 185(3/4): 215-230. https://doi.org/10.1016/j.precamres.2011.01.012
      陈红杰, 吴才来, 雷敏, 等, 2018. 南阿尔金陆块科克萨依新元古代花岗岩成因及地质意义. 地球科学, 43(4): 1278-1295. doi: 10.3799/dqkx.2018.720
      高林志, 郭宪璞, 丁孝忠, 等, 2013. 中国塔里木板块南华纪成冰事件及其地层对比. 地球学报, 34(1): 39-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201301008.htm
      辜平阳, 计文化, 陈锐明, 等, 2020. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示. 地球科学, 45(9): 3268-3281. doi: 10.3799/dqkx.2020.140
      郭召杰, 张志诚, 王建君, 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981-1984.
      李曰俊, 孙龙德, 胡世玲, 等, 2003. 塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究. 岩石学报, 19(3): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303018.htm
      马世鹏, 汪玉珍, 方锡廉, 1989. 西昆仑山北坡的震旦系. 新疆地质, (4): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198904009.htm
      童勤龙, 卫魏, 徐备, 2013. 塔里木板块西南缘新元古代沉积相和冰期划分. 中国科学: 地球科学, 43(5): 703-715.
      张英利, 王宗起, 闫臻, 等, 2011. 库鲁克塔格地区新元古代贝义西组的构造环境: 来自碎屑岩地球化学的证据. 岩石学报, 27(6): 1785-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106018.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  750
    • HTML全文浏览量:  583
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-30
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回