• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于深度神经网络的断层高分辨率识别方法

    丰超 潘建国 李闯 姚清洲 刘军

    丰超, 潘建国, 李闯, 姚清洲, 刘军, 2023. 基于深度神经网络的断层高分辨率识别方法. 地球科学, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276
    引用本文: 丰超, 潘建国, 李闯, 姚清洲, 刘军, 2023. 基于深度神经网络的断层高分辨率识别方法. 地球科学, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276
    Feng Chao, Pan Jianguo, Li Chuang, Yao Qingzhou, Liu jun, 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276
    Citation: Feng Chao, Pan Jianguo, Li Chuang, Yao Qingzhou, Liu jun, 2023. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 48(8): 3044-3052. doi: 10.3799/dqkx.2022.276

    基于深度神经网络的断层高分辨率识别方法

    doi: 10.3799/dqkx.2022.276
    基金项目: 

    中国石油天然气股份有限公司十四五上游领域前瞻性基础性项目《海相碳酸盐岩成藏理论与勘探技术研究》 2021DJ05

    详细信息
      作者简介:

      丰超(1990-),男,硕士,主要从事储层预测、断层检测方向研究. ORCID:0000-0003-3517-5647. E-mail:feng_chao@petrochina.com.cn

    • 中图分类号: P631

    Fault High-Resolution Recognition Method Based on Deep Neural Network

    • 摘要: 传统地震属性断层识别技术多基于数据不连续性识别断裂,干扰因素多,越来越难以满足深层精细勘探的需求. 为了提高断层识别精度,提出一种断层高分辨率智能识别方法,在深度学习方法从地震数据预测断层属性的基础之上,建立高分辨率与低分辨率断层标签库,训练深度神经网络,获得高分辨率检测模型.通过模型与实际数据证实,方法解决了深度学习中卷积神经网络存在上采样造成高频损失,使断层分辨率有所下降的问题,提高了分辨能力,模拟数据均方根误差下降40.02%.方法不仅相对传统算法更加准确地检测了断层特征,而且比一般的深度学习断层识别分辨率高.

       

    • 图  1  断层与地震数据标签

      a. 地层速度模型;b. 合成地震数据;c. 断层标签

      Fig.  1.  Fault and seismic data labels

      图  2  基于Unet的深度卷积神经网络

      Fig.  2.  Unet-based deep convolutional neural network

      图  3  断层高分辨率识别流程

      Fig.  3.  Process of high-resolution identification on fault

      图  4  高低分辨率断层模型标签

      a. 合成地震数据;b. 低分辨率断层数据;c. 高分辨率断层数据

      Fig.  4.  Labels of high-resolution and low-resolution fault models

      图  5  断层高分辨率识别深度卷积神经网络

      Fig.  5.  Deep convolutional neural network for high-resolution fault detection

      图  6  地震数据与断层非线性关系训练过程中训练集与验证集损失监测图

      Fig.  6.  Loss monitoring diagram of training set and validation set during the training process of the nonlinear relationship between seismic data and fault

      图  7  低分辨率断层与高分辨率非线性关系训练过程中训练集与验证集损失监测图

      Fig.  7.  Loss monitoring diagram of training set and validation set during the training process of the nonlinear relationship between low-resolution fault and high-resolution fault

      图  8  深度学习断层识别检测

      a. 合成数据;b. 断裂标签;c. 预测结果

      Fig.  8.  Deep learning tomography detection

      图  9  高分辨率断层预测

      a. 低分辨率断层模型;b. 高分辨率断层预测结果

      Fig.  9.  High-resolution fault prediction

      图  10  原始地震剖面

      Fig.  10.  The original seismic section

      图  11  第三代相干算法断层属性与地震数据叠合剖面

      Fig.  11.  The superimposed section of fault attributes and seismic data of the third-generation coherent algorithm

      图  12  深度学习算法断层属性与地震数据叠合剖面

      Fig.  12.  The superimposed section of the fault attributes and seismic data of the deep learning algorithm

      图  13  高分辨率深度学习断层属性与地震数据叠合剖面

      Fig.  13.  Superimposed section of high-resolution deep learning fault attributes and seismic data

      图  14  Kerry3D地震资料三维切片图

      Fig.  14.  3D slice map of Kerry3D seismic data

      图  15  Kerry3D数据第三代相干三维切片图

      Fig.  15.  3D slice map of third generation coherence of Kerry3D data

      图  16  Kerry3D数据蚂蚁追踪三维切片图

      Fig.  16.  3D slice map of data ant tracking of Kerry 3D data

      图  17  Kerry3D数据深度学习断层识别三维切片图

      Fig.  17.  3D slice map of fault detection on deep learning of Kerry3D data

      图  18  Kerry3D数据深度学习断层高分辨率识别三维切片图

      Fig.  18.  3D slice map of fault high-resolution detection on deeplearning of Kerry3D data

    • [1] Bahorich, M., Farmer, S., 1995. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 14(10): 1053-1058. https://doi.org/10.1190/1.1437077
      [2] Bahorich, M., Lopez, J., Haskell, N. L., et al., 1995. Stratigraphic and Structural Interpretation with 3D Coherence. SEGTechnical Program Expanded Abstracts. SEG, 97-100. https://doi.org/10.1990/1.1887435
      [3] Bakker, P., van Vliet, L. J., Verbeek, P. W., 1999. Edge Preserving Orientation Adaptive Filtering. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO: IEEE, 535-540. https://doi.org/10.1109/CVRP.1999.786989
      [4] Bergbauer, S., Mukerji, T., Hennings, P., 2003. Improving Curvature Analyses of Deformed Horizons Using Scale–Dependent Filtering Techniques. AAPG Bulletin, 87(8): 1255-1272. https://doi.org/10.1306/0319032001101
      [5] Chehrazi, A., Rahimpour-Bonab, H., Rezaee, M. R., 2013. Seismic Data Conditioning and Neural Network-Based Attribute Selection for Enhanced Fault Detection. Petroleum Geoscience, 19(2): 169-183. https://doi.org/10.1144/petgeo2011-001
      [6] Gong, Y. J., Zhang, K. H., Zeng, Z. P., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation ofJurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600(in Chinese with English abstract).
      [7] Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786): 504-507. https://doi.org/10.1126/science. 1127647 doi: 10.1126/science.1127647
      [8] Huang, L., Dong, X. S., Clee, T. E., 2017. A Scalable Deep Learning Platform for Identifying Geologic Features from Seismic Attributes. The Leading Edge, 36(3): 249-256. https://doi.org/10.1190/tle36030249.1
      [9] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
      [10] Lecun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11): 2278-2324. https://doi.org/10.1109/5.726791
      [11] Lisle, R. J., 1994. Detection of Zones of Abnormal Strains in Structures using Gaussian Curvature Analysis. AAPG bulletin, 78(12): 1811-1819. https://doi.org/10.1306/A25FF305-171B-11D7-8645000102C1865D
      [12] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., et al., 1998. 3-D Seismic Attributes Using a Semblance‐Based Coherency Algorithm. Geophysics, 63(4): 1150-1165. https://doi.org/10.1190/1.1444415
      [13] Marfurt, K. J., Sudhaker, V., Gersztenkorn, A., et al., 1999. Coherency Calculations in the Presence of Structural Dip. Geophisics, 65(1): 304-320. https://doi.org/10.1190/1.1444508
      [14] Roberts, A., 2001. Curvature Attributes and Their Application to 3D Interpreted horizons. First Break, 19(2): 85-100. https://doi.org/10.1046/j.02635046200100142x
      [15] Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241. https://doi.org/10.1007/978331924574428
      [16] Wang, H. X., Fu, X. F., Fu, G., et al., 2014. Vertical Segmentation Growth of Fault and Oil Source Fault Determination in Fuyang Oil Layer of Sanzhao Depression. Earth Science, 39(11): 1639-1646(in Chinese with English abstract).
      [17] Wu, X. M., Liang, L. M., Shi, Y. Z., 2019. FaultSeg3D: Using Synthetic Data Sets to Train an End-to-End Convolutional Neural Network for 3D Seismic Fault Segmentation. Geophysics, 84(3): 35-45. https://doi.org/10.1190/geo2018-0646.1
      [18] Yan, W. B., Wang, G. C., Li, L., et al., 2015. Deformation Analyses and Their Geological Implications of Carboniferous-Permian Tectonic Transformation Period in Northwest Margin of Junggar Basin. Earth Science, 40(3): 504-520(in Chinese with English abstract).
      [19] Yang, B. L., Ye, J. R., Wang, Z. S., et al., 2014. Hydrocarbon Accumulation Models and Main Controlling Factors in Liaodong Bay Depression. Earth Science, 39(10): 1507-1520(in Chinese with English abstract).
      [20] Yang, W. Y., Yang, J. R., Chen, S. Q., 2021. Fault Detection of Seismic Data Based on U-Net Deep Learning Network. Oil Geophysical Prospecting, 56(4): 688-697(in Chinese with English abstract).
      [21] Yun, L., Zhang, J., Xu, W., et al., 2021. Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor. Earth Science, 46(1): 259-271(in Chinese with English abstract).
      [22] Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike‐Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451 (in Chinese with English abstract).
      [23] Zhou, W. W., Wang, W. F., An, B., et al., 2014. Identification of Potential Fault Zones and Its Geological Significance in Bohai Bay Basin. Earth Science, 39(11): 1627-1638(in Chinese with English abstract).
      [24] 宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      [25] 王海学, 付晓飞, 付广, 等, 2014. 三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定. 地球科学, 39(11): 1639-1646. doi: 10.3799/dqkx.2014.146
      [26] 晏文博, 王国灿, 李理, 等, 2015. 准噶尔西北缘石炭-二叠纪构造转换期变形分析及其地质意义. 地球科学, 40(3): 504-520. doi: 10.3799/dqkx.2015.040
      [27] 杨宝林, 叶加仁, 王子嵩, 等, 2014. 辽东湾断陷油气成藏模式及主控因素. 地球科学, 39(10): 1507-1520. doi: 10.3799/dqkx.2014.133
      [28] 杨午阳, 杨佳润, 陈双全, 等, 2021. 基于U-Net深度学习网络的地震数据断层检测. 石油地球物理勘探, 56(4): 688-697. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202104003.htm
      [29] 云龙, 张进, 徐伟, 等, 2021. 河西走廊西段花海断裂几何学、运动学及区域构造意义. 地球科学, 46(1): 259-271. doi: 10.3799/dqkx.2019.227
      [30] 周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
      [31] 周维维, 王伟锋, 安邦等, 2014. 渤海湾盆地隐性断裂带识别及其地质意义. 地球科学, 39(11): 1627-1638. doi: 10.3799/dqkx.2014.145
    • 加载中
    图(18)
    计量
    • 文章访问数:  76
    • HTML全文浏览量:  52
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-22
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回