• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制

    邵崇建 颜照坤 李勇 聂舟 任聪 孙岳

    邵崇建, 颜照坤, 李勇, 聂舟, 任聪, 孙岳, 2023. 晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制. 地球科学, 48(4): 1379-1388. doi: 10.3799/dqkx.2022.279
    引用本文: 邵崇建, 颜照坤, 李勇, 聂舟, 任聪, 孙岳, 2023. 晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制. 地球科学, 48(4): 1379-1388. doi: 10.3799/dqkx.2022.279
    Shao Chongjian, Yan Zhaokun, Li Yong, Nie Zhou, Ren Cong, Sun Yue, 2023. Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene. Earth Science, 48(4): 1379-1388. doi: 10.3799/dqkx.2022.279
    Citation: Shao Chongjian, Yan Zhaokun, Li Yong, Nie Zhou, Ren Cong, Sun Yue, 2023. Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene. Earth Science, 48(4): 1379-1388. doi: 10.3799/dqkx.2022.279

    晚中新世龙门山南段及前缘地区盆山体系形成的动力学机制

    doi: 10.3799/dqkx.2022.279
    基金项目: 

    国家自然科学基金项目 41502116

    自然资源部深地动力学重点实验室自主(开放)研究课题 J1901

    中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金 2022NRE-LH-04

    东华理工大学江西省数字国土重点实验室开放研究基金资助项目 DLLJ202110

    东华理工大学博士启动基金 DHBK2019044

    详细信息
      作者简介:

      邵崇建(1989—),男,讲师,博士,主要从事构造地貌学和地质灾害研究.ORCID:0000-0002-2228-1515. E-mail:scj350936@163.com

      通讯作者:

      颜照坤,ORCID:0000-0002-0708-1849. E-mail: yzk517@163.com

    • 中图分类号: P541

    Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene

    • 摘要: 新生代龙门山的隆升机制存在上地壳缩短和下地壳流两种端元模式,两种模式会造成四川盆地不同的构造变形响应,形成不同的盆山系统.为了厘定龙门山南段及前缘地区盆山系统的构造变形特征及其动力学指示意义,利用低温热年代学技术(AFT和AHe)对龙门山南段前缘地区乐地1井7个砂岩样品进行了分析,约束该地区的剥露特征.结果表明,龙门山南段前缘地区中新世(约21 Ma)以来浅部地层经历了约10~11 Ma的快速剥露阶段(约500~700 m/Ma),与前人龙门山南段揭露的快速剥露时间一致.结合区域地质资料,认为约10~11 Ma龙门山南段向南东的逆冲推覆作用,导致构造应力通过四川盆地西南部多层滑脱层向盆地传递,造成龙门山前缘地区大范围构造变形及快速剥露,该认识支持龙门山上地壳缩短的隆升机制.

       

    • 图  1  青藏高原东缘及四川盆地地形地貌图

      Fig.  1.  Topographic map of the eastern margin of the Qinghai-Tibet plateau and the Sichuan basin

      图  2  龙门山南段前缘地区地质剖面图

      剖面位置见图 1;剖面图据李智武等(2009)修改

      Fig.  2.  Geological map of the frontal area of the southern Longmenshan

      图  3  乐地1井样品年龄(AFT和AHe)与样品深度的关系

      a. AFT年龄与样品深度的关系;b. AHe年龄与样品深度的关系

      Fig.  3.  Relationship between sample age (AFT and AHe) and sample depth of Well Ledi 1

      图  4  乐地1井样品年龄(AFT和AHe)与虚拟高程关系

      Fig.  4.  Relationship between sample age (AFT and AHe) and pseudo-elevation of Well Ledi 1

      图  5  龙门山南段及前缘地区的上地壳缩短模式和下地壳流模式

      a.上地壳缩短模式;b.下地壳流模式;图件据Tian et al.(2018a)修改

      Fig.  5.  Upper crustal shortening model and lower crustal flow model in the southern Longmenshan and its front

      表  1  AFT测试结果

      Table  1.   AFT test results

      样品编号 井深(m) 虚拟高程(m) 地层 颗粒数 径迹条数 自发径迹密度
      (105 cm-2)
      238U
      (10-6±1σ)
      Dpar(μm) P2)(%) 合并年龄±
      1σ(Ma)
      中心年龄±
      1σ(Ma)
      平均封闭径迹长度
      (μm±se)和统计条数
      LD01 1 689 3 311 T3x1 25 172 2.203 36.27 ± 33.51 1.65±0.37 0 12.0±1.8 13.1±1.5
      LD02 1 406 3 594 T3x3 39 499 2.718 58.92±75.4 1.55±0.23 72.10 11.7±1.6 12.9±1.1 9.58±0.29(108)
      LD03 1 195 3 805 T3x5 22 143 1.789 32.97 ± 35.76 1.61±0.13 6.00 10.7±2.2 12.3±1.4
      LD04 898 4 102 J2q 30 194 1.572 23.22 ± 28.78 1.67±0.27 7.00 13.1±1.5 15.3±1.5 12.70±0.25(55)
      LD05 622 4 378 J2s1 26 255 2.941 46.69 ± 68.42 1.51±0.27 0 12.1±2.5 14.7±1.9 11.87±0.70(5)
      LD06 329 4 671 J2s2 40 569 2.377 27.37 ± 26.43 1.54±0.22 0 17.1±1.6 18.5±1.3 12.13±0.51(5)
      LD07 61 4 939 J2s2 35 712 3.685 36.66 ± 44.14 1.61±0.29 0 20.9±2.1 21.5±1.8 12.62±0.2(105)
      注:虚拟高程(Pseudo-elevation)指样品在封闭深度之上的距离(e.g., Liu-Zeng et al., 2018).
      下载: 导出CSV

      表  2  AHe测试结果简表

      Table  2.   Brief table of AHe test results

      样品编号 井深(m) 虚拟高程(m) a平均FT U
      (10-6)
      Th
      (10-6)
      Sm
      (10-6)
      Th/U b[eU]
      (10-6)
      校正年龄±1σ (Ma) 颗粒长度
      (μm)
      颗粒半宽度(μm)
      LD-01 1 689 311 0.71 12.5 91.5 71.4 7.34 34.0 1.1±0.1 147.6 53.4
      LD-01 1 689 311 0.72 5.3 87.6 259.3 16.40 25.9 1.2±0.1 128.8 57.7
      LD-03 1 195 805 0.70 13.7 45.5 256.9 3.32 24.4 3.8±0.2 125.4 52.9
      LD-03 1 195 805 0.72 21.1 53.5 260.0 2.54 33.7 15.7±1.0 207.1 50.1
      LD-03 1 195 805 0.76 6.3 46.1 139.8 7.32 17.1 4.7±0.3 160.3 62.7
      LD-04 898 1 102 0.81 22.1 25.2 181.1 1.14 28.0 7.9±0.5 285.1 70.5
      LD-04 898 1 102 0.73 2.6 19.2 54.0 7.26 7.1 6.1±0.4 239.9 49.6
      LD-04 898 1 102 0.72 4.8 14.7 106.3 3.03 8.3 5.2±0.3 179.2 49.5
      LD-07 61 1 939 0.78 4.7 27.6 83.4 5.94 11.2 6.7±0.4 219.0 64.6
      LD-07 61 1 939 0.74 3.7 13.3 33.1 3.59 6.8 9.6±0.6 205.1 52.9
      LD-07 61 1 939 0.75 8.6 41.6 111.1 4.85 18.4 11.1±0.7 186.0 55.1
      注:aFT为α离子射出效应校正;b有效的铀浓度(U×10-6+0.235 Th×10-6);虚拟高程(Pseudo-elevation)指样品在封闭深度之上的距离(Liu-Zeng et al., 2018).
      下载: 导出CSV
    • Burchfiel, B. C., Chen, Z. L., Liu, Y. P., et al., 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review, 37(8): 661-735. https://doi.org/10.1080/00206819509465424
      Clark, M. K., Bush, J. W. M., Royden, L. H., 2005a. Dynamic Topography Produced by Lower Crustal Flow against Rheological Strength Heterogeneities Bordering the Tibetan Plateau. Geophysical Journal International, 162(2): 575-590. https://doi.org/10.1111/j.1365-246X.2005.02580.x
      Clark, M. K., House, M. A., Royden, L. H., et al., 2005b. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525. https://doi.org/10.1130/g21265.1
      Cook, K. L., Royden, L. H., Burchfiel, B. C., et al., 2013. Constraints on Cenozoic Tectonics in the Southwestern Longmen Shan from Low-Temperature Thermochronology. Lithosphere, 5(4): 393-406. https://doi.org/10.1130/l263.1
      Deng, B., Liu, S. G., Enkelmann, E., et al., 2015. Late Miocene Accelerated Exhumation of the Daliang Mountains, Southeastern Margin of the Tibetan Plateau. International Journal of Earth Sciences, 104(4): 1061-1081. https://doi.org/10.1007/s00531-014-1129-z
      Deng, B., Liu, S. G., Wang, G. Z., et al., 2013. Cenozoic Uplift and Exhumation in Southern Sichuan Basin—Evidence from Low-Temperature Thermochronology. Chinese Journal of Geophysics, 56(6): 1958-1973(in Chinese with English abstract).
      Farley, K. A., 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18
      Flowers, R. M., 2009. Exploiting Radiation Damage Control on Apatite (U-Th)/He Dates in Cratonic Regions. Earth and Planetary Science Letters, 277(1-2): 148-155. https://doi.org/10.1016/j.epsl.2008.10.005
      Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6): 471-478. https://doi.org/10.1007/BF01034498
      Galbraith, R. F., Laslett, G. M., 1993. Statistical Models for Mixed Fission Track Ages. Nuclear Tracks and Radiation Measurements, 21(4): 459-470. https://doi.org/10.1016/1359-0189(93)90185-c
      Gleadow, A., Harrison, M., Kohn, B., et al., 2015. The Fish Canyon Tuff: A New Look at an Old Low-Temperature Thermochronology Standard. Earth and Planetary Science Letters, 424: 95-108. https://doi.org/10.1016/j.epsl.2015.05.003
      Glotzbach, C., van der Beek, P. A., Spiegel, C., 2011. Episodic Exhumation and Relief Growth in the Mont Blanc Massif, Western Alps from Numerical Modelling of Thermochronology Data. Earth and Planetary Science Letters, 304(3/4): 417-430. https://doi.org/10.1016/j.epsl.2011.02.020
      Godard, V., Pik, R., Lavé, J., et al., 2009. Late Cenozoic Evolution of the Central Longmen Shan, Eastern Tibet: Insight from (U-Th)/He Thermochronometry. Tectonics, 28(5): TC5009. https://doi.org/10.1029/2008tc002407
      Guo, C., Zhang, Z. Y., Wu, L., et al., 2022. Mesozoic⁃Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low⁃Temperature Thermochronology(Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430(in Chinese with English abstract).
      Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M =7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837
      Laslett, G. M., Green, P. F., Duddy, I. R., et al., 1987. Thermal Annealing of Fission Tracks in Apatite 2. A Quantitative Analysis. Chemical Geology: Isotope Geoscience Section, 65(1): 1-13. https://doi.org/10.1016/0168-9622(87)90057-1
      Li, Z. W., Liu, S. G., Chen, H. D., et al., 2012. Spatial Variation in Meso-Cenozoic Exhumation History of the Longmen Shan Thrust Belt (Eastern Tibetan Plateau) and the Adjacent Western Sichuan Basin: Constraints from Fission Track Thermochronology. Journal of Asian Earth Sciences, 47: 185-203. https://doi.org/10.1016/j.jseaes.2011.10.016
      Li, Z. W., Liu, S. G., Chen, H. D., et al., 2008. Structural Segmentation and Zonation and Differential Deformation across and along the Lomgmen Thrust Belt, West Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(4): 440-454(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2008.04.014
      Li, Z. W., Liu, S. G., Lin, J., et al., 2009. Structural Configuration and Its Genetic Mechanism of the West Sichuan Depression in China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 645-653 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2009.06.009
      Lin, X., Wu, L., Marc, J., et al., 2022. Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176(in Chinese with English abstract).
      Liu, S. G., Ma, Y. S., Sun, W., et al., 2008. Studying on the Differences of Sinian Natural Gas Pools between Weiyuan Gas Field and Ziyang Gas-Brone Area, Sichuan Basin. Acta Geologica Sinica, 82(3): 328-337(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.03.006
      Liu-Zeng, J., Zhang, J. Y., McPhillips, D., et al., 2018. Multiple Episodes of Fast Exhumation since Cretaceous in Southeast Tibet, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 490: 62-76. https://doi.org/10.1016/j.epsl.2018.03.011
      Meng, K., Wang, E., Wang, G., 2016. Uplift of the Emei Shan, Western Sichuan Basin: Implication for Eastward Propagation of the Tibetan Plateau in Early Miocene. Journal of Asian Earth Sciences, 115: 29-39. https://doi.org/10.1016/j.jseaes.2015.09.020
      Ouimet, W., Whipple, K., Royden, L., et al., 2010. Regional Incision of the Eastern Margin of the Tibetan Plateau. Lithosphere, 2(1): 50-63. https://doi.org/10.1130/l57.1
      Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
      Richardson, N. J., Densmore, A. L., Seward, D., et al., 2008. Extraordinary Denudation in the Sichuan Basin: Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research, 113(B4): B04409. https://doi.org/10.1029/2006jb004739
      Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371
      Shao, C. J., Li, Y., Yan, Z. K., et al., 2019. Differential Strain Transfer, Longmen Shan Thrust Belt, Eastern Tibetan Plateau Margin: Implications for Seismic Hazards. Journal of Asian Earth Sciences, 169: 284-297. https://doi.org/10.1016/j.jseaes.2018.09.005
      Shen, T., Meng, L. F., Chen, W., et al., 2021. Tectonic Activities in Middle and North Sections of Longmenshan Thrust Belt during Late Indosinian: Evidence from Structural Analysis and Detrital Zircon Geochronology. Earth Science, (5): 1728-1736(in Chinese with English abstract).
      Shen, X. M., Tian, Y. T., Zhang, G. H., et al., 2019. Late Miocene Hinterland Crustal Shortening in the Longmen Shan Thrust Belt, the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 124(11): 11972-11991. https://doi.org/10.1029/2019jb018358
      Shi, H. C., Shi, X. B., Glasmacher, U. A., et al., 2016. The Evolution of Eastern Sichuan Basin, Yangtze Block since Cretaceous: Constraints from Low Temperature Thermochronology. Journal of Asian Earth Sciences, 116: 208-221. https://doi.org/10.1016/j.jseaes.2015.11.008
      Tan, X. B., Lee, Y. H., Chen, W. Y., et al., 2014. Exhumation History and Faulting Activity of the Southern Segment of the Longmen Shan, Eastern Tibet. Journal of Asian Earth Sciences, 81: 91-104. https://doi.org/10.1016/j.jseaes.2013.12.002
      Tian, Y. T., Kohn, B. P., Gleadow, A. J. W., et al., 2013. Constructing the Longmen Shan Eastern Tibetan Plateau Margin: Insights from Low-Temperature Thermochronology. Tectonics, 32(3): 576-592. https://doi.org/10.1002/tect.20043
      Tian, Y. T., Kohn, B. P., Hu, S. B., et al., 2015. Synchronous Fluvial Response to Surface Uplift in the Eastern Tibetan Plateau: Implications for Crustal Dynamics. Geophysical Research Letters, 42(1): 29-35. https://doi.org/10.1002/2014gl062383
      Tian, Y. T., Kohn, B. P., Qiu, N. S., et al., 2018a. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights from Shortening Structures in the Sichuan Basin. Journal of Geophysical Research: Solid Earth, 123(2): 1840-1855. https://doi.org/10.1002/2017jb015049
      Tian, Y. T., Li, R., Tang, Y., et al., 2018b. Thermochronological Constraints on the Late Cenozoic Morphotectonic Evolution of the Min Shan, the Eastern Margin of the Tibetan Plateau. Tectonics, 37(6): 1733-1749. https://doi.org/10.1029/2017tc004868
      Tian, Y. T., Kohn, B. P., Zhu, C. Q., et al., 2012. Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 24(1): 70-90. https://doi.org/10.1111/j.1365-2117.2011.00516.x
      Wang, E., Kirby, E., Furlong, K. P., et al., 2012. Two-Phase Growth of High Topography in Eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. https://doi.org/10.1038/ngeo1538
      Wang, P., Liu, S. F., Gao, T. J., et al., 2012. Cretaceous Transportation of Eastern Sichuan Arcuate Fold Belt in Three Dimensions: Insights from AFT Analysis. Chinese Journal of Geophysics, 55(5): 1662-1673(in Chinese with English abstract).
      Yan, D. P., Zhou, M. F., Li, S. B., et al., 2011. Structural and Geochronological Constraints on the Mesozoic-Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 30(6): TC6005. https://doi.org/10.1029/2011TC002867
      Yang, Z., Shen, C. B., Ratschbacher, L., et al., 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. https://doi.org/10.1002/2016jb013751
      Zhang, B. H., Zhang, J., Qu, J. F., et al., 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, (7): 2423-2448(in Chinese with English abstract).
      Zhang, H. P., Oskin, M. E., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/j.epsl.2016.05.048
      邓宾, 刘树根, 王国芝, 等, 2013. 四川盆地南部地区新生代隆升剥露研究: 低温热年代学证据. 地球物理学报, 56(6): 1958-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306019.htm
      郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. doi: 10.3799/dqkx.2022.152
      李智武, 刘树根, 陈洪德, 等, 2008. 龙门山冲断带分段-分带性构造格局及其差异变形特征. 成都理工大学学报(自然科学版), 35(4): 440-454. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200804014.htm
      李智武, 刘树根, 林杰, 等, 2009. 川西坳陷构造格局及其成因机制. 成都理工大学学报(自然科学版), 36(6): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200906011.htm
      林旭, 吴林, MarcJolivet, 等, 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
      刘树根, 马永生, 孙玮, 等, 2008. 四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究. 地质学报, 82(3): 328-337. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803006.htm
      沈桐, 孟立丰, 陈伟, 等, 2021. 龙门山中北段印支晚期构造活动: 来自构造解析及碎屑锆石年代学的证据. 地球科学, (5): 1728-1736. doi: 10.3799/dqkx.2020.017
      王平, 刘少峰, 郜瑭珺, 等, 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662-1673. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201205024.htm
      张北航, 张进, 曲军峰, 等, 2021. 吕梁山——华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  590
    • HTML全文浏览量:  641
    • PDF下载量:  88
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-31
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回