• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验矿物物理的发展现状与趋势:2.弹性和波速

    毛竹 刘兆东 张友君 张宝华 孙宁宇

    毛竹, 刘兆东, 张友君, 张宝华, 孙宁宇, 2022. 实验矿物物理的发展现状与趋势:2.弹性和波速. 地球科学, 47(8): 2729-2743. doi: 10.3799/dqkx.2022.286
    引用本文: 毛竹, 刘兆东, 张友君, 张宝华, 孙宁宇, 2022. 实验矿物物理的发展现状与趋势:2.弹性和波速. 地球科学, 47(8): 2729-2743. doi: 10.3799/dqkx.2022.286
    Mao Zhu, Liu Zhaodong, Zhang Youjun, Zhang Baohua, Sun Ningyu, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 2. Elasticity and Sound Velocity. Earth Science, 47(8): 2729-2743. doi: 10.3799/dqkx.2022.286
    Citation: Mao Zhu, Liu Zhaodong, Zhang Youjun, Zhang Baohua, Sun Ningyu, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 2. Elasticity and Sound Velocity. Earth Science, 47(8): 2729-2743. doi: 10.3799/dqkx.2022.286

    实验矿物物理的发展现状与趋势:2.弹性和波速

    doi: 10.3799/dqkx.2022.286
    基金项目: 

    国家自然科学基金项目 41874101

    详细信息
      作者简介:

      毛竹(1982-),女,教授,主要从事高温高压矿物物理方向研究.ORCID:0000-0002-6469-6954. E-mail:zhumao@ustc.edu.cn

    • 中图分类号: P579

    Recent Progress and Perspective of Experimental Mineral Physics: 2. Elasticity and Sound Velocity

    • 摘要: 弹性性质和波速是矿物重要物理性质. 实验测量的弹性性质和波速与地震学观测结果的对比,是确定地球内部物质组成、理解地球内部圈层结构形成机制和揭示地球内部物质分布不均一性最为直接和重要的手段. 在过去20年,伴随大腔体压机、金刚石压砧、同步辐射X光、激光加热等技术的快速发展,在地球内部相应温度和压力下测量主要构成矿物的弹性性质和波速取得了巨大进展. 综述了矿物物理在地球内部矿物弹性性质和波速实验测量的发展历史、近20年的研究现状与趋势,并展望了该学科未来发展的方向、关键科学问题与面临的主要挑战.

       

    • 图  1  地球内部一维地震波速度图像(PREM)(据Dziewonski and Anderson, 1981)

      Fig.  1.  1D seismic velocity profiles of the Earth's interior (PREM) (from Dziewonski and Anderson, 1981)

      图  2  基于大腔体压机的同步辐射超声波波速测量方法

      Fig.  2.  Ultrasonic measurements in large⁃volume press

      图  3  地幔过渡带和下地幔主要构成矿物弹性和波速研究的温压范围

      绿色Wds. 瓦兹力石;粉色Rwd. 林伍德石;蓝色Dav. 毛钙硅石;黄色Maj. 超硅石榴石;紫色Bgm. 布里奇曼石;紫色Fp. 铁方镁石;橙色PPv. 后钙钛矿;黑色实线. 地幔温度线

      Fig.  3.  Experimental pressure and temperature range for the elasticity and sound velocity of minerals in the transition zone and lower mantle

      图  4  金刚石压砧和布里渊散射

      a. 声子散射;b. 布里渊散射中的单晶弹性模量测量;c,d. 金刚石压砧中的布里渊散射

      Fig.  4.  Diamond anvil cells and Brillouin scattering

      图  5  激光冲击高压加载与X射线自由电子激光结合原位获取高压物质结构示意图

      据Sandbeg et al.(2015)

      Fig.  5.  Combination of laser shock compression and X⁃ray free⁃electron laser diagnostics

    • [1] Abramson, E. H., Brown, J. M., Slutsky, L. J., et al., 1997. The Elastic Constants of San Carlos Olivine to 17 GPa. Journal of Geophysical Research⁃Solid Earth, 102: 12253-12263. doi: 10.1029/97JB00682
      [2] Antonangeli, D., Siebert, J., Aracne, C. M., et al., 2011. Spin Crossover in Ferropericlase at High Pressure: A Seismologically Transparent Transition? Science, 331(6013): 64-67. https://doi.org/10.1126/science.1198429
      [3] Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core. Earth and Planetary Science Letters, 254(1/2): 233-238. https://doi.org/10.1016/j.epsl.2006.11.025
      [4] Buchen, J., Marquardt, H., Schulze, K., et al., 2018a. Equation of State of Polycrystalline Stishovite across the Tetragonal⁃Orthorhombic Phase Transition. Journal of Geophysical Research: Solid Earth, 123(9): 7347-7360. https://doi.org/10.1029/2018jb015835
      [5] Buchen, J., Marquardt, H., Speziale, S., et al., 2018b. High⁃Pressure Single⁃Crystal Elasticity of Wadsleyite and the Seismic Signature of Water in the Shallow Transition Zone. Earth and Planetary Science Letters, 498: 77-87. https://doi.org/10.1016/j.epsl.2018.06.027
      [6] Cai, N. A., Qi, X. T., Chen, T., et al., 2021. Enhanced Visibility of Subduction Slabs by the Formation of Dense Hydrous Phase A. Geophysical Research Letters, 48: 15-26. https://doi.org/10.1029/2021GL095487
      [7] Chantel, J., Frost, D. J., McCammon, C. A., et al., 2012. Acoustic Velocities of Pure and Iron⁃Bearing Magnesium Silicate Perovskite Measured to 25 GPa and 1 200 K. Geophysical Research Letters, 39(19): 1-15. https://doi.org/10.1029/2012gl053075
      [8] Coppari, F., Smith, R. F., Eggert, J. H., et al., 2013. Experimental Evidence for a Phase Transition in Magnesium Oxide at Exoplanet Pressures. Nature Geoscience, 6(11): 926-929. https://doi.org/10.1038/ngeo1948
      [9] Crowhurst, J. C., Brown, J. M., Goncharov, A. F., et al., 2008. Elasticity of (Mg, Fe)O through the Spin Transition of Iron in the Lower Mantle. Science, 319(5862): 451-453. https://doi.org/10.1126/science.1149606
      [10] Darling, K. L., Gwanmesia, G. D., Kung, J., et al., 2004. Ultrasonic Measurements of the Sound Velocities in Polycrystalline San Carlos Olivine in Multi⁃Anvil, High⁃Pressure Apparatus. Physics of the Earth and Planetary Interiors, 143/144: 19-31. https://doi.org/10.1016/j.pepi.2003.07.018
      [11] Duan, Y. F., Li, X. Y., Sun, N. Y., et al., 2018. Single⁃Crystal Elasticity of MgAl2O4⁃Spinel up to 10.9 GPa and 1 000 K: Implication for the Velocity Structure of the Top Upper Mantle. Earth and Planetary Science Letters, 481: 41-47. https://doi.org/10.1016/j.epsl.2017.10.014
      [12] Duffy, T. S, 2008a. Mineralogy at the Extremes. Nature, 451(7176): 269-270. https://doi.org/10.1038/nature06584
      [13] Duffy, T. S, 2008b. Some Recent Advances in Understanding the Mineralogy of Earth's Deep Mantle. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 366(1883): 4273-4293. https://doi.org/10.1098/rsta.2008.0172
      [14] Duffy, T. S., Smith, R. F, 2019. Ultra⁃High Pressure Dynamic Compression of Geological Materials. Frontiers in Earth Science, 7: 23. https://doi.org/10.3389/feart.2019.00023
      [15] Duffy, T. S., Zha, C. S., Downs, R. T., et al., 1995. Elasticity of Forsterite to 16 GPa and the Composition of the Upper Mantle. Nature, 378(6553): 170-173. https://doi.org/10.1038/378170a0
      [16] Duffy, T. S., Madhusudhan, N., Lee, K. K. M., 2015. Mineralogy of Super⁃Earth Planets. In: Schubert, G. ed., Treatise on Geophysics. Elservier, Amsterdam, 149-178.
      [17] Dziewonski, A. M., Anderson, D. L, 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031⁃9201(81)90046⁃7
      [18] Every, A. G, 1980. General Closed⁃Form Expressions for Acoustic Waves in Elastically Anisotropic Solids. Physical Review B, 22(4): 1746-1760. https://doi.org/10.1103/physrevb.22.1746
      [19] Fan, D. W., Fu, S. Y., Yang, J., et al., 2019. Elasticity of Single⁃Crystal Periclase at High Pressure and Temperature: The Effect of Iron on the Elasticity and Seismic Parameters of Ferropericlase in the Lower Mantle. American Mineralogist, 104(2): 262-275. https://doi.org/10.2138/am⁃2019⁃6656
      [20] Fei, Y. W., Seagle, C. T., Townsend, J. P., et al., 2021. Melting and Density of MgSiO3 Determined by Shock Compression of Bridgmanite to 1 254 GPa. Nature Communications, 12: 876. https://doi.org/10.1038/s41467-021⁃21170⁃y
      [21] Fu, S. Y., Yang, J., Lin, J. F, 2017. Abnormal Elasticity of Single⁃Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle. Physical Review Letters, 118(3): 036402. https://doi.org/10.1103/PhysRevLett.118.036402
      [22] Fu, S. Y., Yang, J., Tsujino, N., et al., 2019. Single⁃Crystal Elasticity of (Al, Fe)⁃Bearing Bridgmanite and Seismic Shear Wave Radial Anisotropy at the Topmost Lower Mantle. Earth and Planetary Science Letters, 518: 116-126. https://doi.org/10.1016/j.epsl.2019.04.023
      [23] Fu, S. Y., Yang, J., Zhang, Y. Y., et al., 2018. Abnormal Elasticity of Fe⁃Bearing Bridgmanite in the Earth's Lower Mantle. Geophysical Research Letters, 45: 4725-4732. doi: 10.1029/2018GL077764
      [24] Fukao, Y., Obayashi, M, 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 Km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938. https://doi.org/10.1002/2013jb010466
      [25] Gorman, M. G., McGonegle, D., Tracy, S. J., et al., 2020. Recovery of a High⁃Pressure Phase Formed under Laser⁃Driven Compression. Physical Review B, 102(2): 024101. https://doi.org/10.1103/physrevb.102.024101
      [26] Gréaux, S., Irifune, T., Higo, Y., et al., 2019. Sound Velocity of CaSiO3 Perovskite Suggests the Presence of Basaltic Crust in the Earth's Lower Mantle. Nature, 565(7738): 218-221. https://doi.org/10.1038/s41586⁃018⁃0816⁃5
      [27] Gréaux, S., Kono, Y., Wang, Y. B., et al., 2016. Sound Velocities of Aluminum⁃Bearing Stishovite in the Mantle Transition Zone. Geophysical Research Letters, 43(9): 4239-4246. https://doi.org/10.1002/2016gl068377
      [28] Gwanmesia, G. D., Wang, L. P., Heady, A., et al., 2014. Elasticity and Sound Velocities of Polycrystalline Grossular Garnet (Ca3Al2Si3O12) at Simultaneous High Pressures and High Temperatures. Physics of the Earth and Planetary Interiors, 228: 80-87. https://doi.org/10.1016/j.pepi.2013.09.010
      [29] Higo, Y., Irifune, T., Funakoshi, K. I, 2018. Simultaneous High⁃Pressure High⁃Temperature Elastic Velocity Measurement System up to 27 GPa and 1 873 K Using Ultrasonic and Synchrotron X⁃Ray Techniques. The Review of Scientific Instruments, 89(1): 014501. https://doi.org/10.1063/1.4993121
      [30] Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen⁃Depleted Liquid Outer Core of the Earth. Nature, 479(7374): 513-516. https://doi.org/10.1038/nature10621
      [31] Huang, H., Leng, C., Wang, Q., et al., 2019. Equation of State for Shocked Fe⁃8.6 wt% Si up to 240 GPa and 4, 670 K. Journal of Geophysical Research: Solid Earth, 124: 8300-8312. doi: 10.1029/2019JB017983
      [32] Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region. Nature, 451(7180): 814-817. https://doi.org/10.1038/nature06551.
      [33] Jing, Z. C., Wang, Y. B., Kono, Y., et al., 2014. Sound Velocity of Fe⁃S Liquids at High Pressure: Implications for the Moon's Molten Outer Core. Earth and Planetary Science Letters, 396: 78-87. https://doi.org/10.1016/j.epsl.2014.04.015
      [34] Jing, Z. C., Yu, T., Xu, M., et al., 2020. High⁃Pressure Sound Velocity Measurements of Liquids Using in Situ Ultrasonic Techniques in a Multianvil Apparatus. Minerals, 10(2): 126. https://doi.org/10.3390/min10020126
      [35] Kennett, B. L. N., Engdahl, E. R., Buland, R, 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1): 108-124. https://doi.org/10.1111/j.1365⁃246X.1995.tb03540.x
      [36] Kennett, B. L. N., Widiyantoro, S., van der Hilst, R. D., 1998. Joint Seismic Tomography for Bulk Sound and Shear Wave Speed in the Earth's Mantle. Journal of Geophysical ResearchSolid Earth, 103: 12469-12493. doi: 10.1029/98JB00150
      [37] Kurnosov, A., Marquardt, H., Frost, D. J., et al., 2017. Evidence for a Fe3+⁃Rich Pyrolitic Lower Mantle from (Al, Fe)⁃Bearing Bridgmanite Elasticity Data. Nature, 543(7646): 543-546. https://doi.org/10.1038/nature21390
      [38] Kuwabara, S., Terasaki, H., Nishida, K., et al., 2016. Sound Velocity and Elastic Properties of Fe⁃Ni and Fe⁃Ni⁃C Liquids at High Pressure. Physics and Chemistry of Minerals, 43(3): 229-236. https://doi.org/10.1007/s00269⁃015⁃0789⁃y
      [39] Lai, X. J., Zhu, F., Liu, Y. X., et al., 2020. Elastic and Magnetic Properties of Fe3P up to Core Pressures: Phosphorus in the Earth's Core. Earth and Planetary Science Letters, 531: 115974. https://doi.org/10.1016/j.epsl.2019.115974
      [40] Li, B. S., Liebermann, R. C, 2007. Indoor Seismology by Probing the Earth's Interior by Using Sound Velocity Measurements at High Pressures and Temperatures. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9145-9150. https://doi.org/10.1073/pnas.0608609104
      [41] Li, B. S., Liebermann, R. C, 2014. Study of the Earth's Interior Using Measurements of Sound Velocities in Minerals by Ultrasonic Interferometry. Physics of the Earth and Planetary Interiors, 233: 135-153. https://doi.org/10.1016/j.pepi.2014.05.006
      [42] Li, B. S., Zhang, J. Z, 2005. Pressure and Temperature Dependence of Elastic Wave Velocity of MgSiO3 Perovskite and the Composition of the Lower Mantle. Physics of the Earth and Planetary Interiors, 151(1/2): 143-154. https://doi.org/10.1016/j.pepi.2005.02.004
      [43] Li, B., Ji, C., Yang, W. G., et al., 2018. Diamond Anvil Cell Behavior up to 4 Mbar. Proceedings of the National Academy of Sciences of the United States of America, 115(8): 1713-1717. https://doi.org/10.1073/pnas.1721425115
      [44] Li, B., Liebermann, R. C., Weidner, D. J, 1998. Elastic Moduli of Wadsleyite (Beta⁃Mg2SiO4) to 7 Gigapascals and 873 Kelvin. Science, 281(5377): 675-677. https://doi.org/10.1126/science.281.5377.675
      [45] Li, M., Zhang, H. P., Chen, S., et al., 2022. Laser Driven Dynamic Compression of Materials. High Power Laser and Particle Beams, 34(1): 1-24(in Chinese with English abstract).
      [46] Lin, J. F., Mao, Z., Yang, J., et al., 2018. Elasticity of Lower⁃Mantle Bridgmanite. Nature, 564(7736): E18-E26. https://doi.org/10.1038/s41586⁃018⁃0741⁃7
      [47] Lin, J. F., Sturhahn, W., Zhao, J. Y., et al., 2005. Sound Velocities of Hot Dense Iron: Birch's Law Revisited. Science, 308(5730): 1892-1894. https://doi.org/10.1126/science.1111724
      [48] Liu, W., Kung, J., Li, B. S., 2005. Elasticity of San Carlos Olivine to 8 GPa and 1 073 K. Geophysical Research Letters, 32(16): L16301. https://doi.org/10.1029/2005g l023453 doi: 10.1029/2005gl023453
      [49] Liu, X., Fan, L. L., Yang, G., et al., 2020. Hugoniot Equation of State of Cementite (Fe3C) up to 250 GPa and Its Geophysical Implications. Physics of the Earth and Planetary Interiors, 306: 106506. https://doi.org/10.1016/j.pepi.2020.106506
      [50] Mao, Z., Fan, D. W., Lin, J. F., et al., 2015. Elasticity of Single⁃Crystal Olivine at High Pressures and Temperatures. Earth and Planetary Science Letters, 426: 204-215. https://doi.org/10.1016/j.epsl.2015.06.045
      [51] Mao, Z., Jacobsen, S. D., Frost, D. J., et al., 2011. Effect of Hydration on the Single⁃Crystal Elasticity of Fe⁃Bearing Wadsleyite to 12 GPa. American Mineralogist, 96(10): 1606-1612. https://doi.org/10.2138/am.2011.3807
      [52] Mao, Z., Jacobsen, S. D., Jiang, F., et al., 2008. Single⁃Crystal Elasticity of Wadsleyites, Β⁃Mg2SiO4, Containing 0.37⁃1.66 WT. % H2O. Earth and Planetary Science Letters, 266(1/2): 78-89. https://doi.org/10.1016/j.epsl.2007.10.045
      [53] Mao, Z., Lin, J. F., Jacobsen, S. D., et al., 2012a. Sound Velocities of Hydrous Ringwoodite to 16 GPa and 673 K. Earth and Planetary Science Letters, 331/332: 112-119. https://doi.org/10.1016/j.epsl.2012.03.001
      [54] Mao, Z., Lin, J. F., Liu, J., et al., 2012b. Sound Velocities of Fe and Fe⁃Si Alloy in the Earth's Core. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10239-10244. https://doi.org/10.1073/pnas.1207086109
      [55] Mao, Z., Sun, N. Y., Wei, W, 2021. Perspective for Elasticity of Minerals in the Earth's Top Lower Mantle. National Science Review, 8(4): nwaa270. https://doi.org/10.1093/nsr/nwaa270
      [56] Marquardt, H., Speziale, S., Reichmann, H. J., et al., 2009. Elastic Shear Anisotropy of Ferropericlase in Earth's Lower Mantle. Science, 324(5924): 224-226. https://doi.org/10.1126/science.1169365
      [57] Marquardt, H., Thomas, A. R, 2020. Experimental Elasticity of Earth's Deep Mantle. Nature Reviews Earth & Environment, 1(9): 455-469. https://doi.org/10.1038/s43017⁃020⁃0077⁃3
      [58] Murakami, M., Ohishi, Y., Hirao, N., et al., 2012. A Perovskitic Lower Mantle Inferred from High⁃Pressure, High⁃Temperature Sound Velocity Data. Nature, 485(7396): 90-94. https://doi.org/10.1038/nature11004
      [59] Murakami, M., Sinogeikin, S. V., Bass, J. D., et al., 2007a. Sound Velocity of MgSiO3 Post⁃Perovskite Phase: a Constraint on the D″ Discontinuity. Earth and Planetary Science Letters, 259(1/2): 18-23. https://doi.org/10.1016/j.epsl.2007.04.015
      [60] Murakami, M., Sinogeikin, S. V., Hellwig, H., et al., 2007b. Sound Velocity of MgSiO3 Perovskite to Mbar Pressure. Earth and Planetary Science Letters, 256(1/2): 47-54. https://doi.org/10.1016/j.epsl.2007.01.011
      [61] Nishida, K., Shibazaki, Y., Terasaki, H., et al., 2020. Effect of Sulfur on Sound Velocity of Liquid Iron under Martian Core Conditions. Nature Communications, 11: 1954. https://doi.org/10.1038/s41467⁃020⁃15755⁃2
      [62] Nishida, K., Suzuki, A., Terasaki, H., et al., 2016. Towards a Consensus on the Pressure and Composition Dependence of Sound Velocity in the Liquid Fe⁃S System. Physics of the Earth and Planetary Interiors, 257: 230-239. https://doi.org/10.1016/j.pepi.2016.06.009
      [63] Polian, A., 2003. Brillouin Scattering at High Pressure: An Overview. Journal of Raman Spectroscopy, 34: 633-637. doi: 10.1002/jrs.1031
      [64] Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al., 2008. Advanced Flat Top Laser Heating System for High Pressure Research at GSECARS: Application to the Melting Behavior of Germanium. High Pressure Research, 28(3): 225-235. https://doi.org/10.1080/08957950802050718
      [65] Sakairi, T., Sakamaki, T., Ohtani, E., et al., 2018. Sound Velocity Measurements of Hcp Fe⁃Si Alloy at High Pressure and High Temperature by Inelastic X⁃Ray Scattering. American Mineralogist, 103: 85-90. doi: 10.2138/am-2018-6072
      [66] Sandberg, R., Milathianaki, D., Nagler, B., et al., 2015. Ultrafast Visualization of Crystallization and Grain Growth in Shock⁃Compressed SiO2. Nature Communications, 6(Sep. ): 8191.
      [67] Schulze, K., Marquardt, H., Kawazoe, T., et al., 2018. Seismically Invisible Water in Earth's Transition Zone? Earth and Planetary Science Letters, 498: 9-16. https://doi.org/10.1016/j.epsl.2018.06.021
      [68] Shibazaki, Y., Ohtani, E., Fukui, H., et al., 2012. Sound Velocity Measurements in DHCP⁃FeH up to 70 GPa with Inelastic X⁃Ray Scattering: Implications for the Composition of the Earth's Core. Earth and Planetary Science Letters, 313/314: 79-85. https://doi.org/10.1016/j.epsl.2011.11.002
      [69] Sinogeikin, S. V., Bass, J. D, 2000. Single⁃Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Physics of the Earth and Planetary Interiors, 120(1/2): 43-62. https://doi.org/10.1016/S0031⁃9201(00)00143⁃6
      [70] Sinogeikin, S. V., Bass, J. D., Katsura, T, 2003. Single⁃Crystal Elasticity of Ringwoodite to High Pressures and High Temperatures: Implications for 520 Km Seismic Discontinuity. Physics of the Earth and Planetary Interiors, 136(1/2): 41-66. https://doi.org/10.1016/S0031⁃9201(03)00022⁃0
      [71] Smith, R. F., Eggert, J. H., Jeanloz, R., et al., 2014. Ramp Compression of Diamond to Five Terapascals. Nature, 511(7509): 330-333. https://doi.org/10.1038/nature13526
      [72] Takahashi, S., Ohtani, E., Sakamaki, T., et al., 2019. Sound Velocity of Fe3C at High Pressure and High Temperature Determined by Inelastic X⁃Ray Scattering. Comptes Rendus Geoscience, 351(2/3): 190-196. https://doi.org/10.1016/j.crte.2018.09.005
      [73] Terasaki, H., Rivoldini, A., Shimoyama, Y., et al., 2019. Pressure and Composition Effects on Sound Velocity and Density of Core⁃Forming Liquids: Implication to Core Compositions of Terrestrial Planets. Journal of Geophysical Research: Planets, 124(8): 2272-2293. https://doi.org/10.1029/2019je005936
      [74] Thomson, A. R., Crichton, W. A., Brodholt, J. P., et al., 2019. Seismic Velocities of CaSiO3 Perovskite can Explain LLSVPS in Earth's Lower Mantle. Nature, 572(7771): 643-647. https://doi.org/10.1038/s41586⁃019⁃1483⁃x
      [75] Tracy, S. J., Turneaure, S. J., Duffy, T. S, 2018. In Situ X⁃Ray Diffraction of Shock⁃Compressed Fused Silica. Physical Review Letters, 120(13): 135702. https://doi.org/10.1103/PhysRevLett.120.135702
      [76] van der Hilst, V., Karason, H, 1999. Compositional Heterogeneity in the Bottom 1 000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model. Science, 283(5409): 1885-1888. https://doi.org/10.1126/science. 283. 5409. 1885 doi: 10.1126/science.283.5409.1885
      [77] Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High⁃Pressure Conditions. Geophysical Research Letters, 33(14): L14308. https://doi.org/10.1029/2006gl026441
      [78] Wang, X. L., Tsuchiya, T., Hase, A, 2015. Computational Support for a Pyrolitic Lower Mantle Containing Ferric Iron. Nature Geoscience, 8(7): 556-559. https://doi.org/10.1038/ngeo2458
      [79] Wicks, J. K., Jackson, J. M., Sturhahn, W, 2010. Very Low Sound Velocities in Iron⁃Rich (Mg, Fe)O: Implications for the Core⁃Mantle Boundary Region. Geophysical Research Letters, 37(15): 25-35. https://doi.org/10.1029/2010gl043689
      [80] Wicks, J. K., Smith, R. F., Fratanduono, D. E., et al., 2018. Crystal Structure and Equation of State of Fe⁃Si Alloys at Super⁃Earth Core Conditions. Science Advances, 4(4): eaao5864. https://doi.org/10.1126/sciadv.aao5864
      [81] Xu, C. W., Gréaux, S., Inoue, T., et al., 2020a. Sound Velocities of Al⁃Bearing Phase D up to 22 GPa and 1 300 K. Geophysical Research Letters, 47(18): 152-168. https://doi.org/10.1029/2020gl088877
      [82] Xu, M., Jing, Z. C., Bajgain, S. K., et al., 2020b. High⁃Pressure Elastic Properties of Dolomite Melt Supporting Carbonate⁃Induced Melting in Deep Upper Mantle. Proceedings of the National Academy of Sciences of the United States of America, 117(31): 18285-18291. https://doi.org/10.1073/pnas.2004347117
      [83] Xu, M., Jing, Z. C., Chantel, J., et al., 2018. Ultrasonic Velocity of Diopside Liquid at High Pressure and Temperature: Constraints on Velocity Reduction in the Upper Mantle Due to Partial Melts. Journal of Geophysical Research: Solid Earth, 123(10): 8676-8690. https://doi.org/10.1029/2018jb016187
      [84] Yang, J., Lin, J. F., Jacobsen, S. D., et al., 2016. Elasticity of Ferropericlase and Seismic Heterogeneity in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(12): 8488-8500. https://doi.org/10.1002/2016jb013352
      [85] Yang, R., Wu, Z. Q, 2014. Elastic Properties of Stishovite and the CaCl2⁃Type Silica at the Mantle Temperature and Pressure: an Ab Initio Investigation. Earth and Planetary Science Letters, 404: 14-21. https://doi.org/10.1016/j.epsl.2014.07.020
      [86] Zhang, J. S., Bass, J. D, 2016. Single⁃Crystal Elasticity of Natural Fe⁃Bearing Orthoenstatite across a High⁃Pressure Phase Transition. Geophysical Research Letters, 43(16): 8473-8481. https://doi.org/10.1002/2016gl069963
      [87] Zhang, Y. Y., Fu, S. Y., Wang, B. Y., et al., 2021. Elasticity of a Pseudoproper Ferroelastic Transition from Stishovite to Post⁃Stishovite at High Pressure. Physical Review Letters, 126(2): 025701. https://doi.org/10.1103/PhysRevLett.126.025701
      [88] Zhou, C. Y., Jin, Z. M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chinese with English abstract).
      [89] 李牧, 张红平, 陈实, 等, 2022. 激光驱动材料动态压缩技术. 强激光与粒子束, 34(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202201001.htm
      [90] 周春银, 金振民, 2014. 照亮地球深部的"明灯": 高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  60
    • HTML全文浏览量:  29
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-28
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回