Recent Progress and Perspective of Experimental Mineral Physics: 2. Elasticity and Sound Velocity
-
摘要: 弹性性质和波速是矿物重要物理性质. 实验测量的弹性性质和波速与地震学观测结果的对比,是确定地球内部物质组成、理解地球内部圈层结构形成机制和揭示地球内部物质分布不均一性最为直接和重要的手段. 在过去20年,伴随大腔体压机、金刚石压砧、同步辐射X光、激光加热等技术的快速发展,在地球内部相应温度和压力下测量主要构成矿物的弹性性质和波速取得了巨大进展. 综述了矿物物理在地球内部矿物弹性性质和波速实验测量的发展历史、近20年的研究现状与趋势,并展望了该学科未来发展的方向、关键科学问题与面临的主要挑战.Abstract: Elasticity and sound velocity are critical physical properties of minerals. Comparing the experimental sound velocity of minerals with seismic observed velocity profiles provide crucial means to constrain the composition of the Earth's deep interior, understand the formation mechanisms of the Earth's layered structure, and decipher the lateral composition variation. In the past twenty years, significant progress has been achieved in the elasticity and sound velocity measurements with the development of various high⁃pressure experimental techniques, including large⁃volume press, diamond anvil cells, synchrotron X⁃ray facility, laser heating, etc. Here, we review the experimental progress in the elasticity and sound velocity measurements made in the past twenty years and discuss the future research topics and challenges.
-
图 1 地球内部一维地震波速度图像(PREM)(据Dziewonski and Anderson, 1981)
Fig. 1. 1D seismic velocity profiles of the Earth's interior (PREM) (from Dziewonski and Anderson, 1981)
图 5 激光冲击高压加载与X射线自由电子激光结合原位获取高压物质结构示意图
据Sandbeg et al.(2015)
Fig. 5. Combination of laser shock compression and X⁃ray free⁃electron laser diagnostics
-
Abramson, E. H., Brown, J. M., Slutsky, L. J., et al., 1997. The Elastic Constants of San Carlos Olivine to 17 GPa. Journal of Geophysical Research⁃Solid Earth, 102: 12253-12263. doi: 10.1029/97JB00682 Antonangeli, D., Siebert, J., Aracne, C. M., et al., 2011. Spin Crossover in Ferropericlase at High Pressure: A Seismologically Transparent Transition? Science, 331(6013): 64-67. https://doi.org/10.1126/science.1198429 Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core. Earth and Planetary Science Letters, 254(1/2): 233-238. https://doi.org/10.1016/j.epsl.2006.11.025 Buchen, J., Marquardt, H., Schulze, K., et al., 2018a. Equation of State of Polycrystalline Stishovite across the Tetragonal⁃Orthorhombic Phase Transition. Journal of Geophysical Research: Solid Earth, 123(9): 7347-7360. https://doi.org/10.1029/2018jb015835 Buchen, J., Marquardt, H., Speziale, S., et al., 2018b. High⁃Pressure Single⁃Crystal Elasticity of Wadsleyite and the Seismic Signature of Water in the Shallow Transition Zone. Earth and Planetary Science Letters, 498: 77-87. https://doi.org/10.1016/j.epsl.2018.06.027 Cai, N. A., Qi, X. T., Chen, T., et al., 2021. Enhanced Visibility of Subduction Slabs by the Formation of Dense Hydrous Phase A. Geophysical Research Letters, 48: 15-26. https://doi.org/10.1029/2021GL095487 Chantel, J., Frost, D. J., McCammon, C. A., et al., 2012. Acoustic Velocities of Pure and Iron⁃Bearing Magnesium Silicate Perovskite Measured to 25 GPa and 1 200 K. Geophysical Research Letters, 39(19): 1-15. https://doi.org/10.1029/2012gl053075 Coppari, F., Smith, R. F., Eggert, J. H., et al., 2013. Experimental Evidence for a Phase Transition in Magnesium Oxide at Exoplanet Pressures. Nature Geoscience, 6(11): 926-929. https://doi.org/10.1038/ngeo1948 Crowhurst, J. C., Brown, J. M., Goncharov, A. F., et al., 2008. Elasticity of (Mg, Fe)O through the Spin Transition of Iron in the Lower Mantle. Science, 319(5862): 451-453. https://doi.org/10.1126/science.1149606 Darling, K. L., Gwanmesia, G. D., Kung, J., et al., 2004. Ultrasonic Measurements of the Sound Velocities in Polycrystalline San Carlos Olivine in Multi⁃Anvil, High⁃Pressure Apparatus. Physics of the Earth and Planetary Interiors, 143/144: 19-31. https://doi.org/10.1016/j.pepi.2003.07.018 Duan, Y. F., Li, X. Y., Sun, N. Y., et al., 2018. Single⁃Crystal Elasticity of MgAl2O4⁃Spinel up to 10.9 GPa and 1 000 K: Implication for the Velocity Structure of the Top Upper Mantle. Earth and Planetary Science Letters, 481: 41-47. https://doi.org/10.1016/j.epsl.2017.10.014 Duffy, T. S, 2008a. Mineralogy at the Extremes. Nature, 451(7176): 269-270. https://doi.org/10.1038/nature06584 Duffy, T. S, 2008b. Some Recent Advances in Understanding the Mineralogy of Earth's Deep Mantle. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 366(1883): 4273-4293. https://doi.org/10.1098/rsta.2008.0172 Duffy, T. S., Smith, R. F, 2019. Ultra⁃High Pressure Dynamic Compression of Geological Materials. Frontiers in Earth Science, 7: 23. https://doi.org/10.3389/feart.2019.00023 Duffy, T. S., Zha, C. S., Downs, R. T., et al., 1995. Elasticity of Forsterite to 16 GPa and the Composition of the Upper Mantle. Nature, 378(6553): 170-173. https://doi.org/10.1038/378170a0 Duffy, T. S., Madhusudhan, N., Lee, K. K. M., 2015. Mineralogy of Super⁃Earth Planets. In: Schubert, G. ed., Treatise on Geophysics. Elservier, Amsterdam, 149-178. Dziewonski, A. M., Anderson, D. L, 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031⁃9201(81)90046⁃7 Every, A. G, 1980. General Closed⁃Form Expressions for Acoustic Waves in Elastically Anisotropic Solids. Physical Review B, 22(4): 1746-1760. https://doi.org/10.1103/physrevb.22.1746 Fan, D. W., Fu, S. Y., Yang, J., et al., 2019. Elasticity of Single⁃Crystal Periclase at High Pressure and Temperature: The Effect of Iron on the Elasticity and Seismic Parameters of Ferropericlase in the Lower Mantle. American Mineralogist, 104(2): 262-275. https://doi.org/10.2138/am⁃2019⁃6656 Fei, Y. W., Seagle, C. T., Townsend, J. P., et al., 2021. Melting and Density of MgSiO3 Determined by Shock Compression of Bridgmanite to 1 254 GPa. Nature Communications, 12: 876. https://doi.org/10.1038/s41467-021⁃21170⁃y Fu, S. Y., Yang, J., Lin, J. F, 2017. Abnormal Elasticity of Single⁃Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle. Physical Review Letters, 118(3): 036402. https://doi.org/10.1103/PhysRevLett.118.036402 Fu, S. Y., Yang, J., Tsujino, N., et al., 2019. Single⁃Crystal Elasticity of (Al, Fe)⁃Bearing Bridgmanite and Seismic Shear Wave Radial Anisotropy at the Topmost Lower Mantle. Earth and Planetary Science Letters, 518: 116-126. https://doi.org/10.1016/j.epsl.2019.04.023 Fu, S. Y., Yang, J., Zhang, Y. Y., et al., 2018. Abnormal Elasticity of Fe⁃Bearing Bridgmanite in the Earth's Lower Mantle. Geophysical Research Letters, 45: 4725-4732. doi: 10.1029/2018GL077764 Fukao, Y., Obayashi, M, 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 Km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938. https://doi.org/10.1002/2013jb010466 Gorman, M. G., McGonegle, D., Tracy, S. J., et al., 2020. Recovery of a High⁃Pressure Phase Formed under Laser⁃Driven Compression. Physical Review B, 102(2): 024101. https://doi.org/10.1103/physrevb.102.024101 Gréaux, S., Irifune, T., Higo, Y., et al., 2019. Sound Velocity of CaSiO3 Perovskite Suggests the Presence of Basaltic Crust in the Earth's Lower Mantle. Nature, 565(7738): 218-221. https://doi.org/10.1038/s41586⁃018⁃0816⁃5 Gréaux, S., Kono, Y., Wang, Y. B., et al., 2016. Sound Velocities of Aluminum⁃Bearing Stishovite in the Mantle Transition Zone. Geophysical Research Letters, 43(9): 4239-4246. https://doi.org/10.1002/2016gl068377 Gwanmesia, G. D., Wang, L. P., Heady, A., et al., 2014. Elasticity and Sound Velocities of Polycrystalline Grossular Garnet (Ca3Al2Si3O12) at Simultaneous High Pressures and High Temperatures. Physics of the Earth and Planetary Interiors, 228: 80-87. https://doi.org/10.1016/j.pepi.2013.09.010 Higo, Y., Irifune, T., Funakoshi, K. I, 2018. Simultaneous High⁃Pressure High⁃Temperature Elastic Velocity Measurement System up to 27 GPa and 1 873 K Using Ultrasonic and Synchrotron X⁃Ray Techniques. The Review of Scientific Instruments, 89(1): 014501. https://doi.org/10.1063/1.4993121 Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen⁃Depleted Liquid Outer Core of the Earth. Nature, 479(7374): 513-516. https://doi.org/10.1038/nature10621 Huang, H., Leng, C., Wang, Q., et al., 2019. Equation of State for Shocked Fe⁃8.6 wt% Si up to 240 GPa and 4, 670 K. Journal of Geophysical Research: Solid Earth, 124: 8300-8312. doi: 10.1029/2019JB017983 Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region. Nature, 451(7180): 814-817. https://doi.org/10.1038/nature06551. Jing, Z. C., Wang, Y. B., Kono, Y., et al., 2014. Sound Velocity of Fe⁃S Liquids at High Pressure: Implications for the Moon's Molten Outer Core. Earth and Planetary Science Letters, 396: 78-87. https://doi.org/10.1016/j.epsl.2014.04.015 Jing, Z. C., Yu, T., Xu, M., et al., 2020. High⁃Pressure Sound Velocity Measurements of Liquids Using in Situ Ultrasonic Techniques in a Multianvil Apparatus. Minerals, 10(2): 126. https://doi.org/10.3390/min10020126 Kennett, B. L. N., Engdahl, E. R., Buland, R, 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1): 108-124. https://doi.org/10.1111/j.1365⁃246X.1995.tb03540.x Kennett, B. L. N., Widiyantoro, S., van der Hilst, R. D., 1998. Joint Seismic Tomography for Bulk Sound and Shear Wave Speed in the Earth's Mantle. Journal of Geophysical Research⁃Solid Earth, 103: 12469-12493. doi: 10.1029/98JB00150 Kurnosov, A., Marquardt, H., Frost, D. J., et al., 2017. Evidence for a Fe3+⁃Rich Pyrolitic Lower Mantle from (Al, Fe)⁃Bearing Bridgmanite Elasticity Data. Nature, 543(7646): 543-546. https://doi.org/10.1038/nature21390 Kuwabara, S., Terasaki, H., Nishida, K., et al., 2016. Sound Velocity and Elastic Properties of Fe⁃Ni and Fe⁃Ni⁃C Liquids at High Pressure. Physics and Chemistry of Minerals, 43(3): 229-236. https://doi.org/10.1007/s00269⁃015⁃0789⁃y Lai, X. J., Zhu, F., Liu, Y. X., et al., 2020. Elastic and Magnetic Properties of Fe3P up to Core Pressures: Phosphorus in the Earth's Core. Earth and Planetary Science Letters, 531: 115974. https://doi.org/10.1016/j.epsl.2019.115974 Li, B. S., Liebermann, R. C, 2007. Indoor Seismology by Probing the Earth's Interior by Using Sound Velocity Measurements at High Pressures and Temperatures. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9145-9150. https://doi.org/10.1073/pnas.0608609104 Li, B. S., Liebermann, R. C, 2014. Study of the Earth's Interior Using Measurements of Sound Velocities in Minerals by Ultrasonic Interferometry. Physics of the Earth and Planetary Interiors, 233: 135-153. https://doi.org/10.1016/j.pepi.2014.05.006 Li, B. S., Zhang, J. Z, 2005. Pressure and Temperature Dependence of Elastic Wave Velocity of MgSiO3 Perovskite and the Composition of the Lower Mantle. Physics of the Earth and Planetary Interiors, 151(1/2): 143-154. https://doi.org/10.1016/j.pepi.2005.02.004 Li, B., Ji, C., Yang, W. G., et al., 2018. Diamond Anvil Cell Behavior up to 4 Mbar. Proceedings of the National Academy of Sciences of the United States of America, 115(8): 1713-1717. https://doi.org/10.1073/pnas.1721425115 Li, B., Liebermann, R. C., Weidner, D. J, 1998. Elastic Moduli of Wadsleyite (Beta⁃Mg2SiO4) to 7 Gigapascals and 873 Kelvin. Science, 281(5377): 675-677. https://doi.org/10.1126/science.281.5377.675 Li, M., Zhang, H. P., Chen, S., et al., 2022. Laser Driven Dynamic Compression of Materials. High Power Laser and Particle Beams, 34(1): 1-24(in Chinese with English abstract). Lin, J. F., Mao, Z., Yang, J., et al., 2018. Elasticity of Lower⁃Mantle Bridgmanite. Nature, 564(7736): E18-E26. https://doi.org/10.1038/s41586⁃018⁃0741⁃7 Lin, J. F., Sturhahn, W., Zhao, J. Y., et al., 2005. Sound Velocities of Hot Dense Iron: Birch's Law Revisited. Science, 308(5730): 1892-1894. https://doi.org/10.1126/science.1111724 Liu, W., Kung, J., Li, B. S., 2005. Elasticity of San Carlos Olivine to 8 GPa and 1 073 K. Geophysical Research Letters, 32(16): L16301. https://doi.org/10.1029/2005g l023453 doi: 10.1029/2005gl023453 Liu, X., Fan, L. L., Yang, G., et al., 2020. Hugoniot Equation of State of Cementite (Fe3C) up to 250 GPa and Its Geophysical Implications. Physics of the Earth and Planetary Interiors, 306: 106506. https://doi.org/10.1016/j.pepi.2020.106506 Mao, Z., Fan, D. W., Lin, J. F., et al., 2015. Elasticity of Single⁃Crystal Olivine at High Pressures and Temperatures. Earth and Planetary Science Letters, 426: 204-215. https://doi.org/10.1016/j.epsl.2015.06.045 Mao, Z., Jacobsen, S. D., Frost, D. J., et al., 2011. Effect of Hydration on the Single⁃Crystal Elasticity of Fe⁃Bearing Wadsleyite to 12 GPa. American Mineralogist, 96(10): 1606-1612. https://doi.org/10.2138/am.2011.3807 Mao, Z., Jacobsen, S. D., Jiang, F., et al., 2008. Single⁃Crystal Elasticity of Wadsleyites, Β⁃Mg2SiO4, Containing 0.37⁃1.66 WT. % H2O. Earth and Planetary Science Letters, 266(1/2): 78-89. https://doi.org/10.1016/j.epsl.2007.10.045 Mao, Z., Lin, J. F., Jacobsen, S. D., et al., 2012a. Sound Velocities of Hydrous Ringwoodite to 16 GPa and 673 K. Earth and Planetary Science Letters, 331/332: 112-119. https://doi.org/10.1016/j.epsl.2012.03.001 Mao, Z., Lin, J. F., Liu, J., et al., 2012b. Sound Velocities of Fe and Fe⁃Si Alloy in the Earth's Core. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10239-10244. https://doi.org/10.1073/pnas.1207086109 Mao, Z., Sun, N. Y., Wei, W, 2021. Perspective for Elasticity of Minerals in the Earth's Top Lower Mantle. National Science Review, 8(4): nwaa270. https://doi.org/10.1093/nsr/nwaa270 Marquardt, H., Speziale, S., Reichmann, H. J., et al., 2009. Elastic Shear Anisotropy of Ferropericlase in Earth's Lower Mantle. Science, 324(5924): 224-226. https://doi.org/10.1126/science.1169365 Marquardt, H., Thomas, A. R, 2020. Experimental Elasticity of Earth's Deep Mantle. Nature Reviews Earth & Environment, 1(9): 455-469. https://doi.org/10.1038/s43017⁃020⁃0077⁃3 Murakami, M., Ohishi, Y., Hirao, N., et al., 2012. A Perovskitic Lower Mantle Inferred from High⁃Pressure, High⁃Temperature Sound Velocity Data. Nature, 485(7396): 90-94. https://doi.org/10.1038/nature11004 Murakami, M., Sinogeikin, S. V., Bass, J. D., et al., 2007a. Sound Velocity of MgSiO3 Post⁃Perovskite Phase: a Constraint on the D″ Discontinuity. Earth and Planetary Science Letters, 259(1/2): 18-23. https://doi.org/10.1016/j.epsl.2007.04.015 Murakami, M., Sinogeikin, S. V., Hellwig, H., et al., 2007b. Sound Velocity of MgSiO3 Perovskite to Mbar Pressure. Earth and Planetary Science Letters, 256(1/2): 47-54. https://doi.org/10.1016/j.epsl.2007.01.011 Nishida, K., Shibazaki, Y., Terasaki, H., et al., 2020. Effect of Sulfur on Sound Velocity of Liquid Iron under Martian Core Conditions. Nature Communications, 11: 1954. https://doi.org/10.1038/s41467⁃020⁃15755⁃2 Nishida, K., Suzuki, A., Terasaki, H., et al., 2016. Towards a Consensus on the Pressure and Composition Dependence of Sound Velocity in the Liquid Fe⁃S System. Physics of the Earth and Planetary Interiors, 257: 230-239. https://doi.org/10.1016/j.pepi.2016.06.009 Polian, A., 2003. Brillouin Scattering at High Pressure: An Overview. Journal of Raman Spectroscopy, 34: 633-637. doi: 10.1002/jrs.1031 Prakapenka, V. B., Kubo, A., Kuznetsov, A., et al., 2008. Advanced Flat Top Laser Heating System for High Pressure Research at GSECARS: Application to the Melting Behavior of Germanium. High Pressure Research, 28(3): 225-235. https://doi.org/10.1080/08957950802050718 Sakairi, T., Sakamaki, T., Ohtani, E., et al., 2018. Sound Velocity Measurements of Hcp Fe⁃Si Alloy at High Pressure and High Temperature by Inelastic X⁃Ray Scattering. American Mineralogist, 103: 85-90. doi: 10.2138/am-2018-6072 Sandberg, R., Milathianaki, D., Nagler, B., et al., 2015. Ultrafast Visualization of Crystallization and Grain Growth in Shock⁃Compressed SiO2. Nature Communications, 6(Sep. ): 8191. Schulze, K., Marquardt, H., Kawazoe, T., et al., 2018. Seismically Invisible Water in Earth's Transition Zone? Earth and Planetary Science Letters, 498: 9-16. https://doi.org/10.1016/j.epsl.2018.06.021 Shibazaki, Y., Ohtani, E., Fukui, H., et al., 2012. Sound Velocity Measurements in DHCP⁃FeH up to 70 GPa with Inelastic X⁃Ray Scattering: Implications for the Composition of the Earth's Core. Earth and Planetary Science Letters, 313/314: 79-85. https://doi.org/10.1016/j.epsl.2011.11.002 Sinogeikin, S. V., Bass, J. D, 2000. Single⁃Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Physics of the Earth and Planetary Interiors, 120(1/2): 43-62. https://doi.org/10.1016/S0031⁃9201(00)00143⁃6 Sinogeikin, S. V., Bass, J. D., Katsura, T, 2003. Single⁃Crystal Elasticity of Ringwoodite to High Pressures and High Temperatures: Implications for 520 Km Seismic Discontinuity. Physics of the Earth and Planetary Interiors, 136(1/2): 41-66. https://doi.org/10.1016/S0031⁃9201(03)00022⁃0 Smith, R. F., Eggert, J. H., Jeanloz, R., et al., 2014. Ramp Compression of Diamond to Five Terapascals. Nature, 511(7509): 330-333. https://doi.org/10.1038/nature13526 Takahashi, S., Ohtani, E., Sakamaki, T., et al., 2019. Sound Velocity of Fe3C at High Pressure and High Temperature Determined by Inelastic X⁃Ray Scattering. Comptes Rendus Geoscience, 351(2/3): 190-196. https://doi.org/10.1016/j.crte.2018.09.005 Terasaki, H., Rivoldini, A., Shimoyama, Y., et al., 2019. Pressure and Composition Effects on Sound Velocity and Density of Core⁃Forming Liquids: Implication to Core Compositions of Terrestrial Planets. Journal of Geophysical Research: Planets, 124(8): 2272-2293. https://doi.org/10.1029/2019je005936 Thomson, A. R., Crichton, W. A., Brodholt, J. P., et al., 2019. Seismic Velocities of CaSiO3 Perovskite can Explain LLSVPS in Earth's Lower Mantle. Nature, 572(7771): 643-647. https://doi.org/10.1038/s41586⁃019⁃1483⁃x Tracy, S. J., Turneaure, S. J., Duffy, T. S, 2018. In Situ X⁃Ray Diffraction of Shock⁃Compressed Fused Silica. Physical Review Letters, 120(13): 135702. https://doi.org/10.1103/PhysRevLett.120.135702 van der Hilst, V., Karason, H, 1999. Compositional Heterogeneity in the Bottom 1 000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model. Science, 283(5409): 1885-1888. https://doi.org/10.1126/science. 283. 5409. 1885 doi: 10.1126/science.283.5409.1885 Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High⁃Pressure Conditions. Geophysical Research Letters, 33(14): L14308. https://doi.org/10.1029/2006gl026441 Wang, X. L., Tsuchiya, T., Hase, A, 2015. Computational Support for a Pyrolitic Lower Mantle Containing Ferric Iron. Nature Geoscience, 8(7): 556-559. https://doi.org/10.1038/ngeo2458 Wicks, J. K., Jackson, J. M., Sturhahn, W, 2010. Very Low Sound Velocities in Iron⁃Rich (Mg, Fe)O: Implications for the Core⁃Mantle Boundary Region. Geophysical Research Letters, 37(15): 25-35. https://doi.org/10.1029/2010gl043689 Wicks, J. K., Smith, R. F., Fratanduono, D. E., et al., 2018. Crystal Structure and Equation of State of Fe⁃Si Alloys at Super⁃Earth Core Conditions. Science Advances, 4(4): eaao5864. https://doi.org/10.1126/sciadv.aao5864 Xu, C. W., Gréaux, S., Inoue, T., et al., 2020a. Sound Velocities of Al⁃Bearing Phase D up to 22 GPa and 1 300 K. Geophysical Research Letters, 47(18): 152-168. https://doi.org/10.1029/2020gl088877 Xu, M., Jing, Z. C., Bajgain, S. K., et al., 2020b. High⁃Pressure Elastic Properties of Dolomite Melt Supporting Carbonate⁃Induced Melting in Deep Upper Mantle. Proceedings of the National Academy of Sciences of the United States of America, 117(31): 18285-18291. https://doi.org/10.1073/pnas.2004347117 Xu, M., Jing, Z. C., Chantel, J., et al., 2018. Ultrasonic Velocity of Diopside Liquid at High Pressure and Temperature: Constraints on Velocity Reduction in the Upper Mantle Due to Partial Melts. Journal of Geophysical Research: Solid Earth, 123(10): 8676-8690. https://doi.org/10.1029/2018jb016187 Yang, J., Lin, J. F., Jacobsen, S. D., et al., 2016. Elasticity of Ferropericlase and Seismic Heterogeneity in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(12): 8488-8500. https://doi.org/10.1002/2016jb013352 Yang, R., Wu, Z. Q, 2014. Elastic Properties of Stishovite and the CaCl2⁃Type Silica at the Mantle Temperature and Pressure: an Ab Initio Investigation. Earth and Planetary Science Letters, 404: 14-21. https://doi.org/10.1016/j.epsl.2014.07.020 Zhang, J. S., Bass, J. D, 2016. Single⁃Crystal Elasticity of Natural Fe⁃Bearing Orthoenstatite across a High⁃Pressure Phase Transition. Geophysical Research Letters, 43(16): 8473-8481. https://doi.org/10.1002/2016gl069963 Zhang, Y. Y., Fu, S. Y., Wang, B. Y., et al., 2021. Elasticity of a Pseudoproper Ferroelastic Transition from Stishovite to Post⁃Stishovite at High Pressure. Physical Review Letters, 126(2): 025701. https://doi.org/10.1103/PhysRevLett.126.025701 Zhou, C. Y., Jin, Z. M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chinese with English abstract). 李牧, 张红平, 陈实, 等, 2022. 激光驱动材料动态压缩技术. 强激光与粒子束, 34(1): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202201001.htm 周春银, 金振民, 2014. 照亮地球深部的"明灯": 高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm