• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海洋沉积物碳循环过程数值模型的研究进展

    徐思南 吴自军 张喜林 孙伟香 耿威 曹红 翟滨 孙治雷

    徐思南, 吴自军, 张喜林, 孙伟香, 耿威, 曹红, 翟滨, 孙治雷, 2024. 海洋沉积物碳循环过程数值模型的研究进展. 地球科学, 49(4): 1431-1447. doi: 10.3799/dqkx.2022.292
    引用本文: 徐思南, 吴自军, 张喜林, 孙伟香, 耿威, 曹红, 翟滨, 孙治雷, 2024. 海洋沉积物碳循环过程数值模型的研究进展. 地球科学, 49(4): 1431-1447. doi: 10.3799/dqkx.2022.292
    Xu Sinan, Wu Zijun, Zhang Xilin, Sun Weixiang, Geng Wei, Cao Hong, Zhai Bin, Sun Zhilei, 2024. Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments. Earth Science, 49(4): 1431-1447. doi: 10.3799/dqkx.2022.292
    Citation: Xu Sinan, Wu Zijun, Zhang Xilin, Sun Weixiang, Geng Wei, Cao Hong, Zhai Bin, Sun Zhilei, 2024. Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments. Earth Science, 49(4): 1431-1447. doi: 10.3799/dqkx.2022.292

    海洋沉积物碳循环过程数值模型的研究进展

    doi: 10.3799/dqkx.2022.292
    基金项目: 

    国家自然科学基金项目 42176057

    国家自然科学基金项目 42276059

    国家自然科学基金项目 92358301

    中国博士后科学基金项目 2023M741869

    山东省博士后创新项目 SDCX-ZG-202302026

    同济大学海洋地质国家重点实验室开放课题 MGK202418

    详细信息
      作者简介:

      徐思南(1992-),博士研究生,主要从事海洋沉积物碳循环相关的数值模拟工作. ORCID:0000-0002-1726-1044. E-mail:sinan.xu@outlook.com

      通讯作者:

      吴自军, 教授, 博士生导师.E-mail: wuzj@tongji.edu.cn

      孙治雷,研究员,博士生导师. E-mail: zhileisun@yeah.net

    • 中图分类号: P734

    Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments

    • 摘要: 海洋沉积物不仅是各种不同来源有机碳的重要埋藏场所,也是一个十分活跃的生物地球化学反应器,在全球海洋碳循环中扮演着重要角色.相对传统的地球化学测试和定性描述方法,数值模型可以突破时间和空间的限制,定量获取海洋沉积物中各个碳循环过程的反应速率及其通量,因此日益受到学界的重视.海洋沉积物有机质降解是驱动碳循环最为关键的生物地球化学过程,其释放进入周围孔隙水的溶解无机碳一部分可扩散至沉积物上覆水体,另一部分可与钙、镁等离子沉淀形成自生碳酸盐矿物.首先综述目前主要的3类沉积物有机质降解模型(离散性有机质降解模型、连续性有机质降解模型和Power模型)的建模过程及其在全球海洋沉积物有机质降解过程中的应用;接着从有机质降解相关的初级与次级反应出发,介绍沉积物中与有机质降解相关的地球化学过程反应速率模型的刻画方法,并从碳酸盐平衡体系和同位素质量平衡模式角度,探讨了沉积物有机质降解过程对自生碳酸盐形成及其碳同位素的影响;最后分析了当前阶段数学模型在描述有机质降解过程和自生碳酸盐形成中存在的问题和不足,并在此基础上展望未来亟需加强的研究要点,希企为深入理解海洋碳循环与全球气候变化相互反馈,建立可靠的海洋碳循环和生物地球化学预测系统提供有益的科学支撑.

       

    • 图  1  多-G模型中有机质降解过程示意图

      Fig.  1.  Schematic diagram of organic matter degradation process in the multi-G models

      图  2  多-G模型中有机质活性及其组分的分布示意图

      Fig.  2.  Schematic diagram of the distribution of organic matter reactivity and its fraction in the G models

      图  3  连续性有机质降解模型中有机质活性分布的示意图

      Fig.  3.  Schematic representation of organic matter reactivity distribution in RCM

      图  4  有机质活性与时间的关系

      根据Middelburg(1989)改绘

      Fig.  4.  Plot of organic matter reactivity versus time

      图  5  不同有机质降解模型在全球海洋沉积物中有机质降解过程的应用

      根据Arndt et al.(2013)改绘

      Fig.  5.  Application of different organic matter degradation models to organic matter degradation processes in global marine sediments

      图  6  全球海洋可能发生自生碳酸盐沉淀的区域(a);全球海洋沉积物中水合物分布及其埋藏量(b)

      图a引自Bradbury et al.(2019),图b引自Kretschmer et al.(2015). 图a中,红色圆点表示机器学习处理的站点,红色区域和绿色区域分别表示AOM主导和硫酸根还原主要的自生碳酸盐形成的区域

      Fig.  6.  Regions of the global ocean where authigenic carbonate precipitation is likely to occur (a); global hydrate distribution in marine sediments and its burial volume (b)

      图  7  Gamma分布函数在参数v < 1和v > 1时的分布特征

      Fig.  7.  Distribution characteristics of the Gamma distribution function for parameters v < 1 and v > 1

      图  8  G模型、γ-RCM和Power模型参数与沉降速率、有机质通量之间的关系

      根据Arndt et al.(2013)改绘

      Fig.  8.  Relationship between G model, γ-RCM and Power model parameters and sedimentation rate and organic matter flux

      表  1  沉积物中有机质相关的初级与次级反应,及其反应速率

      Table  1.   Primary and secondary redox reactions related to organic matter in sediments, and their reaction rates

      地球化学反应 反应速率
      初级反应
      R1 CH2O+O2 → CO2+H2O -ROM
      R2 CH2O+4NO3- → 2N2+4HCO3-+CO2+3H2O -4·ROM
      R3 CH2O+2MnO2+3CO2+H2O → 2Mn2++4HCO3- ROM
      R4 CH2O+4Fe(OH)3+7CO2 → 4Fe2++8HCO3-+3H2O ROM
      R5 2CH2O+SO42- → H2S+2HCO3- 0.5·ROM
      R6 2CH2O+H2O → CH4+HCO3-+H+ 0.5·ROM
      次级反应
      R7 Fe2++HS-+HCO3- → FeS+CO2+H2O kFeHx·[Fe2+]·[HS-]
      R8 4Fe2++O2+8HCO3-+2H2O → 4Fe(OH)3+8CO2 kFeOx·[Fe2+]·[O2]
      R9 2Mn2++O2+4HCO3- → 2MnO2+4CO2+2H2O kMnOx·[Mn2+]·[O2]
      R10 H2S+2O2+2HCO3- → SO42-+2CO2+2H2O kSOx·[H2S]·[O2]
      R11 NH4++2O2+2HCO3- → NO3-+2CO2+3H2O kNHOx·[NH4+]·[O2]
      R12 CH4+O2 → CO2+2H2O kCHOx·[CH4]·[O2]
      R13 MnO2+2Fe2++3HCO3-+2H2O → 2Fe(OH)3+Mn2++4CO2 kMnFe·[MnO2]·[Fe2+]
      R14 MnO2+H2S+2CO2 → Mn2++S0+2HCO3- kMnHs·[MnO2]·[H2S]
      R15 H2S+2Fe(OH)3+4CO2 → 2Fe2++S0+4HCO3-+2H2O kFeHS·[Fe(OH)3]·[H2S]
      R16 FeS+2Fe(OH)3+6CO2 → 3Fe2++S0+6HCO3- kFeSFe·[Fe(OH)3]·[FeS]
      R17 FeS+4MnO2+8CO2+4H2O → 4Mn2++4Fe2++SO42-+8HCO3- kFeMnO·[FeS]·[MnO2]
      R18 FeS+2O2 → Fe2++SO42- kFeSOx·[FeS]·[O2]
      R19 CH4+SO42- → HCO3-+HS-+H2O kAOM·[CH4]·[SO42-]
      注:[]表示括号中物质或元素的含量或浓度,ki表示动力学反应系数.
      下载: 导出CSV
    • Akam, S. A., Coffin, R. B., Abdulla, H. A. N., et al., 2020. Dissolved Inorganic Carbon Pump in Methane-Charged Shallow Marine Sediments: State of the Art and New Model Perspectives. Frontiers in Marine Science, 7: 206. https://doi.org/10.3389/fmars.2020.00206
      Aller, R. C., Aller, J. Y., 1998. The Effect of Biogenic Irrigation Intensity and Solute Exchange on Diagenetic Reaction Rates in Marine Sediments. Journal of Marine Research, 56(4): 905-936. https://doi.org/10.1357/002224098321667413
      Aris, R., 1968. Prolegomena to the Rational Analysis of Systems of Chemical Reactions II. Some Addenda. Archive for Rational Mechanics and Analysis, 27(5): 356-364. https://doi.org/10.1007/BF00251438
      Arndt, S., Jørgensen, B. B., LaRowe, D. E., et al., 2013. Quantifying the Degradation of Organic Matter in Marine Sediments: A Review and Synthesis. Earth-Science Reviews, 123: 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008
      Ausín, B., Bruni, E., Haghipour, N., et al., 2021. Controls on the Abundance, Provenance and Age of Organic Carbon Buried in Continental Margin Sediments. Earth and Planetary Science Letters, 558: 116759. https://doi.org/10.1016/j.epsl.2021.116759
      Bauer, J. E., Cai, W. J., Raymond, P. A., et al., 2013. The Changing Carbon Cycle of the Coastal Ocean. Nature, 504(7478): 61-70. https://doi.org/10.1038/nature12857
      Bayon, G., Pierre, C., Etoubleau, J., et al., 2007. Sr/Ca and Mg/Ca Ratios in Niger Delta Sediments: Implications for Authigenic Carbonate Genesis in Cold Seep Environments. Marine Geology, 241(1/2/3/4): 93-109. https://doi.org/10.1016/j.margeo.2007.03.007
      Berner, R. A., 1964. An Idealized Model of Dissolved Sulfate Distribution in Recent Sediments. Geochimica et Cosmochimica Acta, 28(9): 1497-1503. https://doi.org/10.1016/0016-7037(64)90164-4
      Berner, R. A., 2020. Early Diagenesis. Princeton University Press, Princeton. https://doi.org/10.2307/j.ctvx8b6p2
      Bin, Z., Peng, Y., Zuosheng, Y., et al., 2018. Reverse Weathering in River-Dominated Marginal Seas. Advances in Earth Science, 33: 42. https://doi.org/10.11867/j.issn.1001-8166.2018.01.0042
      Blouet, J. P., Arndt, S., Imbert, P., et al., 2021. Are Seep Carbonates Quantitative Proxies of CH4 Leakage? Modeling the Influence of Sulfate Reduction and Anaerobic Oxidation of Methane on pH and Carbonate Precipitation. Chemical Geology, 577: 120254. https://doi.org/10.1016/j.chemgeo.2021.120254
      Boudreau, B. P., 1996. A Method-of-Lines Code for Carbon and Nutrient Diagenesis in Aquatic Sediments. Computers & Geosciences, 22(5): 479-496. https://doi.org/10.1016/0098-3004(95)00115-8
      Boudreau, B. P., 1997. Diagenetic Models and Their Implementation. Springer, Berlin. https://doi.org/10.1007/97S-3-642-60421-8
      Boudreau, B. P., Ruddick, B. R., 1991. On a Reactive Continuum Representation of Organic Matter Diagenesis. American Journal of Science, 291(5): 507-538. https://doi.org/10.2475/ajs.291.5.507
      Bradbury, H. J., Turchyn, A. V., 2019. Reevaluating the Carbon Sink Due to Sedimentary Carbonate Formation in Modern Marine Sediments. Earth and Planetary Science Letters, 519: 40-49. https://doi.org/10.1016/j.epsl.2019.04.044
      Burdige, D. J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chemical Reviews, 107(2): 467-485. https://doi.org/10.1021/cr050347q
      Castanier S., Métayer-levrel G L, Perthuisot J P., 2000. Bacterial Roles in the Precipitation of Carbonate Miner-als. Microbial sediment, 32-39. https://doi.org/10.1007/978-3-662-04036-2_5
      Charlou, J. L., Donval, J. P., Fouquet, Y., et al., 2004. Physical and Chemical Characterization of Gas Hydrates and Associated Methane Plumes in the Congo-Angola Basin. Chemical Geology, 205(3-4), 405-425. https://doi.org/10.1016/j.chemgeo.2003.12.033
      Dale, A. W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. American Journal of Science, 306(4): 246-294. https://doi.org/10.2475/ajs.306.4.246
      Dunne, J. P., Sarmiento, J. L., Gnanadesikan, A., 2007. A Synthesis of Global Particle Export from the Surface Ocean and Cycling through the Ocean Interior and on the Seafloor. Global Biogeochemical Cycles, 21(4): GB4006. https://doi.org/10.1029/2006gb002907
      Emerson, S., Fischer, K., Reimers, C., et al., 1985. Organic Carbon Dynamics and Preservation in Deep-Sea Sediments. Deep Sea Research Part A Oceanographic Research Papers, 32(1): 1-21. https://doi.org/10.1016/0198-0149(85)90014-7
      Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021
      Hansell, D. A., Carlson, C. A., 2015. Preface. Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, Amsterdam: xvii-xviii. https://doi.org/10.1016/b978-0-12-405940-5.09990-8
      Ho, T. C., Aris, R., 1987. On Apparent Second-Order Kinetics. AIChE Journal, 33(6): 1050-1051. https://doi.org/10.1002/aic.690330621
      Huguet, C., De Lange, G. J., Gustafsson, Ö, et al., 2008. Selective Preservation of Soil Organic Matter in Oxidized Marine Sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72(24): 6061-6068. https://doi.org/10.1016/j.gca.2008.09.021
      Jørgensen, B. B., 1978. A Comparison of Methods for the Quantification of Bacterial Sulfate Reduction in Coastal Marine Sediments. Geomicrobiology Journal, 1(1): 29-47. https://doi.org/10.1080/01490457809377722
      Jørgensen, B. B., 1983. Processes at the Sediment-Water Interface. Major Biogeochemical Cycles and Their Interactions, 25(6): 1421-1426.
      Kennedy, M. J., Pevear, D. R., Hill, R. J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657-660. https://doi.org/10.1126/science.1066611
      Kretschmer, K., Biastoch, A., Rüpke, L., et al., 2015. Modeling the Fate of Methane Hydrates under Global Warming. Global Biogeochemical Cycles, 29(5): 610-625. https://doi.org/10.1002/2014gb005011
      Krumins, V., Gehlen, M., Arndt, S., et al., 2013. Dissolved Inorganic Carbon and Alkalinity Fluxes from Coastal Marine Sediments: Model Estimates for Different Shelf Environments and Sensitivity to Global Change. Biogeosciences, 10(1): 371-398. https://doi.org/10.5194/bg-10-371-2013
      LaRowe, D. E., Arndt, S., Bradley, J. A., et al., 2020a. The Fate of Organic Carbon in Marine Sediments—New Insights from Recent Data and Analysis. Earth-Science Reviews, 204: 103146. https://doi.org/10.1016/j.earscirev.2020.103146
      LaRowe, D. E., Arndt S., Bradley, J. A., et al., 2020b. Organic Carbon and Microbial Activity in Marine Sediments on a Global Scale Throughout the Quaternary. Geochimica et Cosmochimica Acta, 286: 227-247. https://doi.org/10.1016/j.gca.2020.07.017
      LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020
      Luff, R., Greinert, J., Wallmann, K., et al., 2005. Simulation of Long-Term Feedbacks from Authigenic Carbonate Crust Formation at Cold Vent Sites. Chemical Geology, 216(1/2): 157-174. https://doi.org/10.1016/j.chemgeo.2004.11.002
      Luff, R., Haeckel, M., Wallmann, K., 2001. Robust and Fast FORTRAN and MATLAB Libraries to Calculate pH Distributions in Marine Systems. Computers & Geosciences, 27(2): 157-169. https://doi.org/10.1016/S0098-3004(00)00097-2
      Luff, R., Wallmann, K., 2003. Fluid Flow, Methane Fluxes, Carbonate Precipitation and Biogeochemical Turnover in Gas Hydrate-Bearing Sediments at Hydrate Ridge, Cascadia Margin: Numerical Modeling and Mass Balances. Geochimica et Cosmochimica Acta, 67(18): 3403-3421. https://doi.org/10.1016/S0016-7037(03)00127-3
      Maier-Reimer, E., Hasselmann, K., 1987. Transport and Storage of CO2 in the Ocean—An Inorganic Ocean-Circulation Carbon Cycle Model. Climate Dynamics, 2(2): 63-90. https://doi.org/10.1007/BF01054491
      Meister, P., Liu, B., Ferdelman, T. G., et al., 2013. Control of Sulphate and Methane Distributions in Marine Sediments by Organic Matter Reactivity. Geochimica et Cosmochimica Acta, 104: 183-193. https://doi.org/10.1016/j.gca.2012.11.011
      Michalopoulos, P., Aller, R. C., 1995. Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles. Science, 270(5236): 614-617. https://doi.org/10.1126/science.270.5236.614
      Middelburg, J. J., 1989. A Simple Rate Model for Organic Matter Decomposition in Marine Sediments. Geochimica et Cosmochimica Acta, 53(7): 1577-1581. https://doi.org/10.1016/0016-7037(89)90239-1
      Middelburg, J. J., Soetaert, K., Hagens, M., 2020. Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3): e2019RG000681. https://doi.org/10.1029/2019rg000681
      Middelburg, J. J., Soetaert, K., Herman, P. M., 1997. Empirical Relationships for Use in Global Diagenetic Models. Deep Sea Research Part I: Oceanographic Research Papers, 44(2): 327-344. https://doi.org/10.1016/S0967-0637(96)00101-X
      Mitnick, E. H., Lammers, L. N., Zhang, S., et al., 2018. Authigenic Carbonate Formation Rates in Marine Sediments and Implications for the Marine δ13C Record. Earth and Planetary Science Letters, 495: 135-145. https://doi.org/10.1016/j.epsl.2018.05.018
      Mood, M. F., 1951. Introduction to the Theory of Statistics. Medical biological science, 5(2): 121-122.
      Morse, J. W., Arvidson, R. S., Lüttge, A., 2007. Calcium Carbonate Formation and Dissolution. Chemical Reviews, 107(2): 342-381. https://doi.org/10.1021/cr050358j
      Naehr, T. H., Eichhubl, P., Orphan, V. J., et al., 2007. Authigenic Carbonate Formation at Hydrocarbon Seeps in Continental Margin Sediments: A Comparative Study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11-13): 1268-1291. https://doi.org/10.1016/j.dsr2.2007.04.010
      Nöthen, K., Kasten, S., 2011. Reconstructing Changes in Seep Activity by Means of Pore Water and Solid Phase Sr/Ca and Mg/Ca Ratios in Pockmark Sediments of the Northern Congo Fan. Marine Geology, 287(1-4): 1-13. https://doi.org/10.1016/j.margeo.2011.06.008
      Reeburgh, W. S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107(2): 486-513. https://doi.org/10.1021/cr050362v
      Regnier, P., Dale, A. W., Arndt, S., et al., 2011. Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective. Earth-Science Reviews, 106(1/2): 105-130. https://doi.org/10.1016/j.earscirev.2011.01.002
      Regnier, P., Dale, A. W., Pallud, C., et al., 2005. Incorporating Geomicrobial Processes in Reactive Transport Models of Subsurface Environments. Reactive Transport in Soil and Groundwater. Springer Berlin, Heidelberg, 109-125. https://doi.org/10.1007/3-540-26746-8_8
      Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., et al., 1998. Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming. Nature, 393(6682): 245-249. https://doi.org/10.1038/30455
      Schrag, D. P., Higgins, J. A., MacDonald, F. A., et al., 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 339(6119): 540-543. https://doi.org/10.1126/science.1229578
      Sun, J., 2023. How Many Pathways we Have for the Marine Carbon Neutrality. Journal of Earth Science, 34(5): 1621-1623. https://doi.org/10.1007/s12583-023-1892-5
      Sun, Q. L., 2023. How does Global Warming Influence Seafloor Stability? Journal of Earth Science, 34(5): 1624-1625. https://doi.org/10.1007/s12583-023-1877-4
      Sun, X. L., Turchyn, A. V., 2014. Significant Contribution of Authigenic Carbonate to Marine Carbon Burial. Nature Geoscience, 7(3): 201-204. https://doi.org/10.1038/ngeo2070
      Vähätalo, A. V., Aarnos, H., Mäntyniemi, S., 2010. Biodegradability Continuum and Biodegradation Kinetics of Natural Organic Matter Described by the Beta Distribution. Biogeochemistry, 100(1): 227-240. https://doi.org/10.1007/s10533-010-9419-4
      Van Cappellen, P., Wang, Y., 1996. Cycling of Iron and Manganese in Surface Sediments; A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur, Iron, and Manganese. American Journal of Science, 296(3): 197-243. https://doi.org/10.2475/ajs.296.3.197
      Van Nugteren, P., Moodley, L., Brummer, G. J., et al., 2009. Seafloor Ecosystem Functioning: The Importance of Organic Matter Priming. Marine Biology, 156(11): 2277-2287. https://doi.org/10.1007/s00227-009-1255-5
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wu, Y. F., Guan, H. X., Xu, L. F., et al., 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015 (in Chinese with English abstract).
      Yoshinaga, M. Y., Holler, T., Goldhammer, T., et al., 2014. Carbon Isotope Equilibration during Sulphate-Limited Anaerobic Oxidation of Methane. Nature Geoscience, 7(3): 190-194. https://doi.org/10.1038/ngeo2069
      Zeebe, R. E., Wolf-Gladrow, D., 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Gulf Professional Publishing, Amsterdam. https://doi.org/10.1016/s0422-9894(01)x8001-x
      Zhang, S., Wang, L. C., 2013. Review on Carbon Cycling of Farmland Ecosystem under the Context of Global Changes. Journal of Agricultural Mechanization Research, 35(1): 4-9 (in Chinese with English abstract).
      Zhang, Y. H., Wu, Z. J., 2019. Sedimentary Organic Carbon Mineralization and Its Contribution to the Marine Carbon Cycle in the Marginal Seas. Advances in Earth Science, 34(2): 202-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201902012.htm
      Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract).
      Zhu, J. J., Li, S. Z., Lu, J. A., et al., 2020. Scientific Implications and Preliminary Surveying Results of Geological and Physical Oceanography Environment in the Shenhu Area of the Northern South China Sea. Earth Science, 45(4): 1416-1426 (in Chinese with English abstract).
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      吴一帆, 管红香, 许兰芳, 等, 2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202
      张赛, 王龙昌, 2013. 全球变化背景下农田生态系统碳循环研究. 农机化研究, 35(1): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201301004.htm
      张咏华, 吴自军, 2019. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响. 地球科学进展, 34(2): 202-209.
      张仲石, 李双林, 王会军, 等, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
      朱俊江, 李三忠, 陆敬安, 等, 2020. 南海北部神狐海域地质环境综合调查及科学意义. 地球科学, 45(4): 1416-1426. doi: 10.3799/dqkx.2019.109
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  335
    • HTML全文浏览量:  92
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-30
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回