Neoid Major Tectono-Thermal Events and Their Potential Impacts on Deep Geothermal Energy
-
摘要: 地热能是前景可期的清洁能源,深层地热能已被世界各国广泛关注和重点研究.现今地壳热状态是岩石圈热演化的最终结果,主要受最新一期构造‒热事件的影响.研究挽近重大构造‒热事件对地壳热状态的影响对深入理解及勘探深层地热能具有重要科学意义和应用价值.本文收集整理了国内外大量文献和资料,归纳阐述了挽近时期重大构造‒热事件如地幔柱、断层活动、岩石圈伸展及火山活动对深层地热能的潜在影响.结合我国的研究背景,指出了待解决的科学问题,强调深部动力学过程对浅部热结构研究的重要性,为未来深层地热资源勘查开发提供了理论依据.Abstract: Geothermal energy is a promising clean energy. As a hot resarch topic, deep geothermal energy has been studied worldwide. The present-day crustal thermal state is the final result of the lithospheric thermal evolution and is mainly influenced by the latest tectono-thermal events. It is of great scientific significance and application value to study the influence of neoid major tectono-thermal events on crustal thermal state for further understanding and exploration of deep geothermal energy. We collect a large number of literature and summarize the research progress on the potential impacts of neoid major tectono-thermal events such as mantle plume, fault activity, lithospheric extension and volcanic activity on deep geothermal energy. Combined with the research background of China, we point out the scientific problems to be solved and emphasize the importance of the deep dynamic processes to the shallow thermal structure. It provides a theoretical basis for future exploration and development of deep geothermal resources.
-
图 1 峨眉山地幔柱热演化特征
a. 现今地表热流,据Jiang et al.(2018);b. 热流演化史,据Jiang et al.(2018);c. 温度随时间的演化,据He(2022)
Fig. 1. Thermal evolution of the Emeishan mantle plume
图 2 岩石圈尺度大陆走滑断层及其预测地表热流示意图(a~b;改自Leloup et al., 1999);断裂带附近地表热流观测值和摩擦生热模型估算值(c~e)
c. 圣安德列斯断层,据Lachenbruch and Sass(1992);d. 日本海沟,据Gao and Wang(2014);e. 死海断层,据Oryan and Savage(2021)
Fig. 2. Sketch of a continental strike-slip fault at lithospheric scale and estimated surface heat flow across the fault (a-b; modified after Leloup et al., 1999); observed heat flow data and estimated values by frictional heating model near the fault zones (c-e)
图 3 岩石圈多幕拉张及裂后热冷却模型示意图(据Liu et al., 2022)
β1, β2.裂陷Ⅰ、Ⅱ幕的拉张系数;S1,S2.裂陷Ⅰ、Ⅱ幕的同裂陷沉降量;St.裂后期热沉降量
Fig. 3. Schematic diagram of the lithospheric stretching model for a two-episode rift process followed by a post-rift phase (modified from Liu et al., 2022)
图 4 裂谷盆地快速沉积造成的热披覆效应(据Souche et al., 2017)
a. 温度;b. 热流;Qs. 地表热流;Qb. 基底热流;S. 沉积物放射性生热量;c. 沉积速率
Fig. 4. Thermal blanketing effect induced by rapid sedimentation in rift basin (modified from Souche et al., 2017)
图 5 开放、非绝热岩浆囊示意(据Mourtada-Bonnefoi et al., 1999)
Fig. 5. Sketch of an open, non adiabatic magma chamber (modified from Mourtada-Bonnefoi et al., 1999)
图 6 日本九州南部地区火山周边热流分布(引自Tanaka et al., 2004)
Fig. 6. Heat flow distribution around active volcanoes in southern Kyushu, Japan (after Tanaka et al., 2004)
表 1 全球几个地幔柱对应的地表热流、异常热流及地幔潜温的对比
Table 1. Comparison of surface heat flow, heat flow anomaly and mantle potential temperature of several global mantle plumes
名称 年龄(Ma) 热流(mW/m2) 异常热流(mW/m2) 地幔潜温
(℃)参考文献 Hawaii 83 74±15 14±15 1 688 Harris et al., 2000; Putirka, 2005 Reunion 77 67~72 6~8 > 1 380 Albarède et al., 1997; Bonneville et al., 1997 Iceland 40 65~166 - 1 500 MacLennan et al., 2001; Stein and Stein, 2003 Afar 30 100~200 90 1 450 Rolandone et al., 2013; Armitage et al., 2015 Yellowstone 16 > 100 > 10 1 450 Blackwell et al., 2006; Leeman et al., 2009 表 2 全球部分大陆裂谷大地热流统计
Table 2. Statistics of terrestrial heat flow in some continental rifts in the world
裂谷名称 大地热流(mW/m2) 参考文献 坳陷区 坳陷内凸起 裂谷侧翼 断裂带/火山区 Kenya 50~100 60 40~60 234 Morgan (1983), Wheildon et al. (1994) Baikal 78 69 56 > 100~150 Lysak (1987), Lysak and Sherman (2002) Rhine 118 124 70 > 100~150 Lysak (1987) Basin and Range 94 91 72 161 Lysak and Sherman (2002) North Sea 68 < 40~60 > 80~100 Lysak (1987) Suez 60~80 42~47 > 80~175 Lysak (1987) Levantine 51 33 70 Lysak (1987) Cameroon 42 38 > 60~80 Lysak (1987) -
Ai, Y. F., Zhang, J., Dong, M., et al., 2021. Heat Generation Effects from Shear Friction along Xianshui River Strike-Slip Fault in Western Sichuan, China. Geothermics, 89: 101936. https://doi.org/10.1016/j.geothermics.2020.101936 Albarède, F., Luais, B., Fitton, G., et al., 1997. The Geochemical Regimes of Piton de La Fournaise Volcano (Réunion) during the last 530 000 Years. Journal of Petrology, 38(2): 171-201. https://doi.org/10.1093/petroj/38.2.171 Allison, K. L., Dunham, E. M., 2021. Influence of Shear Heating and Thermomechanical Coupling on Earthquake Sequences and the Brittle-Ductile Transition. Journal of Geophysical Research: Solid Earth, 126(6): e2020JB021394. https://doi.org/10.1029/2020jb021394 Armitage, J. J., Ferguson, D. J., Goes, S., et al., 2015. Upper Mantle Temperature and the Onset of Extension and Break-up in Afar, Africa. Earth and Planetary Science Letters, 418: 78-90. https://doi.org/10.1016/j.epsl.2015.02.039 Bai, D. H., Meju, M. A., Liao, Z. J., 2001. Magnetotelluric Images of Deep Crustal Structure of the Rehai Geothermal Field near Tengchong, Southern China. Geophysical Journal International, 147(3): 677-687. https://doi.org/10.1046/j.0956-540x.2001.01568.x Blackwell, D. D., Negraru, P. T., Richards, M. C., 2006. Assessment of the Enhanced Geothermal System Resource Base of the United States. Natural Resources Research, 15(4): 283-308. https://doi.org/10.1007/s11053-007-9028-7 Bonneville, A., Von Herzen, R. P., Lucazeau, F., 1997. Heat Flow over Reunion Hot Spot Track: Additional Evidence for Thermal Rejuvenation of Oceanic Lithosphere. Journal of Geophysical Research: Solid Earth, 102(B10): 22731-22747. https://doi.org/10.1029/97jb00952 Brown, S. R., 1998. Frictional Heating on Faults: Stable Sliding Versus Stick Slip. Journal of Geophysical Research: Solid Earth, 103(B4): 7413-7420. https://doi.org/10.1029/98jb00200 Byerlee, J., 1978. Friction of Rocks. In: Byerlee, J. D., Wyss, M., eds., Rock Friction and Earthquake Prediction. Birkhäuser, Basel, 615-626. Camacho, A., McDougall, I., Armstrong, R., et al., 2001. Evidence for Shear Heating, Musgrave Block, Central Australia. Journal of Structural Geology, 23(6-7): 1007-1013. https://doi.org/10.1016/S0191-8141(00)00172-3 Chang, J., Qiu, N. S., Zhao, X. Z., et al., 2016. Present-Day Geothermal Regime of the Jizhong Depression in Bohai Bay Basin, East China. Chinese Journal of Geophysics, 59(3): 1003-1016 (in Chinese with English abstract). Chen, G. H., Shan, X. J., Moon, W. M., et al., 2008. A Modeling of the Magma Chamber beneath the Changbai Mountains Volcanic Area Constrained by InSAR and GPS Derived Deformation. Chinese Journal of Geophysics, 51(4): 1085-1092 (in Chinese with English abstract). d'Alessio, M. A., Williams, C. F., Bürgmann, R., 2006. Frictional Strength Heterogeneity and Surface Heat Flow: Implications for the Strength of the Creeping San Andreas Fault. Journal of Geophysical Research: Solid Earth, 111(B5): B05410. https://doi.org/10.1029/2005jb003780 de Lorenzo, S., Di Renzo, V., Civetta, L., et al., 2006. Thermal Model of the Vesuvius Magma Chamber. Geophysical Research Letters, 33(17): L17302. https://doi.org/10.1029/2006gl026587 Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2002. Basic Characteristics of Active Tectonics in China. Science in China (Series D), 32(12): 1020-1030 (in Chinese). Di Toro, G., Han, R., Hirose, T., et al., 2011. Fault Lubrication during Earthquakes. Nature, 471(7339): 494-498. https://doi.org/10.1038/nature09838 Doan, M. L., Cornet, F. H., 2007. Thermal Anomaly near the Aigio Fault, Gulf of Corinth, Greece, Maybe Due to Convection below the Fault. Geophysical Research Letters, 34(6): L06314. https://doi.org/10.1029/2006gl028931 Duan, W. T., Huang, S. P., Tang, X. Y., et al., 2017. Numerical Simulation of the Thermal Diffusion of Volcanic Magmatism with ANSYS WORKBENCH. Acta Petrologica Sinica, 33(1): 267-278 (in Chinese with English abstract). Ehara, S., 1992. Thermal Structure beneath Kuju Volcano, Central Kyushu, Japan. Journal of Volcanology and Geothermal Research, 54(1-2): 107-115. https://doi.org/10.1016/0377-0273(92)90117-V Fan, Q. C., Liu, R. X., Sui, J. L., 1999. Petrology and Geochemistry of Rift Type Wudalianchi K-Rich Volcanic Rock Zone. Geological Review, 45(S1): 358-368 (in Chinese with English abstract). Fulton, P. M., Brodsky, E. E., Kano, Y., et al., 2013. Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements. Science, 342(6163): 1214-1217. https://doi.org/10.1126/science.1243641 Fulton, P. M., Harris, R. N., Saffer, D. M., et al., 2010. Does Hydrologic Circulation Mask Frictional Heat on Faults after Large Earthquakes? Journal of Geophysical Research, 115(B9): B09402. https://doi.org/10.1029/2009jb007103 Fulton, P. M., Rathbun, A. P., 2011. Experimental Constraints on Energy Partitioning during Stick-Slip and Stable Sliding within Analog Fault Gouge. Earth and Planetary Science Letters, 308(1-2): 185-192. https://doi.org/10.1016/j.epsl.2011.05.051 Gao, Q. W., Li, N., 1999, A Discussion on Fluid Geochemistry and Origin of the Tengchong and Wudalianchi Volcanic Areas. Geological Review, 45(4): 345-351 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1999.04.002 Gao, X., Wang, K. L., 2014. Strength of Stick-Slip and Creeping Subduction Megathrusts from Heat Flow Observations. Science, 345(6200): 1038-1041. https://doi.org/10.1126/science.1255487 Gao, X., Zhang, J., Wu, S. G., 2013. A Themal Simulation Study on Volcanic Activity along Basin Segment of Taiwan-Luzon Island Arc. Marine Geology and Quaternary Geology, 33(1): 65-71 (in Chinese with English abstract). Guo, W. F., Liu, J. Q., Xu, W. G., et al., 2015. Reassessment of the Magma System beneath Tianchi Volcano, Changbaishan: Phase Equilibria Constraints. Chinese Science Bulletin, 60(35): 3489-3500 (in Chinese). doi: 10.1360/N972015-00487 Han, R., Hirose, T., Shimamoto, T., et al., 2011. Granular Nanoparticles Lubricate Faults during Seismic Slip. Geology, 39(6): 599-602. https://doi.org/10.1130/g31842.1 Harris, R. N., McNutt, M. K., 2007. Heat Flow on Hot Spot Swells: Evidence for Fluid Flow. Journal of Geophysical Research, 112(B3): B03407. https://doi.org/10.1029/2006jb004299 Harris, R. N., Von Herzen, R. P., McNutt, M. K., et al., 2000. Submarine Hydrogeology of the Hawaiian Archipelagic Apron: 1. Heat Flow Patterns North of Oahu and Maro Reef. Journal of Geophysical Research: Solid Earth, 105(B9): 21353-21369. https://doi.org/10.1029/2000jb900165 Hass, B., Harris, R. N., 2016. Heat Flow along the Costa Rica Seismogenesis Project Drilling Transect: Implications for Hydrothermal and Seismic Processes. Geochemistry, Geophysics, Geosystems, 17(6): 2110-2127. https://doi.org/10.1002/2016gc006314 He, L. J., 2017. Wet Plume Atop of the Flattening Slab: Insight into Intraplate Volcanism in East Asia. Physics of the Earth and Planetary Interiors, 269: 29-39. https://doi.org/10.1016/j.pepi.2017.05.015 He, L. J., 2022. Emeishan Mantle Plume and Its Potential Impact on the Sichuan Basin: Insights from Numerical Modeling. Physics of the Earth and Planetary Interiors, 323: 106841. https://doi.org/10.1016/j.pepi.2022.106841 He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian-Middle Triassic. Science China Earth Sciences, 54(12): 1948-1954. https://doi.org/10.1007/s11430-011-4240-z Hu, P. P., Yang, F. L., Wang, W., et al., 2018. Thermal Anomaly Profiles Inferred from Fluid Inclusions near Extensional and Strike-Slip Faults of the Liaodong Bay Subbasin, Bohai Bay Basin, China: Implications for Fluid Flow and the Petroleum System. Marine and Petroleum Geology, 93: 520-538. https://doi.org/10.1016/j.marpetgeo.2018.03.035 Hu, S. B., O'Sullivan, P. B., Raza, A., et al., 2001. Thermal History and Tectonic Subsidence of the Bohai Basin, Northern China: A Cenozoic Rifted and Local Pull-Apart Basin. Physics of the Earth and Planetary Interiors, 126(3-4): 221-235. https://doi.org/10.1016/S0031-9201(01)00257-6 Hu, X. Z., Xu, M. J., Xie, X. A., et al., 2006. A Characteristic Analysis of Aeromagnetic Anomalies and Curie Point Isotherms in Northeast China. Chinese Journal of Geophysics, 49(6): 1674-1681 (in Chinese with English abstract). Hu, Y. X., Hao, M., Ji, L. Y., et al., 2016. Three-Dimensional Crustal Movement and the Activities of Earthquakes, Volcanoes and Faults in Hainan Island, China. Geodesy and Geodynamics, 7(4): 284-294. https://doi.org/10.1016/j.geog.2016.05.008 Huang, S. P., 2014. Opportunities and Challenges of Geothermal Energy Development in China. Energy of China, 36(9): 4-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-2355.2014.09.02 Jarvis, G. T., McKenzie, D. P., 1980. Sedimentary Basin Formation with Finite Extension Rates. Earth and Planetary Science Letters, 48(1): 42-52. https://doi.org/10.1016/0012-821X(80)90168-5 Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 Jiang, G. Z., Tang, X. Y., Rao, S., et al., 2016. High-Quality Heat Flow Determination from the Crystalline Basement of the South-East Margin of North China Craton. Journal of Asian Earth Sciences, 118: 1-10. https://doi.org/10.1016/j.jseaes.2016.01.009 Jiang, Q., Qiu, N. S., Zhu, C. Q., 2018. Heat Flow Study of the Emeishan Large Igneous Province Region: Implications for the Geodynamics of the Emeishan Mantle Plume. Tectonophysics, 724-725: 11-27. https://doi.org/10.1016/j.tecto.2017.12.027 Kano, Y., Mori, J., Fujio, R., et al., 2006. Heat Signature on the Chelungpu Fault Associated with the 1999 Chi‐Chi, Taiwan Earthquake. Geophysical Research Letters, 33(14): L14306. https://doi.org/10.1029/2006gl026733 Karner, G. D., 1991. Sediment Blanketing and the Flexural Strength of Extended Continental Lithosphere. Basin Research, 3(4): 177-185. https://doi.org/10.1111/j.1365-2117.1991.tb00127.x Kato, N., 2001. Effect of Frictional Heating on Pre-Seismic Sliding: A Numerical Simulation Using a Rate-, State- and Temperature-Dependent Friction Law. Geophysical Journal International, 147(1): 183-188. https://doi.org/10.1046/j.0956-540x.2001.01531.x Khutorskoi, M. D., 2020. Heat Flow Asymmetry in Mantle Plumes. Journal of Volcanology and Seismology, 14(5): 318-326. https://doi.org/10.1134/S0742046320050036 Kim, Y. W., Chang, S. J., Witek, M., et al., 2021. S-Velocity Mantle Structure of East Asia from Teleseismic Traveltime Tomography: Inferred Mechanisms for the Cenozoic Intraplate Volcanoes. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020345. https://doi.org/10.1029/2020jb020345 Lachenbruch, A. H., Sass, J. H., 1980. Heat Flow and Energetics of the San Andreas Fault Zone. Journal of Geophysical Research: Solid Earth, 85(B11): 6185-6222. https://doi.org/10.1029/jb085ib11p06185 Lachenbruch, A. H., Sass, J. H., 1992. Heat Flow from Cajon Pass, Fault Strength, and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 97(B4): 4995-5015. https://doi.org/10.1029/91jb01506 Lachenbruch, A. H., Sass, J., 1977. Heat Flow in the United States and the Thermal Regime of the Crust. In: Heacock, J. G., Keller, G. V., Oliver, J. E., et al., eds., The Earth's Crust, American Geophysical Union, Washington, D. C. . Leeman, W. P., Schutt, D. L., Hughes, S. S., 2009. Thermal Structure Beneath the Snake River Plain: Implications for the Yellowstone Hotspot. Journal of Volcanology and Geothermal Research, 188(1-3): 57-67. https://doi.org/10.1016/j.jvolgeores.2009.01.034 Lei, J. S., Zhao, D. P., 2005. P-Wave Tomography and Origin of the Changbai Intraplate Volcano in Northeast Asia. Tectonophysics, 397(3-4): 281-295. https://doi.org/10.1016/j.tecto.2004.12.009 Lei, J. S., Zhao, D. P., Steinberger, B., et al., 2009a. New Seismic Constraints on the Upper Mantle Structure of the Hainan Plume. Physics of the Earth and Planetary Interiors, 173(1-2): 33-50. https://doi.org/10.1016/j.pepi.2008.10.013 Lei, J. S., Zhao, D. P., Su, Y. J., 2009b. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research: Solid Earth, 114(B5): B05302. https://doi.org/10.1029/2008jb005881 Lei, J. S., Zhao, D. P., Xu, Y. G., et al., 2018. Is There a Gap in the Stagnant Pacific Slab in the Mantle Transition Zone under the Changbaishan Volcano? Acta Petrologica Sinica, 34(1): 13-22 (in Chinese with English abstract). Leloup, P. H., Kienast, J. R., 1993. High-Temperature Metamorphism in a Major Strike-Slip Shear Zone: The Ailao Shan—Red River, People's Republic of China. Earth and Planetary Science Letters, 118(1-4): 213-234. https://doi.org/10.1016/0012-821X(93)90169-A Leloup, P. H., Ricard, Y., Battaglia, J., et al., 1999. Shear Heating in Continental Strike-Slip Shear Zones: Model and Field Examples. Geophysical Journal International, 136(1): 19-40. https://doi.org/10.1046/j.1365-246X.1999.00683.x Li, H. B., Xue, L., Brodsky, E. E., et al., 2015. Long-Term Temperature Records Following the Mw 7.9 Wenchuan (China) Earthquake are Consistent with Low Friction. Geology, 43(2): 163-166. https://doi.org/10.1130/g35515.1 Li, J. W., Li, Z., Qiu, N. S., et al., 2016. Carboniferous-Permian Abnormal Thermal Evolution of the Tarim Basin and Its Implication for Deep Structure and Magmatic Activity. Chinese Journal of Geophysics, 59(9): 3318-3329 (in Chinese with English abstract). Li, S. T., Zhang, S. Q., Jia, X. F., et al., 2016. Possibility of Hot Dry Rock Resources in Weishan Volcano Area of Wudalianchi. Science & Technology Review, 34(5): 67-73 (in Chinese with English abstract). Li, W. Z., Jiao, Y. X., Zuo, Y. H., et al., 2014. Effect of Deposition Rate on Geothermal Field in the Bozhong Depression, Bohai Bay Basin. Chinese Journal of Geophysics, 57(3): 307-317. https://doi.org/10.1002/cjg2.20105 Li, X. L., Xu, Y., Wang, S., 2017. Evidence of Magma Activity from S-Wave Velocity Structure of the Tengchong Volcanic Area. Chinese Science Bulletin, 62(26): 3067-3077. https://doi.org/10.1360/n972017-00123 Li, Y. H., Wu, Q. J., Pan, J. T., et al., 2012. S-Wave Velocity Structure of Northeastern China from Joint Inversion of Rayleigh Wave Phase and Group Velocities. Geophysical Journal International, 190(1): 105-115. https://doi.org/10.1111/j.1365-246x.2012.05503.x Li, Y. M., Tian, J., Cheng, Y. Z., et al., 2021. Existence of High Temperature Geothermal Resources in the Igneous Rock Regions of South China. Frontiers in Earth Science, 9: 728162. https://doi.org/10.3389/feart.2021.728162 Lin, Y. W., Gao, Q. W., Yu, Q. T., 1999. A Study of Chemical Characteristics of Geothermal Fluid in Tianchi Volcanic Region, Changbai Mountains. Geological Review, 45(S1): 241-247 (in Chinese with English abstract). Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735 (in Chinese with English abstract). Liu, H., Chen, F., Leng, W., et al., 2018. Crustal Footprint of the Hainan Plume beneath Southeast China. Journal of Geophysical Research: Solid Earth, 123(4): 3065-3079. https://doi.org/10.1002/2017jb014712 Liu, H., Leng, W., 2020. Tarim Large Igneous Province Caused by a Wide and Wet Mantle Plume. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB019001. https://doi.org/10.1029/2019jb019001 Liu, Q. Y., He, L. J., Yi, Z. J., et al., 2022. Anomalous Post-Rift Subsidence in the Bohai Bay Basin, Eastern China: Contributions from Mantle Process and Fault Activity. Tectonics, 41(1): e2021TC006748. https://doi.org/10.1029/2021tc006748 Liu, Q. Y., Zhang, L. Y., Zhang, C., et al., 2016. Lithospheric Thermal Structure of the North China Craton and Its Geodynamic Implications. Journal of Geodynamics, 102: 139-150. https://doi.org/10.1016/j.jog.2016.09.005 Liu, Q. Y., He, L. J., 2019. Tectono-Thermal Modeling of the Bohai Bay Basin since the Cenozoic. Chinese Journal of Geophysics, 62(1): 219-235 (in Chinese with English abstract). Liu, R. X., Fan, Q. C., Wei, H. Q., et al., 1999. Study on Active Volcanoes of China. Geological Review, 45(S1): 3-15 (in Chinese with English abstract). Lockner, D. A., Morrow, C., Moore, D., et al., 2011. Low Strength of Deep San Andreas Fault Gouge from Safod Core. Nature, 472(7341): 82-85. https://doi.org/10.1038/nature09927 Lockner, D. A., Okubo, P. G., 1983. Measurements of Frictional Heating in Granite. Journal of Geophysical Research: Solid Earth, 88(B5): 4313-4320. https://doi.org/10.1029/jb088ib05p04313 Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019gc008389 Lysak, S. V., 1987. Terrestrial Heat Flow of Continental Rifts. Tectonophysics, 143(1-3): 31-41. https://doi.org/10.1016/0040-1951(87)90076-X Lysak, S. V., Sherman, S. I., 2002. Terrestrial Heat Flow in Areas of Dynamic Influence of Faults in the Baikal Rift Zone. Stephan Mueller Special Publication Series, 2: 153-160. https://doi.org/10.5194/smsps-2-153-2002 MacLennan, J., McKenzie, D., Gronvöld, K., 2001. Plume-Driven Upwelling under Central Iceland. Earth and Planetary Science Letters, 194(1-2): 67-82. https://doi.org/10.1016/S0012-821X(01)00553-2 Matthews, C., Beardsmore, G., Driscoll, J., et al., 2013. Heat Flow Data from the Southeast of South Australia: Distribution and Implications for the Relationship between Current Heat Flow and the Newer Volcanics Province. Exploration Geophysics, 44(2): 133-144. https://doi.org/10.1071/EG12052 McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7 McKenzie, D., Brune, J. N., 1972. Melting on Fault Planes during Large Earthquakes. Geophysical Journal International, 29(1): 65-78. https://doi.org/10.1111/j.1365-246X.1972.tb06152.x Molnar, P., England, P., 1990. Temperatures, Heat Flux, and Frictional Stress near Major Thrust Faults. Journal of Geophysical Research: Solid Earth, 95(B4): 4833-4856. https://doi.org/10.1029/jb095ib04p04833 Mora, P., Place, D., 1998. Numerical Simulation of Earthquake Faults with Gouge: Toward a Comprehensive Explanation for the Heat Flow Paradox. Journal of Geophysical Research: Solid Earth, 103(B9): 21067-21089. https://doi.org/10.1029/98jb01490 Morgan, P., 1983. Constraints on Rift Thermal Processes from Heat Flow and Uplift. Tectonophysics, 94(1-4): 277-298. https://doi.org/10.1016/0040-1951(83)90021-5 Mourtada-Bonnefoi, C. C., Provost, A., Albarède, F., 1999. Thermochemical Dynamics of Magma Chambers: a Simple Model. Journal of Geophysical Research: Solid Earth, 104(B4): 7103-7115. https://doi.org/10.1029/1998jb900112 Nicolas, A., Bouchez, J. L., Blaise, J., et al., 1977. Geological Aspects of Deformation in Continental Shear Zones. Tectonophysics, 42(1): 55-73. https://doi.org/10.1016/0040-1951(77)90017-8 Oryan, B., Savage, H., 2021. Regional Heat Flow Analysis Reveals Frictionally Weak Dead Sea Fault. Geochemistry, Geophysics, Geosystems, 22(12): e2021GC010115. https://doi.org/10.1029/2021gc010115 Pang, Z. H., Luo, J., Cheng, Y. Z., et al., 2020. Evalution of Geological Conditions for the Development of Deep Geothermal Energy in China. Earth Science Frontiers, 27(1): 134-151 (in Chinese with English abstract). Pedersen, T., 1993. Heat Flow in Rift Basins above a Hot Asthenosphere. Terra Nova, 5(2): 144-149. https://doi.org/10.1111/j.1365-3121.1993.tb00239.x Pollack, H. N., Chapman, D. S., 1977. Mantle Heat Flow. Earth and Planetary Science Letters, 34(2): 174-184. https://doi.org/10.1016/0012-821X(77)90002-4 Pollack, H. N., Hurter, S. J., Johnson, J. R., 1993. Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31(3): 267-280. https://doi.org/10.1029/93rg01249 Poort, J., Klerkx, J., 2004. Absence of a Regional Surface Thermal High in the Baikal Rift; New Insights from Detailed Contouring of Heat Flow Anomalies. Tectonophysics, 383(3/4): 217-241. https://doi.org/10.1016/j.tecto.2004.03.011 Prol-Ledesma, R. M., Morán-Zenteno, D. J., 2019. Heat Flow and Geothermal Provinces in Mexico. Geothermics, 78: 183-200. https://doi.org/10.1016/j.geothermics.2018.12.009 Putirka, K. D., 2005. Mantle Potential Temperatures at Hawaii, Iceland, and the Mid-Ocean Ridge System, as Inferred from Olivine Phenocrysts: Evidence for Thermally Driven Mantle Plumes. Geochemistry, Geophysics, Geosystems, 6(5): Q05L08. https://doi.org/10.1029/2005gc000915 Qiu, G. G., Pei, F. G., Fang, H., et al., 2014. Analysis of Magma Chamber at the Tianchi Volcano Area in Changbai Mountain. Chinese Journal of Geophysics, 57(10): 3466-3477 (in Chinese with English abstract). Rao, S., Jiang, G. Z., Gao, Y. J., et al., 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190 (in Chinese with English abstract). Reches, Z., Lockner, D. A., 2010. Fault Weakening and Earthquake Instability by Powder Lubrication. Nature, 467(7314): 452-455. https://doi.org/10.1038/nature09348 Ren, Z. L., Liu, R. C., Ren, W. B., et al., 2020. Distribution of Geothermal Field and Its Controlling Factors in the Weihe Basin. Acta Geologica Sinica, 94(7): 1938-1949 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.003 Rice, J. R., 1992. Chapter 20 Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault. International Geophysics. 51: 475-503. https://doi.org/10.1016/s0074-6142(08)62835-1 Rice, J. R., 2006. Heating and Weakening of Faults during Earthquake Slip. Journal of Geophysical Research: Solid Earth, 111(B5): B05311. https://doi.org/10.1029/2005jb004006 Rolandone, F., Lucazeau, F., Leroy, S., et al., 2013. New Heat Flow Measurements in Oman and the Thermal State of the Arabian Shield and Platform. Tectonophysics, 589: 77-89. https://doi.org/10.1016/j.tecto.2012.12.034 Rühaak, W., Rath, V., Clauser, C., 2010. Detecting Thermal Anomalies within the Molasse Basin, Southern Germany. Hydrogeology Journal, 18(8): 1897-1915. https://doi.org/10.1007/s10040-010-0676-z Rüpke, L. H., Schmid, D. W., Perez-Gussinye, M., et al., 2013. Interrelation between Rifting, Faulting, Sedimentation, and Mantle Serpentinization during Continental Margin Formation-Including Examples from the Norwegian Sea. Geochemistry, Geophysics, Geosystems, 14(10): 4351-4369. https://doi.org/10.1002/ggge.20268 Sass, J. H., Williams, C. F., Lachenbruch, A. H., et al., 1997. Thermal Regime of the San Andreas Fault near Parkfield, California. Journal of Geophysical Research: Solid Earth, 102(B12): 27575-27585. https://doi.org/10.1029/jb102ib12p27575 Shan, X. L., Cai, Z., Hao, G. L., et al., 2019. Estimation of Thermal Storage Temperature of Geothermal System in Changbai Mountain by Geothermometers. Journal of Jilin University (Earth Science Edition), 49(3): 662-672 (in Chinese with English abstract). Shangguan, Z. G., 2000. Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong. Acta Petrologica Sinica, 16(1): 83-90 (in Chinese with English abstract). Shi, X. B., Wang, Z. F., Jiang, H. Y., et al., 2015. Vertical Variations of Geothermal Parameters in Rifted Basins and Heat Flow Distribution Features of the Qiongdongnan Basin. Chinese Journal of Geophysics, 58(3): 939-952 (in Chinese with English abstract). Shi, Y. Z., Jiang, G. Z., Shi, S. M., et al., 2022. Terrestrial Heat Flow and Its Geodynamic Implications in the Northern Songliao Basin, Northeast China. Geophysical Journal International, 229(2): 962-983. https://doi.org/10.1093/gji/ggab500 Simms, M. A., Garven, G., 2004. Thermal Convection in Faulted Extensional Sedimentary Basins: Theoretical Results from Finite-Element Modeling. Geofluids, 4(2): 109-130. https://doi.org/10.1111/j.1468-8115.2004.00069.x Sleep, N. H., 1987. Lithospheric Heating by Mantle Plumes. Geophysical Journal International, 91(1): 1-11. https://doi.org/10.1111/j.1365-246X.1987.tb05209.x Song, Y., Ren, J. Y., Liu, K. Y., et al., 2018. Post-Rift Anomalous Thermal Flux in the Songliao Basin, NE China, as Revealed from Fission Track Thermochronology and Tectonic Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 508: 148-165. https://doi.org/10.1016/j.palaeo.2018.07.030 Souche, A., Schmid, D. W., Rüpke, L., 2017. Interrelation between Surface and Basement Heat Flow in Sedimentary Basins. AAPG Bulletin, 101(10): 1697-1713. https://doi.org/10.1306/12051615176 Stein, C. A., Stein, S., 2003. Mantle Plumes: Heat-Flow near Iceland. Astronomy & Geophysics, 44(1): 1.8-1.10. https://doi.org/10.1046/j.1468-4004.2003.44108.x Tanaka, A., Yamano, M., Yano, Y., et al., 2004. Geothermal Gradient and Heat Flow Data in and around Japan (I): Appraisal of Heat Flow from Geothermal Gradient Data. Earth, Planets and Space, 56(12): 1191-1194. https://doi.org/10.1186/BF03353339 Tang, J., Deng, Q. H., Zhao, G. Z., et al., 2001. Electric Conductivity and Magma Chamber at the Tianchi Volcano Area in Changbaishan Mountain. Seismology and Geology, 23(2): 191-200 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2001.02.008 Tang, X. C., Zhang, J., Pang, Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433-448. https://doi.org/10.1016/j.tecto.2017.08.035 Tang, Y. C., Obayashi, M., Niu, F. L., et al., 2014. Changbaishan Volcanism in Northeast China Linked to Subduction-Induced Mantle Upwelling. Nature Geoscience, 7(6): 470-475. https://doi.org/10.1038/ngeo2166 Theissen, S., Rüpke, L. H., 2010. Feedbacks of Sedimentation on Crustal Heat Flow: New Insights from the Vøring Basin, Norwegian Sea. Basin Research, 22(6): 976-990. https://doi.org/10.1111/j.1365-2117.2009.00437.x Tian, J., Pang, Z. H., Liao, D. W., et al., 2021. Fluid Geochemistry and Its Implications on the Role of Deep Faults in the Genesis of High Temperature Systems in the Eastern Edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036. https://doi.org/10.1016/j.apgeochem.2021.105036 Tong, W., Mu, Z. G., Liu, S. B., 1990. The Late-Cenozoic Volcanoes and Active High-Temperature Hydrothermal Systems in China. Chinese Journal of Geophysics, 33(3): 329-335 (in Chinese with English abstract). Verma, S. P., Gómez-Arias, E., 2013. Three-Dimensional Temperature Field Simulation of Magma Chamber in the Los Humeros Geothermal Field, Puebla, Mexico. Applied Thermal Engineering, 52(2): 512-515. https://doi.org/10.1016/j.applthermaleng.2012.12.018 Verma, S. P., Gómez-Arias, E., Andaverde, J., 2011. Thermal Sensitivity Analysis of Emplacement of the Magma Chamber in Los Humeros Caldera, Puebla, Mexico. International Geology Review, 53(8): 905-925. https://doi.org/10.1080/00206810903234296 Verma, S. P., Rodríguez-González, U., 1997. Temperature Field Distribution from Cooling of a Magma Chamber in La Primavera Caldera, Jalisco, Mexico. Geothermics, 26(1): 25-42. https://doi.org/10.1016/S0375-6505(96)00034-X Wang, J. H., 2011. Thermal and Pore Fluid Pressure History on the Chelungpu Fault at a Depth of 1 111 m during the 1999 Chi‐Chi, Taiwan, Earthquake. Journal of Geophysical Research: Solid Earth, 116: B03302. https://doi.org/10.1029/2010jb007765 Wang, J. Y., Wang, J. A., 1988. Thermal Structure of the Crust and Upper Mantle of the Liaohe Rift Basin, North China. Tectonophysics, 145(3-4): 293-304. https://doi.org/10.1016/0040-1951(88)90201-6 Wang, J., Li, C. F., 2018. Curie Point Depths in Northeast China and Their Geothermal Implications for the Songliao Basin. Journal of Asian Earth Sciences, 163: 177-193. https://doi.org/10.1016/j.jseaes.2018.05.026 Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31(in Chinese with English abstract). Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones? Journal of Petrology, 53(1): 177-233. https://doi.org/10.1093/petrology/egr061 Wang, X. K., Qiu, S. W., Song, C. C., et al., 1999. Cenozoic Volcanism and Geothermal Resources in Northeast China. Geological Review, 45(S1): 190-195 (in Chinese with English abstract). Wang, Y. M., Li, M. M., 2021. The Interaction between Mantle Plumes and Lithosphere and Its Surface Expressions: 3-D Numerical Modelling. Geophysical Journal International, 225(2): 906-925. https://doi.org/10.1093/gji/ggab014 Wang, Y., Zhang, X. M., Jiang, C. S., et al., 2007. Tectonic Controls on the Late Miocene-Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005 Wang, Y. B., Hu, S. B., Nie, D. G., et al., 2019. Is the Tan-Lu Fault Zone a Thermal Anomaly Belt: Constraints from heat flow in its southern section. Chinese Journal of Geophysics, 62(8): 3078-3094 (in Chinese with English abstract). Wang, Z. T., Rao, S., Xiao, H. P., et al., 2021. Terrestrial Heat Flow of Jizhong Depression, China, Western Bohai Bay Basin and Its Influencing Factors. Geothermics, 96: 102210. https://doi.org/10.1016/j.geothermics.2021.102210 Wangen, M., 1995. The Blanketing Effect in Sedimentary Basins. Basin Research, 7(4): 283-298. https://doi.org/10.1111/j.1365-2117.1995.tb00118.x Wei, S. S., Chen, Y. J., 2016. Seismic Evidence of the Hainan Mantle Plume by Receiver Function Analysis in Southern China. Geophysical Research Letters, 43(17): 8978-8985. https://doi.org/10.1002/2016gl069513 Wheildon, J., Morgan, P., Williamson, K. H., et al., 1994. Heat Flow in the Kenya Rift Zone. Tectonophysics, 236(1-4): 131-149. https://doi.org/10.1016/0040-1951(94)90173-2 Wu, Q. F., Xie, Y. Z., 1985. Geothermal Heat Flow in the Songhuajiang-Liaoning Basin. Seismology and Geology, 7(2): 61-66 (in Chinese with English abstract). Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle beneath Southernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003 Xiong, L. P., Zhang, J. M., 1984. Mathematical Simulation of Refract and Redistribution of Heat Flow. Scientia Geologica Sinica, 19(4): 445-454 (in Chinese with English abstract). Xu, W., Huang, S. P., Zhang, J., et al., 2021. Geothermal Gradient and Heat Flow of the Erlian Basin and Adjacent Areas, Northern China: Geodynamic Implication. Geothermics, 92: 102049. https://doi.org/10.1016/j.geothermics.2021.102049 Xu, W., Tang, X. Y., Cheng, L. Y., et al., 2022. Heat Flow and Thermal Source of the Xi'an Depression, Weihe Basin, Central China. Frontiers in Earth Science, 9: 819659. https://doi.org/10.3389/feart.2021.819659 Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 46(2): 210-226. https://doi.org/10.1360/03dz0017 Yamano, M., Kawada, Y., Hamamoto, H., 2014. Heat Flow Survey in the Vicinity of the Branches of the Megasplay Fault in the Nankai Accretionary Prism. Earth, Planets and Space, 66(1): 1-10. https://doi.org/10.1186/1880-5981-66-126 Yan, B. Z., Xiao, C. L., Liang, X. J., et al., 2018. Characteristics and Genetic Model of the Basin Type Geothermal Water Recourses in Basalt Area of Changbai Mountain. Geological Review, 64(5): 1201-1216 (in Chinese with English abstract). Yang, S. L., Pan, Z. Y., Pan, Y. L., 2004. Research on the Geotherm and Its Exploitation in Wudalianchi Volcanic Area. Seismological Research of Northeast China, 20(2): 1-7 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-8565.2004.02.001 Zhan, Y., Zhao, G. Z., Wang, J. J., et al., 2006. Crustal Electric Conductivity Structure for Wudalianchi Volcanic Duster in the Heilongjiang Province, China. Acta Petrologica Sinica, 22(6): 1494-1502 (in Chinese with English abstract). Zhang, A. Q., Guo, Z., Afonso, J. C., et al., 2022. Lithosphere-Asthenosphere Interactions beneath Northeast China and the Origin of Its Intraplate Volcanism. Geology, 50(2): 210-215. https://doi.org/10.1130/g49375.1 Zhang, F. X., Wu, Q. J., Li, Y. H., 2014. A Traveltime Tomography Study by Teleseismic S Wave Data in the Northeast China area. Chinese Journal of Geophysics, 57(1): 88-101 (in Chinese with English abstract). Zhang, J., Li, W. Y., Tang, X. C., et al., 2017a. Geothermal Data Analysis at the High-Temperature Hydrothermal Area in Western Sichuan. Science China Earth Sciences, 60(8): 1507-1521. https://doi.org/10.1007/s11430-016-9053-2 Zhang, M. L., Guo, Z. F., Liu, J. Q., et al., 2018. The Intraplate Changbaishan Volcanic Field (China/North Korea): a Review on Eruptive History, Magma Genesis, Geodynamic Significance, Recent Dynamics and Potential Hazards. Earth-Science Reviews, 187: 19-52. https://doi.org/10.1016/j.earscirev.2018.07.011 Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China Series D: Earth Sciences, 46(2): 13-24. https://doi.org/10.1360/03dz0002 Zhang, R. Q., Wu, Y., Gao, Z. Y., et al., 2017b. Upper Mantle Discontinuity Structure beneath Eastern and Southeastern Tibet: New Constraints on the Tengchong Intraplate Volcano and Signatures of Detached Lithosphere under the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 122(2): 1367-1380. https://doi.org/10.1002/2016jb013551 Zhang, S. Q., Jia, X. F., Zhang, Y., et al., 2017. Volcanic Magma Chamber Survey and Geothermal Geological Condition Analysis for Hot Dry Rock in the Weishan Volcano in Wudalianchi Region, Heilongjiang Province. Acta Geologica Sinica, 91(7): 1506-1521 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.07.007 Zhang, X. K., Zhang, C. K., Zhao, J. R., et al., 2002. Deep Seismic Sounding Investigation into the Deep Structure of the Magma System in Changbaishan Tianchi Volconic Region. Acta Seismologica Sinica, 24(2): 135-143 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2002.02.003 Zhang, Y. K., 1993. The Thermal Blanketing Effect of Sediments on the Rate and Amount of Subsidence in Sedimentary Basins Formed by Extension. Tectonophysics, 218(4): 297-308. https://doi.org/10.1016/0040-1951(93)90320-J Zhao, C. P., Ran, H., Wang, Y., 2012. Present-Day Mantle-Derived Helium Release in the Tengchong Volcanic Field, Southwest China: Implications for Tectonics and Magmatism. Acta Petrologica Sinica, 28(4): 1189-1204 (in Chinese with English abstract). Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. https://doi.org/10.1016/j.pepi.2008.11.009 Zhao, D. P., Toyokuni, G., Kurata, K., 2021. Deep Mantle Structure and Origin of Cenozoic Intraplate Volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 225(1): 572-588. https://doi.org/10.1093/gji/ggaa605 Zhou, Z. H., Han, X. M., Zhou, R. Q., 1996. Geothermal Structure of Lithosphere in Tengchong Region, Yunnan Province. Seismological and Geomagnetic Observation and Research, 17(4): 34-41 (in Chinese with English abstract). Zhu, C. Q., Xu, M., Yuan, Y. S., et al., 2010. Palaeogeothermal Response and Record of the Effusing of Emeishan Basalts in the Sichuan Basin. Chinese Science Bulletin, 55(10): 949-956. https://doi.org/10.1007/s11434-009-0490-y Zou, H. B., Fan, Q. C., 2010. U-Th Isotopes in Hainan Basalts: Implications for Sub-Asthenospheric Origin of EM2 Mantle Endmember and the Dynamics of Melting beneath Hainan Island. Lithos, 116(1-2): 145-152. https://doi.org/10.1016/j.lithos.2010.01.010 常健, 邱楠生, 赵贤正, 等, 2016. 渤海湾盆地冀中坳陷现今地热特征. 地球物理学报, 59(3): 1003-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603022.htm 陈国浒, 单新建, Moon, W. M., 等, 2008. 基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究. 地球物理学报, 51(4): 1085-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804019.htm 邓起东, 张培震, 冉勇康, 等, 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm 段文涛, 黄少鹏, 唐晓音, 等, 2017. 利用ANSYS WORKBENCH模拟火山岩浆活动热扩散过程. 岩石学报, 33(1): 267-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201701021.htm 樊祺诚, 刘若新, 隋建立, 1999. 五大连池裂谷型富钾火山岩带的岩石学与地球化学. 地质论评, 45(S1): 358-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1051.htm 高清武, 李霓, 1999, 腾冲和五大连池火山区流体地球化学特征及成因探讨. 地质论评, 45(4): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199904002.htm 高翔, 张健, 吴时国, 2013. 台湾‒吕宋岛弧巴士段火山活动的热模拟. 海洋地质与第四纪地质, 33(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201301012.htm 郭文峰, 刘嘉麒, 徐文刚, 等, 2015. 长白山天池火山岩浆系统再认识: 岩石热力学模拟. 科学通报, 60(35): 3489-3500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201535009.htm 胡旭芝, 徐鸣洁, 谢晓安, 等, 2006. 中国东北地区航磁特征及居里面分析. 地球物理学报, 49(6): 1674-1681. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200606013.htm 黄少鹏, 2014. 中国地热能源开发的机遇与挑战. 中国能源, 36(9): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLN201409002.htm 雷建设, 赵大鹏, 徐义刚, 等, 2018. 长白山火山下方地幔转换带中滞留的俯冲太平洋板块存在空缺吗? 岩石学报, 34(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201801003.htm 李佳蔚, 李忠, 邱楠生, 等, 2016. 塔里木盆地石炭‒二叠纪异常热演化及其对深部构造‒岩浆活动的指示. 地球物理学报, 59(9): 3318-3329. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201609016.htm 李胜涛, 张森琦, 贾小丰, 等, 2016. 五大连池尾山地区存在干热岩资源的可能性探讨. 科技导报, 34(5): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201605021.htm 林元武, 高清武, 于清桐, 1999. 长白山天池火山区地下热流体化学特征研究. 地质论评, 45(S1): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1034.htm 刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058 刘琼颖, 何丽娟, 2019. 渤海湾盆地新生代以来构造‒热演化模拟研究. 地球物理学报, 62(1): 219-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201901016.htm 刘若新, 樊祺诚, 魏海泉, 等, 1999. 中国活火山研究. 地质论评, 45(S1): 3-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1004.htm 庞忠和, 罗霁, 程远志, 等, 2020. 中国深层地热能开采的地质条件评价. 地学前缘, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm 仇根根, 裴发根, 方慧, 等, 2014. 长白山天池火山岩浆系统分析. 地球物理学报, 57(10): 3466-3477. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201410032.htm 饶松, 姜光政, 高雅洁, 等, 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm 任战利, 刘润川, 任文波, 等, 2020. 渭河盆地地温场分布规律及其控制因素. 地质学报, 94(7): 1938-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007003.htm 单玄龙, 蔡壮, 郝国丽, 等, 2019. 地球化学温标估算长白山地热系统热储温度. 吉林大学学报(地球科学版), 49(3): 662-672. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201903004.htm 上官志冠, 2000. 腾冲热海地热田热储结构与岩浆热源的温度. 岩石学报, 16(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001008.htm 施小斌, 王振峰, 蒋海燕, 等, 2015. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征. 地球物理学报, 58(3): 939-952. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503020.htm 汤吉, 邓前辉, 赵国泽, 等, 2001. 长白山天池火山区电性结构和岩浆系统. 地震地质, 23(2): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200102009.htm 佟伟, 穆治国, 刘时彬, 1990. 中国晚新生代火山和现代高温水热系统. 地球物理学报, 33(3): 329-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199003008.htm 汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm 王锡魁, 裘善文, 宋长春, 等, 1999. 中国东北新生代火山活动与地热资源. 地质论评, 45(S1): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1026.htm 王一波, 胡圣标, 聂栋刚, 等, 2019. 郯庐断裂带是热异常带吗: 来自断裂带南段热流的约束. 地球物理学报, 62(8): 3078-3094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908028.htm 吴乾蕃, 谢毅真, 1985. 松辽盆地大地热流. 地震地质, 7(2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198502009.htm 熊亮萍, 张菊明, 1984. 热流的折射和再分配的数学模拟. 地质科学, 19(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198404011.htm 闫佰忠, 肖长来, 梁秀娟, 等, 2018. 长白山玄武岩区盆地型地热水特征及成因模式. 地质论评, 64(5): 1201-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201805013.htm 杨森林, 潘震宇, 潘玉林, 2004. 五大连池火山区地热显示及开发前景探讨. 东北地震研究, 20(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ200402001.htm 詹艳, 赵国泽, 王继军, 等, 2006. 黑龙江五大连池火山群地壳电性结构. 岩石学报, 22(6): 1494-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606007.htm 张风雪, 吴庆举, 李永华, 2014. 中国东北地区远震S波走时层析成像研究. 地球物理学报, 57(1): 88-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401009.htm 张森琦, 贾小丰, 张杨, 等, 2017. 黑龙江省五大连池尾山地区火山岩浆囊探测与干热岩地热地质条件分析. 地质学报, 91(7): 1506-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201707008.htm 张先康, 张成科, 赵金仁, 等, 2002. 长白山天池火山区岩浆系统深部结构的深地震测深研究. 地震学报, 24(2): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200202002.htm 赵慈平, 冉华, 王云, 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义. 岩石学报, 28(4): 1189-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201204017.htm 周真恒, 韩新民, 周瑞琦, 1996. 云南腾冲地区的岩石圈热结构. 地震地磁观测与研究, 17(4): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ604.005.htm -