Diagenetic Response of Clastic Buried Hill Buried-Uplifted-Reburied: A Case Study from Upper Shihezi Formation in Permian of Gubei Buried Hill of Jiyang Depression
-
摘要: 为深化对碎屑岩潜山储层的认识,以济阳坳陷孤北潜山二叠系上石盒子组砂岩储层为例,利用岩心观察、薄片鉴定、扫描电镜、阴极发光、碳氧同位素分析和流体包裹体等技术,结合潜山成山过程、埋藏演化史和构造演化史,对储层的埋藏-抬升-再埋藏过程中的成岩响应进行研究.研究发现,济阳坳陷孤北潜山二叠系上石盒子组砂岩储层成岩演化从早到晚经历了三个阶段:阶段Ⅰ:晚三叠世与早、中侏罗世,受印支运动影响,孤北潜山抬升二叠纪地层遭受剥蚀,以地层浅埋藏和抬升暴露剥蚀为主要成岩环境,以长石溶蚀、高岭石胶结、①期石英胶结以及褐铁矿侵染发育为主要成岩响应.阶段Ⅱ:晚侏罗世与白垩纪,郯庐断裂带发生左旋走滑运动,强烈的构造活动伴随活跃的火山活动,与火山活动相伴生热液活动对储层改造巨大,以发育①期碳酸盐胶结、②期石英胶结、黄铁矿、绢云母、绿泥石、长柱状磷灰石为成岩响应.阶段Ⅲ:新生代,在区域扭张应力的作用下,孤北潜山埋深增大,有机质成熟度升高,以有机酸主导的酸性成岩环境为主,以②期碳酸盐胶结、石英溶蚀过渡到碳酸盐溶蚀、晚期长石溶蚀为主要成岩响应.孔隙演化定量恢复结果显示,阶段Ⅰ和Ⅱ压实作用与胶结作用对孔隙度的影响较大,孔隙度从40%降至19%;阶段Ⅲ早期碱性环境下成岩作用对储层产生破坏性作用,使储层孔隙度从19%降至6.7%;之后酸性环境下溶蚀改造使储层孔隙度从6.7%升高到9.1%;次生溶蚀孔隙发育且保存较好.Abstract: In this paper it aims to gain new insights into clastic buried hill reservoirs. For this purpose, the Permian sandstone reservoirs in Upper Shihezi Formation, Gubei low buried hill, Jiyang depression, was taken as the object. Referring to the diagenesis in the process of burial-lifting-reburning of the reservoirs, with the aid of techniques like core observation, casting sheet observation, scanning electron microscopy (SEM), cathode luminescence, carbon-oxygen isotope analysis and fluid inclusion. The results show that: It is found that the diagenetic evolution of the sandstone reservoir of Upper Shihezi Formation of Permian in Gubei buried hill of Jiyang Depression has gone through three stages from early to late. Stage I: Late Triassic and Early-Middle Jurassic, Gubei buried hill was uplifted and the Permian strata were denuded by the Indosinian movement, and the main diagenetic environment was shallow burial and uplift exposure denudation. The main diagenetic responses are feldspar dissolution, kaolinite cementation, stage ①quartz cementation and limonite invasion. Stage II: Jurassic and Cretaceous, the sinistral strike-slip movement occurred in the Tancheng-Lujiang fault zone, the strong tectonic activity accompanied by active volcanic activity, and the hydrothermal activity associated with volcanic activity greatly affected the reservoir. The diagenetic response is the development of stage ① carbonate cementation, stage ② quartz cementation, pyrite, sericite, chlorite and long columnar apatite. Stage Ⅲ: Cenozoic, under the action of regional transtensional stress, the burial depth of Gubei buried hill increased, the maturity of organic matter increased, and the diagenetic environment was dominated by organic acid. The diagenetic response was mainly from carbonate cementation and quartz dissolution in stage ② to carbonate dissolution and feldspar dissolution in late stage. The results of quantitative restoration of pore evolution show that the compaction and cementation in stages Ⅰ and Ⅱ have a great influence on the porosity, which decreases from 40% to 19%, and the diagenesis in early alkaline environment in stage Ⅲ has a destructive effect on the porosity of the reservoir, which decreases from 19% to 6.7%. After that, the porosity of the reservoir increased from 6.7% to 9.1% due to the dissolution reconstruction in acidic environment, and the secondary dissolution pores were developed and well preserved.
-
Key words:
- diagenesis /
- burial history /
- tectonic evolution /
- Upper Shihezi Formation /
- Gubei low buried hill /
- petrolum geology
-
图 3 孤北地区上石盒子组主要成岩特征
a.颗粒线接触,云母受压变形,孤北古3井,4 084.7 m,正交光;b. 塑性颗粒假杂基化,孤北古2井,3 520.1 m,单偏光;c.方解石脉,孤北古1井,4 076.8 m,单偏光;d.连晶方解石发生溶蚀,其内部充填高岭石,孤北古2井,3 690.7 m,阴极发光;e.粒间黄铁矿孔隙式胶结,孤北古1井,4 124.5 m,反射光;f.黄铁矿沿断面富集,孤北古1井,4 374.2 m,岩心;g.板状高岭石胶结,孤北古1井,4 075.6 m,扫描电镜;h.丝缕状伊利石,孤北古1井,4 076.8 m,扫描电镜;i.叶片状绿泥石,孤北古1井,4 123.9 m,扫描电镜;j.伊蒙混层中以伊利石为主,孤北古1井,4 403.0 m,扫描电镜;k.石英次生加大,孤北古1井,4 124.5 m,单偏光;l.颗粒间发育自生石英,孤北古1井,4 125.0 m,扫描电镜;m.长石溶蚀,残晶内发育高岭石,孤北古1井,4 123.9 m,单偏光;n.方解石胶结物溶蚀,孤北古1井,4 074.7 m,单偏光;o.褐铁矿浸染,孤北古1井,4 405.5 m单偏光
Fig. 3. Main diagenesis characteristics of Upper Shihezi Formation of Permian in Gubei buried hill
图 5 孤北地区上石盒子组热液活动证据
a.叶片状绿泥石,孤北古1井,4 123.9 m,扫描电镜;b.方解石,孤北古1井,4 124.5 m,正交光;c.黄铁矿,孤北古1井,4 124.5 m,正交光;d.绢云母,孤北古1井,4 076.8 m,正交光;e.磷灰石,孤北古1井,4 123.9 m,单偏光;f~h.高岭石晶间孔+黄铁矿胶结+自生石英+绢云母组合,孤北古1井,4 124.5 m,单偏光+正交光+反射光;i.石英次生加大边内包裹体,孤北古1井,4 123.9 m,单偏光包裹体片;j.石英次生加大边内包裹体放大,孤北古1井,4 123.9 m,单偏光包裹体片;k.石英颗粒微裂缝内包裹体,孤北古1井,4 123.9 m,单偏光包裹体片;l.石英次生加大边内包裹体含子晶,孤北古1井,4 125.0 m,单偏光包裹体片
Fig. 5. Evidence of hydrothermal activity of Upper Shihezi Formation of Permian in Gubei buried hill
表 1 孤北潜山上古生界地层侵入岩发育情况
Table 1. Development of intrusive rocks of the Gubei buried hill
井号 侵入岩深度(m) 侵入层位 岩性 侵入时代 渤古4井 4 340 C-P 煌斑岩 早白垩世 渤古401井 3 896 C-P 闪长玢岩 晚白垩世 孤北古1井 4 017 C-P 闪长玢岩 83.87±1.67 Ma 孤北古2井 3 187 C-P 闪长玢岩 晚白垩世 孤北古3井 3 476 C-P 闪长玢岩 晚白垩世 义136井 3 856 C-P 煌斑岩 112.98±1.59 Ma 注:孤北古1井与义136井侵入岩K-Ar年龄分析据文献万丛礼等(2011), 金强等(2011). 表 2 储层各阶段孔隙变化
Table 2. Different stages and corresponding porosity changes
阶段 主要成岩流体 孔隙变化类型 Δφ(%) φ1(%) φ(%) 原始孔隙度 40 阶段Ⅰ 大气淡水 压实减孔 -26 14 30.16 溶蚀增孔 16.16 30.16 阶段Ⅱ 火山热液流体 胶结减孔 -11.16 19 19 阶段Ⅲ 有机酸 胶结减孔 -12.3 6.7 9.1 溶蚀增孔 2.4 9.1 现今孔隙度 9.1 9.1 注:测试单位:中国石油大学(华东);测试者:王晔磊;测试手段:Leica偏光显微镜配以CL8200M K5阴极发光仪等;条件:室温;误差范围:主要受IPP软件圈定时的人为误差,小于5%. -
Alaa, M. M., Salem, S., Morad, S., 2000. Diagenesis and Reservoir-Quality Evolution of Fluvial Sandstones during Progressive Burial and Uplift: Evidence from the Upper Jurassic Boipeba Member, Reconcavo Basin, Northeastern Brazil. AAPG Bulletin, 84: 1015-1040. http://doi.org/10.1306/a9673b9e-1738-11d7-8645000102c1865d Bai, Q.L., 2003. Gas Reservoir Forming Model Analysis of Permo-Carboniferous Coal-Derived Gas in Jiyang Depression. Oil & Gas Recovery Technology, 10(5): 28-30, 7(in Chinese with English abstract). Cao, Z.H., Zhang, H.C., Liu, G.Y., et al., 2015. Main Control Factors and Distribution Prediction of High-Quality Carbonate Reservoirs in the Nanpu Sag, Bohai Bay Basin. Oil & Gas Geology, 36(1): 103-110(in Chinese with English abstract). Chang, G.Z., Bi, C. Q., Lin, H. M., 2002. Reverse Tectonic Evolution, Reservoir-Forming System and Exploration of Low Buried-Hill—Taking Gubei Low Buried-Hill, Shengli Oilfield as an Example. Fault-Block Oil & Gas Field, 9(5): 19-23, 90(in Chinese with English abstract). Chen, X.H., 2013. Study on Negative Inversion Structure and Reservoir-Forming Characteristics of Gulow Buried Hill in North China. Journal of Yangtze University (Natural Science Edition), 10(10): 12-14, 20(in Chinese with English abstract). Hou, Z.S., Chen, S.Y., Yan, J.H., et al., 2017. Sedimentary Characteristics and Control Factors of Upper Palaeozoic in Dagang Exploration Area. Earth Science, 42(11): 2055-2068, 2104(in Chinese with English abstract). Hou, Z.S., Zhou, L.H., Jin, F.M., et al., 2021. Hydrothermal Fluid Activity and Its Reformation on Reservoirs in Qikou Depression. Earth Science, 46(1): 200-214(in Chinese with English abstract). Jin, Q., Song, G.Q., Wang, L., 2009. Generation Models of Carboniferous-Permian Coal-Derived Gas in Shengli Oilfield. Petroleum Exploration and Development, 36(3): 358-364(in Chinese with English abstract). Jin, Q., Yang, K., Wan, C.L., 2011. Geochemical Characteristic of Intrusion Rocks in Coal-Series Hydrocarbon Source Rock of Carboniferous-Permian under Jiyang Depression. Journal of Earth Sciences and Environment, 33(2): 111-116(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=38503518 Li, P.W., He, Z.L., Luo, P., et al., 2020. Characteristics of and Main Factors Controlling the Dolomite Reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System, the North of North China. Oil & Gas Geology, 41(1): 26-36, 49(in Chinese with English abstract). Li, Z.B., Li, J., Cui, J.F., et al., 2020. The Reservoir Characteristics and Main Controlling Factors of the Mesozoic Clastic Reservoirs in Buried Hill, Beidagang, Bohai Bay Basin. Natural Gas Geoscience, 31(1): 13-25(in Chinese with English abstract). Li, Z.X., Cao, Z.X., Wang, M.Z., et al., 2004. Distribution and Burying Characteristics of the Permo-Carboniferous System and the Coal-Formed Gas Source Rock in Jiyang Depression. Coal Geology & Exploration, 32(4): 4-6(in Chinese with English abstract). Liao, J.H., Wu, K.Q., Er, C., 2022. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Science, 47(7): 2454-2467(in Chinese with English abstract). Liu, C., 2017. Conquer Buried Hill. China State-Owned Enterprise Management, (S7): 74-77(in Chinese). Liu, X.H., Li, N.X., Feng, M.Y., et al., 2019. Fracture Fillings and Alteration Halo in Volcanic Reservoirs as Indicator of Fluid Activities in the Dixi Area in the Kelameili Gas Field, Junggar Basin, Northwestern China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 539-548(in Chinese with English abstract). Lu, H., Wang, Q.B., Niu, C.M., et al., 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730(in Chinese with English abstract). Meng, F.C., Zhou, L.H., Wei, J.Y., et al., 2021. Characteristics and Formation Mechanism of Mesozoic Volcanic Reservoirs from Buried Hills in Huanghua Depression, Bohai Bay Basin. Journal of Central South University (Science and Technology), 52(3): 859-875(in Chinese with English abstract). Molenaar, N., Cyziene, J., Sliaupa, S., et al., 2008. Lack of Inhibiting Effect of Oil Emplacement on Quartz Cementation: Evidence from Cambrian Reservoir Sandstones, Paleozoic Baltic Basin. Geological Society of America Bulletin, 120(9/10): 1280-1295. http://doi.org/10.1130/b25979.1 Pang, X.J., Du, X.F., Wang, G.M., et al., 2022. Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of the Deep Kongdian Formation in Southwestrern, BZ19-6, Bohai Sea. Earth Science (in Press)(in Chinese with English abstract). Peng, C.S., 2005. The Pool-Forming Condition and Character of Coal-Formed Gas in Gubei Deeply Buried Hill of Jiyang Depression. Journal of Ocean University of Qingdao, 35(4): 670-676(in Chinese with English abstract). Qin, X.L., Li, R.X., Xi, S.L., et al., 2017. Hydrothermal Alteration and Its Influence on Quality of the Upper Palaeozoic Gas Reservoirs in Eastern Ordos Basin. Natural Gas Geoscience, 28(1): 43-51(in Chinese with English abstract). Qiu, L.W., Jiang, Z.X., Cao, Y.C., et al., 2001. Alkaline Diagenesis in Biyang Depression and Its Influence on Reservoir. Science in China (Ser. D), 31(9): 752-759 (in Chinese). Qiu, L.W., Xu, N.N., Zhou, Y.Y., et al., 2015. Dissolution of Quartz in Tight Sandstones of the Daniudi Area, Ordos Basin, and Its Influence to High Quality Reservoirs. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 38-44, 2(in Chinese with English abstract). Song, B.R., Hu, Y.J., Bian, S.Z., et al., 2011. Reservoir Characteristics of the Crystal Basement in the Xinglongtai Buried-Hill, Liaohe Depression. Acta Petrolei Sinica, 32(1): 77-82(in Chinese with English abstract). Wan, C.L., Li, J.Y., Jin, Q., et al., 2011. Magma Intrusion and Its Effects on Enrichment of Shale Gas in Fault Subsidence Basin. Natural Gas Geoscience, 22(6): 1088-1092(in Chinese with English abstract). Wang, C., Sun, Q.L., Xie, X.N., et al., 2022. Characteristics and Mechanisms of Shallow Igneous Intrusions and Their Implications on Hydrocarbon Geology in the Baiyun Sag. Earth Science, 47(2): 505-517(in Chinese with English abstract). Wang, S.H., Xia, B., Chen, G.W., et al., 2004. Characteristics of Jiyang Depression and Mechanism of Basin Formation. Geotectonica et Metallogenia, 28(4): 428-434(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2004.04.009 Wang, Y.L., Qiu, L.W., Shi, Z., et al., 2016. Study on Karst Development Pattern Based on FMI Logging Facies: A Case Study of Paleozoic Strata in Nanpu Sag of Huanghua Depression, Bohai Bay Basin. Xinjiang Petroleum Geology, 37(3): 301-306(in Chinese with English abstract). Yang, C., Chen, Q.H., 2005. Tectonic Evolution and Tectono-Stratigraphic Classification of Jiyang Depression. Oil & Gas Recovery Technology, 12(2): 9-12, 22(in Chinese with English abstract). Yao, H.P., 2015. Effective Source Rock of Permo-Carboniferous Coal Measure Taiyuan Formation in Jiyang Depression. Shanxi Coal, 35(2): 4-7(in Chinese with English abstract). doi: 10.3969/j.issn.1008-8881.2015.02.003 Yuan, G.H., Cao, Y.C., Yang, T., et al., 2013. Porosity Enhancement Potential through Mineral Dissolution by Organic Acids in the Diagenetic Process of Clastic Reservoir. Earth Science Frontiers, 20(5): 207-219(in Chinese with English abstract). Zhang, S.W., Zhang, L.Y., Li, Z., 2009. Analysis of Accumulation Process of Coal-Formed Gas in Gubei Buried Hill of Jiyang Depression. Natural Gas Geoscience, 20(5): 670-677(in Chinese with English abstract). Zhang, B.L., 2018. Pyrite-Sericite-Quartz Alteration and Gold Mineralization Mechanism of the Dayingezhuang-Xiadian Gold-Field, Jiaodong Peninsula, China (Dissertation). China University of Geosciences, Beijing. Zhang, D.Z., Chu, L.L., Zhou, X., et al., 2021. Diagenesis and Diagenesis Facies of Tight Gas Reservoir of Shahezi Formation, in Xujiaweizi Fault Depression of North Songliao Basin. Journal of Jilin University (Earth Science Edition), 51(1): 22-34 (in Chinese with English abstract). Zhao, R., 2016. Tectonic Evolution and Gold Mineralization in the Jiaodong Peninsula (Dissertation). China University of Geosciences, Beijing. 白群丽, 2003. 济阳坳陷石炭—二叠系煤成气成藏模式分析. 油气地质与采收率, 10(5): 28-30, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200305011.htm 曹中宏, 张红臣, 刘国勇, 等, 2015. 南堡凹陷碳酸盐岩优质储层发育主控因素与分布预测. 石油与天然气地质, 36(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501014.htm 常国贞, 毕彩芹, 林红梅, 2002. 低潜山反转构造演化、成藏体系与勘探: 以胜利油区孤北低潜山为例. 断块油气田, 9(5): 19-23, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200205005.htm 陈旭辉, 2013. 孤北低潜山负反转构造及成藏特征研究. 长江大学学报(自科版), 10(10): 12-14, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201310006.htm 侯中帅, 陈世悦, 鄢继华, 等, 2017. 大港探区上古生界沉积特征与控制因素. 地球科学, 42(11): 2055-2068, 2104. doi: 10.3799/dqkx.2017.131 侯中帅, 周立宏, 金凤鸣, 等, 2021. 歧口凹陷热液流体活动及其对储集层的改造. 地球科学, 46(1): 200-214. doi: 10.3799/dqkx.2019.282 金强, 宋国奇, 王力, 2009. 胜利油田石炭-二叠系煤成气生成模式. 石油勘探与开发, 36(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200903015.htm 金强, 杨恺, 万丛礼, 2011. 济阳坳陷下伏石炭系—二叠系煤系烃源岩中侵入岩的地球化学特征. 地球科学与环境学报, 33(2): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201102003.htm 李朋威, 何治亮, 罗平, 等, 2020. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素. 石油与天然气地质, 41(1): 26-36, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001004.htm 李增学, 曹忠祥, 王明镇, 等, 2004. 济阳坳陷石炭二叠系埋藏条件及煤型气源岩分布特征. 煤田地质与勘探, 32(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200404001.htm 李祖兵, 李剑, 崔俊峰, 等, 2020. 渤海湾盆地北大港潜山中生界碎屑岩储层特征及发育主控因素. 天然气地球科学, 31(1): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001002.htm 廖计华, 吴克强, 耳闯, 2022. 珠江口盆地白云凹陷深层储层特征与有效储层控制因素. 地球科学, 47(7): 2454-2467. doi: 10.3799/dqkx.2022.017 刘畅, 2017. 征服古潜山. 国企管理, (增刊7): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GQGL2017Z7039.htm 刘小洪, 李宁辛, 冯明友, 等, 2019. 裂缝充填矿物和蚀变晕对火山岩储集层流体作用的指示: 以克拉美丽气田滴西地区为例. 矿物岩石地球化学通报, 38(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201903013.htm 卢欢, 王清斌, 牛成民, 等, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理: 以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175 孟凡超, 周立宏, 魏嘉怡, 等, 2021. 渤海湾盆地黄骅坳陷潜山中生界火山岩储层特征及成储机制. 中南大学学报(自然科学版), 52(3): 859-875. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103019.htm 庞小军, 杜晓峰, 王冠民, 等, 2022. 渤海海域渤中19-6构造及围区深层孔店组砂砾岩优质储层成因及孔隙演化. 地球科学. 彭传圣, 2005. 济阳坳陷孤北低潜山煤成气成藏条件及特征. 中国海洋大学学报(自然科学版), 35(4): 670-676. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200504029.htm 覃小丽, 李荣西, 席胜利, 等, 2017. 鄂尔多斯盆地东部上古生界储层热液蚀变作用. 天然气地球科学, 28(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701005.htm 邱隆伟, 姜在兴, 操应长, 等, 2001. 泌阳凹陷碱性成岩作用及其对储层的影响. 中国科学(D辑: 地球科学), 31(9): 752-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109006.htm 邱隆伟, 徐宁宁, 周涌沂, 等, 2015. 鄂尔多斯盆地大牛地地区致密砂岩石英溶解作用及其对优质储集层的影响. 矿物岩石地球化学通报, 34(1): 38-44, 2. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501006.htm 宋柏荣, 胡英杰, 边少之, 等, 2011. 辽河坳陷兴隆台潜山结晶基岩油气储层特征. 石油学报, 32(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101012.htm 万丛礼, 李钜源, 金强, 等, 2011. 断陷盆地岩浆侵入对页岩气的富集作用. 天然气地球科学, 22(6): 1088-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106023.htm 望畅, 孙启良, 解习农, 等, 2022. 白云凹陷浅成岩浆侵入体发育特征、成因及油气地质意义. 地球科学, 47(2): 505-517. doi: 10.3799/dqkx.2021.053 王世虎, 夏斌, 陈根文, 等, 2004. 济阳坳陷构造特征及形成机制讨论. 大地构造与成矿学, 28(4): 428-434. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404009.htm 王晔磊, 邱隆伟, 师政, 等, 2016. 基于FMI测井相的岩溶发育模式: 以渤海湾盆地黄骅坳陷南堡凹陷古生界为例. 新疆石油地质, 37(3): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201603011.htm 杨超, 陈清华, 2005. 济阳坳陷构造演化及其构造层的划分. 油气地质与采收率, 12(2): 9-12, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200502003.htm 姚海鹏, 2015. 济阳坳陷石炭-二叠系太原组有效烃源岩分析. 山西煤炭, 35(2): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMT201502002.htm 远光辉, 操应长, 杨田, 等, 2013. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力. 地学前缘, 20(5): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305022.htm 张炳林, 2018. 胶东大尹格庄-夏甸金矿田黄铁绢英岩化蚀变与金成矿机理(博士学位论文). 北京: 中国地质大学. 张善文, 张林晔, 李政, 2009. 济阳坳陷孤北潜山煤成气成藏过程分析. 天然气地球科学, 20(5): 670-677. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200905006.htm 张大智, 初丽兰, 周翔, 等, 2021. 松辽盆地北部徐家围子断陷沙河子组致密气储层成岩作用与成岩相特征. 吉林大学学报(地球科学版), 51(1): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101003.htm 赵睿, 2016. 胶东半岛构造演化及金成矿作用(博士学位论文). 北京: 中国地质大学.