• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义

    抄尉尉 许德如 李增华 陈立泉 周先军 袁波 杨立飞 陈加杰 张健

    抄尉尉, 许德如, 李增华, 陈立泉, 周先军, 袁波, 杨立飞, 陈加杰, 张健, 2024. 江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义. 地球科学, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305
    引用本文: 抄尉尉, 许德如, 李增华, 陈立泉, 周先军, 袁波, 杨立飞, 陈加杰, 张健, 2024. 江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义. 地球科学, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305
    Chao Weiwei, Xu Deru, Li Zenghua, Chen Liquan, Zhou Xianjun, Yuan Bo, Yang Lifei, Chen Jiajie, Zhang Jian, 2024. Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province. Earth Science, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305
    Citation: Chao Weiwei, Xu Deru, Li Zenghua, Chen Liquan, Zhou Xianjun, Yuan Bo, Yang Lifei, Chen Jiajie, Zhang Jian, 2024. Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province. Earth Science, 49(4): 1292-1306. doi: 10.3799/dqkx.2022.305

    江西虎圩金铅锌矿床矿物化学、流体包裹体特征及地质意义

    doi: 10.3799/dqkx.2022.305
    基金项目: 

    国家自然科学基金项目 2110700658

    国家自然科学基金项目 42102101

    2019年江西省“SQ计划” 2120800002

    详细信息
      作者简介:

      抄尉尉(1991-),男,助理研究员,博士,主要从事矿床学与矿床地球化学研究. ORCID:0000-0003-4776-2072. E-mail:chaoweiwei@ecut.edu.cn

      通讯作者:

      许德如,教授,主要从事大陆边缘构造与成矿学研究. E-mail: xuderu@gig.ac.cn

    • 中图分类号: P611;P595

    Characteristics and Geological Implications of Mineral Chemistry and Fluid Inclusions in Huxu Au-Pb-Zn Ore Deposit, Jiangxi Province

    • 摘要: 为了深入研究东乡盆地中金属矿床的成因类型,选取虎圩金铅锌矿床为研究对象,运用EPMA和LA-ICP-MS等方法开展石英微量元素分析、绿泥石化学成分组成和流体包裹体测温等研究.研究结果表明,石英中微量元素主要替换方式为Al3++Li+=Si4+,成矿流体的pH值在成矿过程中发生周期性变化.包裹体类型主要为气液两相包裹体,绿泥石形成于相对低氧逸度和高硫逸度环境,成矿温度约为210~280 ℃.综合前人研究,认为虎圩金铅锌矿床在成矿过程中不断发生岩浆热液和天水的混合,伴随不同程度的水岩反应,在断裂的开阔空间沉淀形成矿脉.认为虎圩矿床属于浅成低温热液矿床,深部存在隐伏斑岩岩体.

       

    • 图  1  虎圩矿床大地构造背景(a)及区域地质图(b)(底图修改自Qi et al., 2021)

      Fig.  1.  Tectonic map (a) and regional geological map (b) of the Huxu deposit (after Qi et al., 2021)

      图  2  虎圩矿床矿区地质简图(a)和10号矿体剖面图(b)(修改自周先军等,2019)

      Fig.  2.  Geological map of the Huxu orefield (a) and profile map of No. 10 orebody in the Huxu ore field (b) (modified from Zhou et al., 2019)

      图  3  虎圩金铅锌矿床矿石结构构造特征

      a. 石英-黄铁矿脉发育晶洞构造;b. 晶洞构造、皮壳状构造共存,并同时沉淀黄铁矿和赤铁矿;c. 石英-多金属硫化物脉切穿闪长玢岩;d. 石英-多金属硫化物脉蚀变围岩,并形成细脉状绿泥石;d. 铁白云石充填矿石裂隙并叠加梳状石英;f. 石英晶簇与赤铁矿共生

      Fig.  3.  Ore structures of the Huxu deposit

      图  4  虎圩矿区主要矿物组合特征

      a. Py1、Py2和Py3呈增生边叠加生长,赤铁矿呈针状或者叶片状包裹在Py2中,方铅矿与Py3共生;b. 赤铁矿沿石英边缘沉淀;c. 方铅矿、闪锌矿、黄铜矿、斑铜矿与Py3共生;d. 片状赤铁矿结合体沿石英颗粒边缘分布;e. 赤铁矿沿着石英裂隙分布;f. 格子状方解石沿着石英裂隙沉淀;矿物代号:Py. 黄铁矿;Hm. 赤铁矿;Gn. 方铅矿;Bn. 斑铜矿;Sp. 闪锌矿;Q. 石英;Cal. 方解石

      Fig.  4.  The main mineral assemblages in the Huxu mining area

      图  5  虎圩金铅锌矿床矿物生成顺序表

      Fig.  5.  Mineral paragenesis sequence of the Huxu Au-Pb-Zn deposit

      图  6  虎圩矿区石英显微镜下照片和阴极发光照片

      Qtz. 石英;Py. 黄铁矿;Sp. 闪锌矿;Hm. 赤铁矿

      Fig.  6.  Microphotographs and CL photos of quartz in the Huxu mining area

      图  7  虎圩矿床中绿泥石的形貌特征

      Ⅰ. 团块状绿泥石;Ⅱ. 浸染状绿泥石;Ⅲ. 鳞片状绿泥石;Ⅳ. 脉状绿泥石;Py. 黄铁矿

      Fig.  7.  Characteristics of chlorite from Huxu deposit

      图  8  虎圩矿床中不同世代石英微量元素箱型图

      Fig.  8.  The box plots of trace element compositions of different quartz generations in the Huxu deposit

      图  9  虎圩矿床不同世代石英中Li-Al、Ni-Al、K-Al含量及相关性

      Fig.  9.  The absolute contents and correlationship between Li and Al, Ni and Al, K and Al from the different generations of quartz in the Huxu deposit

      图  10  虎圩矿床流体流体包裹体显微照片

      a. Qtz1中的气液两相包裹体;b. Qtz2中的气液两相包裹体;c~d. Qtz3中的气液两相包裹体

      Fig.  10.  Microphotographs of fluid inclusions in the Huxu deposit

      图  11  虎圩金铅锌矿床中不同阶段均一温度直方图

      Fig.  11.  Histogram of homogenization temperatures and salinities for fluid inclusions in Huxu deposit

      图  12  虎圩金铅锌矿床绿泥石分类图解(据Foster,1962)

      Fig.  12.  The classification of chlorite in Huxu Au-Pb-Zn deposit (modified from Foster, 1962)

      图  13  虎圩矿床Al-Ti含量相关图和矿床类型判别图

      收集的数据及所属参考文献见Rottier and Casanova(2021)及附表 1

      Fig.  13.  The absolute contents and correlationship between Al and Ti compared to fields

    • Battaglia, S., 1999. Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays and Clay Minerals, 47(1): 54-63. https://doi.org/10.1346/CCMN.1999.0470106
      Chen, Y. J, Ni, P., Fan, H. R, et al. , 2007. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits. Acta Petrologica Sinica, 23(9): 2085-2108(in Chinese with English abstract).
      Foster, M. D., 1962. Interpretation of the Composition and A Classification of the Chlorites. US. Geol. Surv. Prof. Pap. , 414A: 1-27. https://doi.org/10.3133/pp414A
      Hua, R. H., Wu, D. L., Yu, Z. S., et al. , 2008. Geologic Characteristics and Ore-Hunting Indicators of the Huangbaikeng Lead and Zinc Deposit in Shangrao, Jiangxi Province. Geology of Fujian, 27(4): 361-368(in Chinese with English abstract).
      Huang, R., Audétat, A., 2012. The Titanium-in-Quartz (TitaniQ) Thermobarometer: A Critical Examination and Re-Calibration. Geochimica et Cosmochimica Acta, 84: 75-89. https://doi.org/10.1016/j.gca.2012.01.009
      Inoue, A., 1995. Formation of Clay Minerals in Hydrothermal Environments. //Veide. Origin and Mineralogy of Clays. Springer, Berlin, 268-330. https://doi.org/10.1007/978-3-662-12648-6_7
      Jourdan, A. L., Vennemann, T. W., Mullis, J., et al., 2009. Oxygen Isotope Sector Zoning in Natural Hydrothermal Quartz. Mineralogical Magazine, 73(4): 615-632. https://doi.org/10.1180/minmag.2009.073.4.615
      Landtwing, M. R., Pettke, T., 2005. Relationships between SEM-Cathodoluminescence Response and Trace-Element Composition of Hydrothermal Vein Quartz. American Mineralogist, 90(1): 122-131. https://doi.org/10.2138/am.2005.1548
      Larsen, R. B., Henderson, I., Ihlen, P. M., et al., 2004. Distribution and Petrogenetic Behaviour of Trace Elements in Granitic Pegmatite Quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615-628. https://doi.org/10.1007/s00410-004-0580-4
      Lehmann, K., Pettke, T., Ramseyer, K., 2011. Significance of Trace Elements in Syntaxial Quartz Cement, Haushi Group Sandstones, Sultanate of Oman. Chemical Geology, 280(1/2): 47-57. https://doi.org/10.1016/j.chemgeo.2010.10.013
      Leng, C. B., Qi, Y. Q., 2017. Genesis of the Lengshuikeng Ag-Pb-Zn Orefield in Jiangxi: Constraint from In-Situ LA-ICPMS Analyses of Minor and Trace Elements in Sphalerite and Galena. Acta Geologica Sinica, 91(10): 2256-2272(in Chinese with English abstract).
      Li, H. D., Pan, J. Y., Liu, W. Q., et al., 2017. Mineral Characteristics and Geological Significance of Chlorite from the Julong'an Uranium Deposit in Le'an, Jiangxi Province. Acta Petrologica et Mineralogica, 36(4): 535-548(in Chinese with English abstract).
      Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
      Li, R. C., Chen, H. Y., Li, G. H., et al., 2020. Geological Characteristics and Application of Short Wave Length Infra-Red Technology(SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530(in Chinese with English abstract).
      Lindgren, W., 1922. A Suggestion for the Terminology of Certain Mineral Deposits. Economic Geology, 17(4): 292-294. https://doi.org/10.2113/gsecongeo.17.4.292
      Liu, M., Wang, Z. L., Xu, D. R., et al., 2018. Mineralogy of Chlorite, Pyrite and Chalcopyrite in the Jingchong Co-Cu Polymetallic Deposit in Northeastern Hunan Province, South China: Implications for Ore Genesis. Geotectonica et Metallogenia, 42(5): 862-879(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Luo, P., 2010. Study on Metallogenic Regularity and Prospecting Direction of Copper Polymetallic Deposits in Northern Wuyi Area, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Mao, W., Rusk, B., Yang, F. C., et al., 2017. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz. Economic Geology, 112(4): 889-918. https://doi.org/10.2113/econgeo.112.4.889
      Ni, P., Chi, Z., Pan, J. Y., 2020. An Integrated Investigation of Ore-Forming Fluid Evolution in Porphyry and Epithermal Deposits and Their Implication on Exploration. Earth Science Frontiers, 27(2): 60-78(in Chinese with English abstract).
      Nieto, F., 1997. Chemical Composition of Metapelitic Chlorites: X-Ray Diffraction and Optical Property Approach. European Journal of Mineralogy, 9(4): 829-842. https://doi.org/10.1127/ejm/9/4/0829
      Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790-805. https://doi.org/10.1007/s12583-020-1383-x
      Qi, Y. Q., Hu, R. Z., Gao, J. F., et al., 2021. Trace Element Characteristics of Magnetite: Constraints on the Genesis of the Lengshuikeng Ag-Pb-Zn Deposit, China. Ore Geology Reviews, 129: 103943. https://doi.org/10.1016/j.oregeorev.2020.103943
      Qiu, K. F., Deng, J., Yu, H. C., et al., 2021. Identifying Hydrothermal Quartz Vein Generations in the Taiyangshan Porphyry Cu-Mo Deposit (West Qinling, China) Using Cathodoluminescence, Trace Element Geochemistry, and Fluid Inclusions. Ore Geology Reviews, 128: 103882. https://doi.org/10.1016/j.oregeorev.2020.103882
      Rausell-Colom, J. A., Wiewiora, A., Matesanz, E., 1991. Relationship between Composition and d001 for Chlorite. American Mineralogist, 76(7-8): 1373-1379.
      Rottier, B., Casanova, V., 2021. Trace Element Composition of Quartz from Porphyry Systems: A Tracer of the Mineralizing Fluid Evolution. Mineralium Deposita, 56(5): 843-862. https://doi.org/10.1007/s00126-020-01009-0
      Rusk, B., 2012. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer, Berlin, Heidelberg, 307-329. https://doi.org/10.1007/978-3-642-22161-3_14
      Rusk, B. G., Lowers, H. A., Reed, M. H., 2008. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology, 36(7): 547-550. https://doi.org/10.1130/g24580a.1
      Simmons, S. F., White, N. C., John, D. A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton. https://doi.org/10.5382/av100.16
      Song, G. X., Qin, K. Z., Li, G. M., et al., 2018. Basic Characteristics and Research Progresses of Intermediate Sulfidation Type Epithermal Gold Poly-Metallic Deposits, and Prospects. Acta Petrologica Sinica, 34(3): 748-762(in Chinese with English abstract).
      Su, H. M., 2013. Study on the Genesis of Volcanic-Intrusive Rocks and Their Relationship with Mineralization in Tianhuashan Basin, North Wuyi (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Walshe, J. L., 1986. A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems. Economic Geology, 81(3): 681-703. https://doi.org/10.2113/gsecongeo.81.3.681
      Wang, K. Y., Lu, Z. X., Tan, T. L., 1998. The Analysis on Gold Mineralization Perspecting of Huxu Gold Deposit and Its Peripheral Areas in Dongxiang Mesozoic Igneous Province in Jiangxi. Gold Geology, 4(3): 15-21(in Chinese with English abstract).
      Wu, D. H., Pan, J. Y., Xia, F., et al., 2018. Characteristics and Formation Conditions of Chlorite in the Shangjiao Uranium Deposit in the Southern Jiangxi Province, China. Acta Mineralogica Sinica, 38(4): 393-405(in Chinese with English abstract).
      Wu, Z. R., 2003. Metallogenetic Character and Prospeeting Orientation of Gold Deposit in Dongxiang Volcanic Basin. Mineral Resources and Geology, 17(97): 410-413(in Chinese with English abstract).
      Xie, X. G., Byerly, G. R., Ferrell Jr, R. E., 1997. IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry. Contributions to Mineralogy and Petrology, 126(3): 275-291. https://doi.org/10.1007/s004100050250
      Yan, J. L., Jiang, J. J., Zhang, J., et al., 2012. Metallogenic Geological and Geochemical Characteristics and Ore-Prospecting Potential of Dongxiang Volcanic Area, Jiangxi Province. Geophysical and Geochemical Exploration, 36(4): 534-538(in Chinese with English abstract).
      Yang, Z. M., Chang, Z. S., Paquette, J., et al., 2015. Magmatic Au Mineralization at the Bilihe Au Deposit, China. Economic Geology, 110(7): 1661-1668. https://doi.org/10.2113/econgeo.110.7.1661
      Zang, W., Fyfe, W. S., 1995. Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil. Mineralium Deposita, 30(1): 30-38. https://doi.org/10.1007/BF00208874
      Zhang, W., Zhang, S. T., Cao, H. W., et al., 2014. Characteristics of Chlorite Minerals from Xiaolonghe Tin Deposit in West Yunnan, China and Their Geological Implications. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 318-328(in Chinese with English abstract).
      Zhang, X. T., Pan, J. Y., Xia, F., et al., 2022. Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region. Earth Science, 47(1): 192-205(in Chinese with English abstract).
      Zhou, X. J., Li, S. Q., Chen, L. Q., 2019. Discussion of Metallogenic Regularity and Prospecting Direction of Dongxiang Volcanic Basin in Jiangxi Province. Journal of East China Institute of Technology (Natural Science Edition), 42(1): 45-51(in Chinese with English abstract).
      陈衍景, 倪培, 范宏瑞, 等, 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200709009.htm
      华嵘辉, 吴德来, 余祖寿, 等, 2008. 江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志. 福建地质, 27(4): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ200804004.htm
      冷成彪, 齐有强, 2017. 闪锌矿与方铅矿的LA-ICPMS微量元素地球化学对江西冷水坑银铅锌矿田的成因制约. 地质学报, 91(10): 2256-2272. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201710008.htm
      李海东, 潘家永, 刘文泉, 等, 2017. 江西乐安居隆庵铀矿床绿泥石特征及地质意义. 岩石矿物学杂志, 36(4): 535-548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201704007.htm
      李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229?viewType=HTML
      李如操, 陈华勇, 李光辉, 等, 2020. 大兴安岭地区富克山斑岩铜钼矿床地质特征与SWIR勘查应用. 地球科学, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192?viewType=HTML
      刘萌, 王智琳, 许德如, 等, 2018. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义. 大地构造与成矿学, 42(5): 862-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805008.htm
      罗平, 2010. 江西北武夷地区铜多金属矿成矿规律及找矿方向研究(博士学位论文). 北京: 中国地质大学.
      倪培, 迟哲, 潘君屹, 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例. 地学前缘, 27(2): 60-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002006.htm
      宋国学, 秦克章, 李光明, 等, 2018. 中硫型浅成低温热液金多金属矿床基本特征、研究进展与展望. 岩石学报, 34(3): 748-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803014.htm
      苏慧敏, 2013. 北武夷天华山盆地火山-侵入岩的成因及其与成矿关系的研究. 北京: 中国地质大学.
      王可勇, 卢作祥, 谭铁龙, 1998. 江西东乡中生代火山岩区金的成矿远景分析. 黄金地质, 4(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ803.002.htm
      吴德海, 潘家永, 夏菲, 等, 2018. 赣南上窖铀矿床绿泥石特征与形成环境. 矿物学报, 38(4): 393-405. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201804006.htm
      吴忠如, 2003. 东乡火山盆地金矿成矿地质特征及找矿方向. 矿产与地质, 17(97): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2003S1042.htm
      晏俊灵, 江俊杰, 张娟, 等, 2012. 江西省东乡火山岩区成矿地质、地球化学特征及找矿潜力. 物探与化探, 36(4): 534-538. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204005.htm
      张伟, 张寿庭, 曹华文, 等, 2014. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版), 41(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403008.htm
      张笑天, 潘家永, 夏菲, 等, 2022. 湘赣边界鹿井铀矿床流体包裹体及成矿机制. 地球科学, 47(1): 192-205. doi: 10.3799/dqkx.2021.046?viewType=HTML
      周先军, 李淑琴, 陈立泉, 2019. 江西东乡火山盆地成矿规律及找矿方向探讨. 东华理工大学学报(自然科学版), 42(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201901007.htm
    • dqkxzx-49-4-1292-附表2-3.doc
      dqkxzx-49-4-1292-附表1.xlsx
    • 加载中
    图(13)
    计量
    • 文章访问数:  249
    • HTML全文浏览量:  64
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-31
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回