• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例

    张晓博 郭清海 张梦昭 孙伟浩 李鑫

    张晓博, 郭清海, 张梦昭, 孙伟浩, 李鑫, 2023. 碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例. 地球科学, 48(3): 908-922. doi: 10.3799/dqkx.2022.323
    引用本文: 张晓博, 郭清海, 张梦昭, 孙伟浩, 李鑫, 2023. 碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例. 地球科学, 48(3): 908-922. doi: 10.3799/dqkx.2022.323
    Zhang Xiaobo, Guo Qinghai, Zhang Mengzhao, Sun Weihao, Li Xin, 2023. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System. Earth Science, 48(3): 908-922. doi: 10.3799/dqkx.2022.323
    Citation: Zhang Xiaobo, Guo Qinghai, Zhang Mengzhao, Sun Weihao, Li Xin, 2023. Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System. Earth Science, 48(3): 908-922. doi: 10.3799/dqkx.2022.323

    碳酸盐岩热储中稀土元素的地球化学行为及其指示意义:以施甸地热系统为例

    doi: 10.3799/dqkx.2022.323
    基金项目: 

    中央高校基本科研业务费专项资金 CUGSDZX002

    详细信息
      作者简介:

      张晓博(1991—),男,讲师,主要从事高温地热流体地球化学和原生劣质水成因方向的研究工作. OCRID:0000-0002-3589-8557. E-mail:xbzhang@cug.edu.cn

      通讯作者:

      郭清海,E-mail: qhguo2006@gmail.com

    • 中图分类号: P314

    Geochemical Behavior and Indicative Effect of REEs in Carbonate Geothermal Reservoir: A Case of Shidian Geothermal System

    • 摘要: 施甸中‒低温地热系统是滇‒藏‒川地热带的重要组成部分,强烈的构造运动使该地热系统热储结构复杂,当前对其地热水地球化学过程研究程度很低.通过分析施甸地热水中稀土元素(REEs)的地球化学行为,本文旨在揭示碳酸盐岩热储内的主导性水文地球化学过程.结果表明,施甸地热水大部分富集LREEs,显示其对围岩REEs特征的继承.地热水也表现出Ce、Eu和Y异常,其中Ce负异常因继承碳酸盐岩Ce负异常或保留地热水古氧化环境特征而形成,Eu正异常源于地热水对长石类矿物的溶解,Y正异常则是地热水运移过程中其中的Ho受碳酸盐矿物优先吸附造成.PHREEQC计算表明施甸地热水中REEs的主要形态为LnCO3+和Ln(CO3)2,在同一水样中,LnCO3+含量随原子系数增加依次递减,而Ln(CO3)2-则依次递增.此外,地热水中还存在少量Ln3+、LnF2+、LnHCO32+和LnSO4+,其含量均随原子系数增加依次减小,受地热水pH和F-、HCO3-、SO42-含量共同控制.REEs分析可为地热水地球化学过程研究提供重要证据.

       

    • 图  1  滇‒藏‒川地热带(a)、保山地块(b)以及施甸(c)简要地质构造图(据禹丽等,2014)

      Fig.  1.  Geotectonic locations of the Baoshan block in the Yunnan-Sichuan-Tibet geothermal belt (a and b) and geological structures in Shidian (c) (after Yu et al., 2014)

      图  2  施甸水热系统分带及研究区采样点分布(a)、A-A'地质剖面(b)和钻孔SD12地层柱状图(c)

      Fig.  2.  Sampling locations in the study area (a), hydrogeological profile A-A' in (b), and the stratigraphic column for Well SD12 (c)

      图  3  施甸水样氘氧同位素特征

      Fig.  3.  Stable oxygen and hydrogen isotopic compositions of geothermal fluids in Shidian

      图  4  施甸地热水样ΣREEs与物理化学指标相关性

      红点代表水化学类型为Ca·Mg-HCO3型地热水

      Fig.  4.  The relationships between ΣREEs and physical-chemical parameters in geothermal water samples in Shidian

      图  5  施甸地热水样和岩石样品REEs采用球粒陨石标准化后的配分模式

      a. I区地热水样品;b. II区地热水样品;c. III区地热水样品;d. 施甸岩石样品

      Fig.  5.  Chondrite-normalized REE patterns of geothermal fluids and rock samples in Shidian

      图  6  施甸地热水样Ce/Ce*与Pr/Pr*相关性

      Fig.  6.  Relationship between Ce/Ce* and Pr/Pr* in groundwater

      图  7  地热水样品Eh值与Eu/Eu*的关系

      Fig.  7.  The relationship between Eh and Eu/Eu* in geothermal waters

      图  8  施甸地热水样中REEs形态分布

      Fig.  8.  Percentages of calculated REE speciation in geothermal fluids in Shidian

      表  1  施甸地热水样现场物理化学指标、化学组分含量以及氢氧同位素特征

      Table  1.   Physical parameters and concentrations of chemical constituents in Shidian water samples

      编号 T(℃) Eh pH K Ca Na Mg CO3 HCO3 F Cl NO3 SO4 Si Li B Mn Fe δ18O(‰) δ2H(‰) 水化学类型
      SD1 31 105 7.21 1.13 99.24 3.09 42.81 0.36 364 0.21 5.03 18.79 14.14 6.72 3.45 17.19 0.21 0.00 -9.60 -73.54 Ca·Mg-HCO3
      SD2 51 105 7.20 2.00 83.99 2.94 29.49 0.29 313 0.25 2.95 1.85 9.77 12.30 4.82 22.96 0.10 1.71 -9.86 -77.35 Ca·Mg-HCO3
      SD3 56 -226 6.51 42.45 210.67 145.96 45.73 0.19 870 2.47 13.86 3.03 54.53 23.93 2 628.01 11 008.53 76.19 15.72 -9.76 -79.54 Ca·Na-HCO3
      SD4 43 -160 6.80 44.23 233.74 152.74 59.26 0.34 787 2.05 14.54 4.82 35.87 23.06 2 642.07 12 352.62 172.35 32.80 -9.60 -76.77 Ca·Na·Mg-HCO3
      SD5 45 128 6.86 22.19 125.81 66.69 32.28 0.22 476 1.86 8.89 2.22 60.28 17.53 1 274.95 3 308.42 0.15 4.66 -10.07 -77.17 Ca·Na·Mg-HCO3
      SD6 77 -208 7.08 10.07 25.55 365.39 5.14 0.65 839 3.15 4.40 0.71 33.32 52.84 696.01 2 186.92 67.73 0.00 -10.37 -79.33 Na-HCO3
      SD7 56 -264 6.74 15.68 39.53 275.37 15.95 0.25 726 3.15 6.36 0.21 39.11 26.58 479.00 5 674.88 84.57 0.00 -9.31 -71.80 Na-HCO3
      SD8 31 -123 7.33 1.38 90.82 1.72 16.74 0.31 254 0.15 3.27 3.10 9.82 8.37 3.59 11.41 7.04 13.59 -11.22 -84.78 Ca·Mg-HCO3
      SD9 31 108 7.47 3.32 93.47 4.87 25.77 0.59 340 0.37 3.55 0.84 7.48 10.80 7.89 29.77 2.26 0.21 -10.13 -78.84 Ca·Mg-HCO3
      SD10 29 -78 7.18 4.22 136.15 4.50 18.91 0.32 352 0.20 5.72 4.38 7.22 7.75 3.32 20.73 0.70 14.66 -9.29 -70.11 Ca·Mg-HCO3
      SD11 56 -220 6.54 28.90 92.88 51.95 10.26 0.06 302 1.30 10.00 0.38 6.50 46.00 92.83 408.42 282.77 19 180.07 -11.35 -83.35 Ca·Na-HCO3
      SD12 47 -131 8.08 11.13 54.02 95.48 16.42 2.65 374 1.07 3.26 0.33 11.02 14.77 85.26 262.04 13.69 37.77 -11.65 -86.36 Ca·Na-HCO3
      SD13 57 -22 8.19 2.72 64.07 5.89 25.02 1.94 220 0.21 2.86 0.24 11.81 14.42 8.43 18.99 57.60 5.06 -11.06 -83.53 Ca·Mg-HCO3
      SD14 65 -292 7.24 4.20 69.24 5.71 20.49 0.22 225 0.30 2.68 0.26 11.63 18.06 14.85 24.24 56.76 91.78 -10.75 -78.83 Ca·Mg-HCO3
      SD15 25 78 7.42 1.70 91.41 5.11 23.59 0.48 312 0.24 3.97 2.06 12.58 7.25 4.75 11.85 5.56 1.11 -10.69 -81.51 Ca·Mg-HCO3
      SD16 52 -205 7.73 4.92 42.72 260.62 2.22 0.24 406 0.82 3.48 0.31 200.56 30.96 96.62 126.26 128.56 1 927.80 -11.20 -84.82 Na-HCO3·SO4
      SD17 52 1 6.90 11.47 96.50 225.58 18.27 0.35 684 1.10 4.65 0.36 24.94 24.10 151.30 852.86 43.43 0.00 -7.18 -67.54 Na·Ca-HCO3
      SD18 61 67 6.99 2.42 89.60 10.60 27.62 0.19 325 0.38 2.83 1.04 19.30 19.54 11.05 88.46 0.94 27.96 -10.09 -76.61 Ca·Mg-HCO3
      注:Li、B、Sr、Mn和Fe单位是μg/L,其余化学组分单位是mg/L.
      下载: 导出CSV

      表  2  施甸地热水稀土元素含量分布特征(单位:μg/L)

      Table  2.   REEs concentrations of geothermal fluids in Shidian geothermal system (μg/L)

      编号 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ΣREE Pr/Pr* Ce/Ce* Eu/Eu* Y/Ho
      SD1 0.035 0.067 0.011 0.048 0.016 0.004 0.005 0.002 0.005 0.028 0.002 0.003 0.002 0.002 0.002 0.232 1.091 0.831 1.070 0.505
      SD2 0.015 0.034 0.006 0.015 0.003 0.003 0.005 0.002 0.004 0.017 0.001 0.002 0.001 0.002 0.001 0.111 1.441 0.879 2.354 0.613
      SD3 0.051 0.091 0.013 0.063 0.022 0.013 0.025 0.005 0.03 0.402 0.011 0.032 0.004 0.022 0.004 0.788 0.965 0.845 1.689 1.317
      SD4 0.12 0.254 0.033 0.167 0.056 0.025 0.057 0.01 0.077 0.726 0.016 0.045 0.007 0.041 0.006 1.64 0.899 0.972 1.340 1.636
      SD5 0.018 0.03 0.003 0.016 0.009 0.007 0.007 0.001 0.008 0.13 0.002 0.007 0.001 0.004 0.001 0.244 0.758 0.912 2.599 2.343
      SD6 0.063 0.133 0.023 0.098 0.02 0.008 0.026 0.003 0.016 0.127 0.004 0.01 0.001 0.008 0.002 0.542 1.134 0.856 1.072 1.145
      SD7 0.02 0.053 0.004 0.016 0.041 0.006 0.003 0 0.003 0.039 0.001 0.002 0 0.003 0.001 0.192 0.697 1.369 0.732 1.406
      SD8 0.019 0.045 0.005 0.026 0.027 0.004 0.007 0.001 0.004 0.049 0.001 0.002 0.001 0.002 0.001 0.194 0.815 1.107 0.655 1.766
      SD9 0.059 0.097 0.01 0.033 0.022 0.034 0.009 0.001 0.005 0.039 0.002 0.003 0.001 0.002 0 0.317 0.919 0.895 6.250 0.703
      SD10 0.018 0.035 0.002 0.017 0.005 0.013 0.001 0 0.002 0.032 0 0.002 0 0.001 0 0.128 0.450 1.179 11.939 -
      SD11 0.024 0.051 0.005 0.021 0.005 0.015 0.008 0.001 0.005 0.036 0.001 0.003 0 0.002 0 0.177 0.820 1.083 7.223 1.298
      SD12 0.044 0.08 0.018 0.075 0.078 0.022 0.025 0.001 0.006 0.042 0.001 0.003 0 0.003 0 0.398 1.301 0.697 1.201 1.514
      SD13 0.016 0.034 0.002 0.01 0.005 0.014 0.002 0.001 0.002 0.024 0.001 0.002 0.001 0 0 0.114 0.547 1.255 11.383 0.865
      SD14 0.013 0.033 0.002 0.009 0.005 0.004 0.001 0 0 0.02 0.001 0.001 0 0.001 0 0.09 0.575 1.421 3.674 0.721
      SD15 0.003 0.003 0.001 0.002 0.001 0.008 0.001 0 0.001 0.008 0 0.001 0 0.001 0 0.029 2.292 0.423 24.194 -
      SD16 0.003 0.004 0.001 0.002 0.002 0.013 0.004 0.001 0.001 0.007 0.001 0.002 0.001 0.001 0.001 0.044 1.946 0.564 13.778 0.252
      SD17 0.004 0.003 0.001 0.002 0.003 0.016 0.001 0 0.001 0.016 0 0.002 0 0 0 0.049 2.292 0.358 22.543 -
      SD18 0.022 0.031 0.015 0.059 0.001 0.002 0.042 0.001 0.006 0.035 0.002 0.003 0 0.001 0 0.22 1.784 0.404 0.327 0.631
      下载: 导出CSV

      表  3  施甸岩石样品REEs含量分布特征(10-6)

      Table  3.   REEs concentrations of rock samples in Shidian geothermal system (10-6)

      编号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Ce/Ce* Y/Ho
      C1 碳酸盐岩 29.550 57.861 7.342 29.151 6.351 1.549 6.586 1.066 6.118 38.540 1.201 3.524 0.524 3.080 0.461 0.936 1.065
      C2 35.876 67.789 7.887 28.442 5.106 0.967 4.235 0.690 4.144 26.262 0.844 2.573 0.393 2.354 0.375 0.982 1.153
      C3 16.273 30.551 3.870 14.504 2.746 0.571 2.547 0.402 2.224 15.368 0.439 1.318 0.189 1.225 0.186 0.797 1.161
      C4 8.428 13.678 1.863 7.057 1.337 0.280 1.337 0.198 1.196 8.523 0.240 0.642 0.086 0.558 0.086 0.945 1.044
      C5 40.063 75.740 8.439 29.709 4.650 0.773 3.560 0.533 2.977 18.279 0.631 1.862 0.288 1.856 0.282 0.989 1.059
      C6 17.219 47.067 3.646 13.308 2.398 0.674 1.881 0.307 1.758 11.829 0.389 1.314 0.221 1.518 0.246 0.990 1.097
      C7 26.290 42.118 6.065 23.666 4.400 0.788 3.642 0.583 3.009 19.391 0.615 1.778 0.257 1.515 0.217 0.788 1.137
      C8 25.250 47.187 5.466 19.550 3.337 0.624 2.778 0.420 2.415 14.376 0.470 1.436 0.205 1.350 0.198 0.940 1.102
      G1 花岗岩 45.099 142.420 11.146 41.569 9.202 1.015 9.256 1.659 10.034 59.914 1.951 5.700 0.797 4.809 0.649 1.513 1.107
      G2 82.165 201.172 18.424 66.359 14.418 1.157 13.367 2.173 12.429 68.023 2.267 6.252 0.882 5.565 0.769 1.216 1.082
      球粒陨石a 0.237 0.612 0.095 0.467 0.153 0.058 0.205 5 0.037 4 0.254 1.570 0.056 6 0.165 5 0.025 5 0.170 0.025 4
      注:a. 数据来源于李义曼等(2022).
      下载: 导出CSV
    • Ahanger, M. A., Jeelani, G., 2022. Deformation Kinematics of Main Central Thrust Zone (MCTZ) in the Western Himalayas. Journal of Earth Science, 33(2): 452-461. https://doi.org/10.1007/s12583-020-1059-6
      Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358-362. https://doi.org/10.1038/ngeo830
      Chen, S., Gui, H. R., Sun, L. H., et al., 2011. Rare Earth Element Fractionation between Groundwater and Wall Rock in Limestone Aquifer: Sample from Taiyuan Formation Limestone Aquifer in Renlou Coal Mine, Northern Anhui Province. Geoscience, 25(4): 802-807 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.04.022
      Coleman, M. L., Shepherd, T. J., Durham, J. J., et al., 1982. Reduction of Water with Zinc for Hydrogen Isotope Analysis. Analytical Chemistry, 54(6): 993-995. https://doi.org/10.1021/ac00243a035
      Craddock, P. R., Bach, W., Seewald, J. S., et al., 2010. Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 74(19): 5494-5513. https://doi.org/10.1016/j.gca.2010.07.003
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Epstein, S., Mayeda, T., 1953. Variation of O18 Content of Waters from Natural Sources. Geochimica et Cosmochimica Acta, 4(5): 213-224. https://doi.org/10.1016/0016-7037(53)90051-9
      Feng, D., Chen, D. F., Peckmann, J., et al., 2010. Authigenic Carbonates from Methane Seeps of the Northern Congo Fan: Microbial Formation Mechanism. Marine and Petroleum Geology, 27(4): 748-756. https://doi.org/10.1016/j.marpetgeo.2009.08.006
      Feng, D., Lin, Z. J., Bian, Y. Y., et al., 2013. Rare Earth Elements of Seep Carbonates: Indication for Redox Variations and Microbiological Processes at Modern Seep Sites. Journal of Asian Earth Sciences, 65: 27-33. https://doi.org/10.1016/j.jseaes.2012.09.002
      Goodenough, K. M., Deady, E. A., Beard, C. D., et al., 2021. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science, 32(6): 1332-1358. https://doi.org/10.1007/s12583-021-1500-5
      Hu, H., Wang, J. L., 2015. On Characteristics of Hydrogen and Oxygen Isotope in Precipitation in Yunnan and Analysis of Moisture Sources. Journal of Southwest China Normal University (Natural Science Edition), 40(5): 142-149 (in Chinese with English abstract).
      Johannesson, K. H., Farnham, I. M., Guo, C. X., et al., 1999. Rare Earth Element Fractionation and Concentration Variations along a Groundwater Flow Path within a Shallow, Basin-Fill Aquifer, Southern Nevada, USA. Geochimica et Cosmochimica Acta, 63(18): 2697-2708. https://doi.org/10.1016/S0016-7037(99)00184-2
      Johannesson, K. H., Lyons, W. B., Yelken, M. A., et al., 1996. Geochemistry of the Rare-Earth Elements in Hypersaline and Dilute Acidic Natural Terrestrial Waters: Complexation Behavior and Middle Rare-Earth Element Enrichments. Chemical Geology, 133(1-4): 125-144. https://doi.org/10.1016/S0009-2541(96)00072-1
      Klinkhammer, G. P., Elderfield, H., Edmond, J. M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23): 5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
      Koeppenkastrop, D., De Carlo, E. H., 1993. Uptake of Rare Earth Elements from Solution by Metal Oxides. Environmental Science & Technology, 27(9): 1796-1802. https://doi.org/10.1021/es00046a006
      Li, Y. M., Chen, K., Tian, J., et al., 2022. REE Characteristics and Their Influencing Factors of the Geothermal Water in Tangkeng Geothermal Field, Fengshun, Guangdong Province. Geological Review, 68(3): 993-1005 (in Chinese with English abstract).
      Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its. Earth Science, 45(6): 2221-2231 (in Chinese with English abstract).
      Ma, L., Liu, Q., He, H. J., et al., 2021. Geochemistry of Rare Earth Elements in the Groundwater of Dagu River Basin. Journal of Marine Sciences, 39(2): 33-42 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-909X.2021.02.004
      Mathurin, F. A., Åström, M. E., Drake, H., et al., 2014. REE and Y in Groundwater in the Upper 1.2 km of Proterozoic Granitoids (Eastern Sweden)-Assessing the Role of Composition and Origin of Groundwaters, Geochemistry of Fractures, and Organic/Inorganic Aqueous Complexation. Geochimica et Cosmochimica Acta, 144: 342-378. https://doi.org/10.1016/j.gca.2014.08.004
      Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x
      Munemoto, T., Ohmori, K., Iwatsuki, T., 2015. Rare Earth Elements (REE) in Deep Groundwater from Granite and Fracture-Filling Calcite in the Tono Area, Central Japan: Prediction of REE Fractionation in Paleo- to Present-Day Groundwater. Chemical Geology, 417: 58-67. https://doi.org/10.1016/j.chemgeo.2015.09.024
      Noack, C. W., Dzombak, D. A., Karamalidis, A. K., 2014. Rare Earth Element Distributions and Trends in Natural Waters with a Focus on Groundwater. Environmental Science & Technology, 48(8): 4317-4326. https://doi.org/10.1021/es4053895
      Oliveri, Y., Cangemi, M., Capasso, G., et al., 2019. Pathways and Fate of REE in the Shallow Hydrothermal Aquifer of Vulcano Island (Italy). Chemical Geology, 512: 121-129. https://doi.org/10.1016/j.chemgeo.2019.02.037
      Parkhurst, D. L., Appelo, C. A. J., 1999. User's Guide to PHREEQC a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculation. U. S. Geological Survey, Reston.
      Sanada, T., Takamatsu, N., Yoshiike, Y., 2006. Geochemical Interpretation of Long-Term Variations in Rare Earth Element Concentrations in Acidic Hot Spring Waters from the Tamagawa Geothermal Area, Japan. Geothermics, 35(2): 141-155. https://doi.org/10.1016/j.geothermics.2006.02.004
      Smedley, P. L., 1991. The Geochemistry of Rare Earth Elements in Groundwater from the Carnmenellis Area, Southwest England. Geochimica et Cosmochimica Acta, 55(10): 2767-2779. https://doi.org/10.1016/0016-7037(91)90443-9
      Sverjensky, D. A., 1984. Europium Redox Equilibria in Aqueous Solution. Earth and Planetary Science Letters, 67(1): 70-78. https://doi.org/10.1016/0012-821X(84)90039-6
      Tao, C. H., Li, H. M., Huang, W., et al., 2011. Mineralogical and Geochemical Features of Sulfide Chimneys from the 49°39'E Hydrothermal Field on the Southwest Indian Ridge and Their Geological Inferences. Chinese Science Bulletin, 56(26): 2828-2838. https://doi.org/10.1007/s11434-011-4619-4
      Taylor, S. R., McLennan, S. M., 1988. Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam.
      Wang, M. M., Zhou, X., Liu, Y., et al., 2020. Major, Trace and Rare Earth Elements Geochemistry of Geothermal Waters from the Rehai High-Temperature Geothermal Field in Tengchong of China. Applied Geochemistry, 119: 104639. https://doi.org/10.1016/j.apgeochem.2020.104639
      Wang, Y. T., Li, J. X., Xue, X. B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Wood, S. A., Shannon, W. M., 2003. Rare-Earth Elements in Geothermal Waters from Oregon, Nevada, and California. Journal of Solid State Chemistry, 171(1-2): 246-253. https://doi.org/10.1016/S0022-4596(02)00160-3
      Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1-2): 99-107. https://doi.org/10.1016/S0377-0273(98)00108-5
      Yu, L., Li, G. J., Wang, Q. F., et al., 2014. Petrogenesis and Tectonic Significance of the Late Cretaceous Magmatism in the Northern Part of the Baoshan Block: Constraints from Bulk Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 30(9): 2709-2724 (in Chinese with English abstract).
      Zhang, J., Nozaki, Y., 1998. Behavior of Rare Earth Elements in Seawater at the Ocean Margin: a Study along the Slopes of the Sagami and Nankai Troughs near Japan. Geochimica et Cosmochimica Acta, 62(8): 1307-1317. https://doi.org/10.1016/S0016-7037(98)00073-8
      陈松, 桂和荣, 孙林华, 等, 2011. 灰岩含水层中稀土元素在地下水与围岩间的分异: 以皖北任楼煤矿太原组灰岩含水层为例. 现代地质, 25(4): 802-807. doi: 10.3969/j.issn.1000-8527.2011.04.022
      胡菡, 王建力, 2015. 云南地区大气降水中氢氧同位素特征及水汽来源分析. 西南师范大学学报(自然科学版), 40(5): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201505025.htm
      李义曼, 陈凯, 天娇, 等, 2022. 广东丰顺汤坑地热田热水中稀土元素特征及其影响因素. 地质论评, 68(3): 993-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202203017.htm
      刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
      马莉, 刘茜, 何会军, 等, 2021. 大沽河流域地下水中稀土元素的地球化学特征. 海洋学研究, 39(2): 33-42. doi: 10.3969/j.issn.1001-909X.2021.02.004
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      禹丽, 李龚健, 王庆飞, 等, 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  702
    • HTML全文浏览量:  582
    • PDF下载量:  94
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-25
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回