Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression
-
摘要: 地热是一种绿色低碳的清洁能源,其规模化开发利用对减少碳排放量与改善大气环境意义重大,为促进中低温水热型地热流体发电技术在实现“双碳”目标中的应用,本文在揭示梁村古潜山潜凸起岩溶热储聚热机制、评价资源潜力的基础上,对10 MW地热电站示范工程的资源保证能力进行了论证.通过地温梯度、大地热流值与构造格架、岩石热导率相关性对比分析,岩溶发育特征、热储富水性与构造、岩性、水动力条件组合关系研究,揭示了梁村古潜山潜凸起岩溶热储的四元聚热机制:一元为华北克拉通破坏、岩石圈减薄导致的高大地热流传导聚热,二元为凸起区高热导率分流聚热,三元为深大断裂带对流聚热,四元为成岩压密水对流聚热;计算出梁村古潜山潜凸起寒武系-奥陶系裂隙岩溶热储中蕴藏的可利用热资源量为2.218 3×1019 J、地热水资源量为6.34×109 m3.在四元聚热驱动下,形成了梁村古潜山潜凸起高地温梯度岩溶热储地热田,其热能量与地热流体资源量满足10 MW地热电站建设需求.Abstract: Geothermal energy is a green and low-carbon clean energy, and its large-scale development and utilization to replace fossil energy is of great significance to reduce carbon emissions and improve the atmospheric environment. In order to promote the geothermal electricity production by low-median temperature geothermal resources, and to fulfill the goal of carbon peak and carbon neutrality, this paper evaluated the resource sufficiency for a 10 MW geothermal power plant demonstration project based on the heat accumulation mechanism and geothermal resources potential of the karst reservoir in Liangcun buried uplift. Based on the correlation analysis between geothermal gradient, heat flow value and concave-convex structural lattice, thermal conductivity of rocks, together with the combination relationship study between karst development characteristics, thermal water abundance and structure, lithology, hydrodynamic conditions, the four-sources heat accumulation mechanism of the karst reservoir in Liangcun buried uplift is revealed as: the first source is high terrestrial heat flux caused by the destruction of north China Craton and lithosphere thinning, the second source is the thermal accumulation of the high thermal conductivity diffluence in the uplift area, the third source is the belt shaped convective thermal accumulation in the deep fault zone, and the fourth source is convective heat flow accumulation of diagenetic compaction water. Furthermore, the available heat resources and geothermal water resources in the Cambrian-Ordovician karst reservoir in Liangcun buried uplift are estimated to be 2.218 3×1019 J and 6.34×109 m3, respectively. Driven by four-sources heat accumulation, the Liangcun buried uplift karst geothermal field with high thermal gradient was formed, and its thermal energy and geothermal water resources met the demand of 10 MW geothermal power station.
-
表 1 我国曾建中低温水热型地热电站
Table 1. Past geothermal power plant of mid-low temperature water type geothermal resource
地点 温度(℃) 装机容量(kW) 广东丰顺县邓屋 92 300 湖南宁乡县灰汤 98 300 河北怀来县后郝窑 87 200 山东招远县汤东泉 98 300 辽宁盖县熊岳 90 200 广西象州市热水村 79 200 江西宜春县温汤 67 100 表 2 梁古1孔寒武纪‒奥陶纪地层特征
Table 2. Lithological properties of Cambrian-Ordovician strata unveiled in Lianggu1 borehole
地层划分 埋深(m) 层厚(m) 岩性 层顶 层底 八陡组 3 340 3 345 5 薄层泥晶灰岩与白云岩互层 3 345 3 350 5 中厚层泥晶灰岩 3 350 3 355 5 中厚层白云岩 3 355 3 378 23 中厚层泥晶灰岩夹薄层泥灰岩 3 378 3 401 23 中厚层泥晶灰岩 3 401 3 420 19 薄层泥晶灰岩与泥灰岩互层 3 420 3 475 55 中厚层泥晶灰岩 阁庄组 3 475 3 550 75 中厚层白云岩夹泥晶灰岩 3 550 3 572 22 中厚层泥晶灰岩 3 572 3 584 12 薄层泥质白云岩、泥灰岩夹白云岩 五阳山 3 584 3 642 58 中厚层泥晶灰岩 3 642 3 687 45 中厚层泥晶灰岩与薄层泥灰岩互层 3 687 3 817 130 中厚层泥晶灰岩 3 817 3 829 12 薄层白云岩,夹泥晶灰岩、泥灰岩 3 829 3 875 46 中厚层泥晶灰岩,夹薄层泥灰岩、白云岩 3 875 3 887 12 薄层白云岩 3 887 3 917 30 中厚层泥晶灰岩,夹薄层白云岩 3 917 3 927 10 薄层白云岩,夹泥晶灰岩、泥质白云岩 3 927 3 975 48 中厚层泥晶灰岩,夹薄层白云岩 土峪组 3 975 4 010 35 中厚层白云岩 4 010 4 027 17 中厚层泥灰岩 4 027 4 043 16 中厚层泥晶灰岩 4 043 4 058 15 薄层泥灰岩 北庵庄组 4 058 4 080 22 中厚层泥晶灰岩 4 080 4 091 11 中厚层白云岩 4 091 4 151 60 中厚层泥晶灰岩,夹薄层白云岩 东黄山组 4 151 4 171 20 中厚层泥质白云岩 4 171 4 179 8 中厚层泥晶岩 4 179 4 186 7 中厚层泥灰岩 表 3 热储可利用热资源量计算值
Table 3. Geothermal resource estimation table
分区 面积(km2) 顶板埋深(m) 温度(℃) 地热水密度(kg/m3) 热资源量(J) 5 ℃温差热资源量(J) 地热水资源量(m3) Ⅰ 96.98 4 000~5 000 150 916.8 1.157 4×1019 8.267 2×1017 2.93×109 Ⅱ 51.97 3 500~4 000 135 930.3 4.878 1×1018 4.434 7×1017 1.57×109 Ⅲ 61.05 3 000~3 500 135 930.3 5.730 4×1018 5.209 5×1017 1.84×109 合计 210 2.218 3×1019 1.791 1×1018 6.34×109 表 4 不同发电工质下地热水单位流量净发电量
Table 4. Net power generation capacity of geothermal water for different working fluid
地热井口温度(℃) 发电量(kW·h/t) R123a R600a R152a 80 1.29 1.34 1.29 90 1.9 2.12 2.02 100 2.75 2.89 2.75 110 3.59 3.99 3.8 120 4.77 5.09 4.84 130 5.92 6.57 6.28 140 7.4 8.05 7.72 150 8.91 9.99 9.69 160 10.69 11.92 11.65 170 12.54 14.44 14.47 180 14.74 16.95 17.29 注:据马峰等(2021). 表 5 不同发电工质、地热井口温度条件下所需地热水资源量
Table 5. The amount of geothermal water resources required under the conditions of different generating working quality and geothermal water temperature
地热井口温度(℃) R123a(m3) R600a(m3) R152a(m3) 130 4.44×108 4.00×108 4.18×108 140 3.55×108 3.26×108 3.40×108 150 2.95×108 2.63×108 2.71×108 -
Chen, M. X., 1988. North China Geothermal. Science Press, Beijing, 93-129 (in Chinese). Chen, M. X., Wang, J. Y., Wang, J. A., et al., 1990. The Characteristics of the Geothermal Field and Its Formation Mechanism in the North China Down-Faulted Basin. Acta Geological Sinica, 64(1): 80-91 (in Chinese with English abstract). Diaz, A. R., Kaya, E., Zarrouk, S. J., 2016. Reinjection in Geothermal Fields: A Worldwide Review Update. Renewable and Sustainable Energy Reviews, 53: 105-162. https://doi.org/10.1016/j.rser.2015.07.151 Erkan, K., Holdmann, G., Benoit, W., et al., 2008. Understanding the Chena Hot Springs, Alaska, Geothermal System Using Temperature and Pressure Data from Exploration Boreholes. Geothermics, 37(6): 565-585. https://doi.org/10.1016/j.geothermics.2008.09.001 Gong, Y. C., Wang, L. S., Liu, S. W., et al., 2004. Distribution Characteristics of Terrestrial Heat Flow Density in Jiyang Depression of Shengli Oilfield, East China. Science China Earth Sciences, 47(9): 804. https://doi.org/10.1360/03yc0062 Hu, L. G., Pang, F. B., Wang, Z. A., et al., 1989. Theoretical and Experimental Studies on the Characteristics of Helical Screw Expander for Low to Moderate Temperature Energy Power Generation. Journal of Engineering Thermophysics, 10(4): 351-356 (in Chinese with English abstract). Hu, X. C., Zhou, Y. Q., Yao, X., 2015. Effect of Lgneous Rocks on Oil-Gas Accumulation in the Eastern Linqing Depression. Marine Geology Frontiers, 31(5): 30-34 (in Chinese with English abstract). Hua, X. L., Li, H. Y., Sun, X. J., et al., 2020. Distribution Pattern of High-Quality Reservoirs and Karst Zoning Feature of Carbonate Rocks in Buried Hills: A Case Study from the Bozhong Sag, Bohai Bay Basin, China. Geological Journal of China Universities, 26 (3): 333-338 (in Chinese with English abstract). Jia, X. M., 1993. Deep Karst and Karst Water in North China Plain. Bulletin Institute of Hydrogeology and Engineering Geology CAGS. (9): 118-128 (in Chinese with English abstract). Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China(4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). Jiang, G. Z., Tang, X. Y., Rao, S., et al., 2016. High-Quality Heat Flow Determination from the Crystalline Basement of the South-East Margin of North China Craton. Journal of Asian Earth Sciences, 118: 1-10. https://doi.org/10.1016/j.jseaes.2016.01.009 Jiang, Y. L., Xiong, J. H., 1997. Characteristics of Geotemperature and Maturity of Organic Matter in the East Part of Linqing Depression. Journal of the University of Petroleum, China, 21(1): 6-10 (in Chinese with English abstract). Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica (English Edition), 95(6): 1870-1881. https://doi.org/10.1111/1755-6724.14877 Kaya, E., Zarrouk, S. J., O'Sullivan, M. J., 2011. Reinjection in Geothermal Fields: A Review of Worldwide Experience. Renewable and Sustainable Energy Reviews, 15(1): 47-68. https://doi.org/10.1016/j.rser.2010.07.032 Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028 Li, D. S., Liu, Y. Y., 1991. Deeply-Buried Paleokarst in China. Scientia Geographica Sinica, 11(3): 234-243 (in Chinese with English abstract). Li, Q. P., Dong, R. G., Li, X. Z., et al., 2005. New Advances in the Study of the Cambrian to Lower Ordovician Sequence-Stratigraphy in the West Shandong. Journal of Stratigraphy, 29(4): 376-380 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2005.04.011 Liao, Z. J., 1985. Brief Review on Geothermal Development in Taiwang. Geological Review, 31(3): 285-288 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1985.03.015 Liao, Z. J., Zhao, P., 1999. Yunnan and Tibet Geothermal Belt: Geothermal Resource and Typical Geothermal System. Science Press, Beijing (in Chinese) Liu, J. X., Mao, X., Ji, H. C., et al., 2017. Distribution and Genesis of Karstic Thermal Reservoir in Dongpu Depression. Earth Science Frontiers, 24(3): 180-189 (in Chinese with English abstract). Liu, S. C., Du, S. X., Zhang, Z. Q., et al., 2010. On the Chaomidian Formation of the Jiulong Group in Shandong Province. Journal of Stratigraphy, 34(4): 417-422 (in Chinese with English abstract). Lü, T., Gao, X. W., Li, N., 2009. The Geothermal Power Technology and Technical Problems. Journal of Shenyang Institute of Engineering (Natural Science), 5(1): 5-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1603.2009.01.002 Ma, F., Wang, G. L., Zhang, W., et al., 2021. Technical Code of Practice for Prefeasibility Exploration of Geothermal Resources in Xiong'an New Area. The Administrative Committee of the Xiongan New Area in Hebei Province, Xiongan (in Chinese). Ma, Z. M., Tong, L., Jia, C., et al., 2018. Experimental Study on Karst Geothermal Reservoir Reinjection in Heze City of Shandong Province. Shandong Land and Resources, 34(11): 52-58 (in Chinese with English abstract). Mao, X., Guo, D. B., Luo, L., et al., 2019. The Global Development Process of Hot Dry Rock (Enhanced Geothermal System) and Its Geological Background. Geological Review. 65(6): 1462-1472 (in Chinese with English abstract). Peng, D., Sun, Y. H., Pan, D. Q., 2008. Geothermal Power Technology and Its Application Prospect. Renewable Energy Resources, 26(6): 106-110 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-5292.2008.06.028 Qiu, N. S., Hu, S. B., He, L. J., 2019. Geothermics in Sedimentary Basins. China Petroleum University Press, Qingdao, 90-105 (in Chinese). Shen, X. J., 1985. Geothermal Resource Assessment of the First High Temperature Geother-Mal Field in China. Chinese Sciences Bulletin, 30(15): 1171-1174 (in Chinese). doi: 10.1360/csb1985-30-15-1171 Song, M. C., 2008. Tectonic Framework and Tectonic Evolution of the Shandong Province (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). Tan, Z. R., Kang, F. X., 2018. Geothermal Energy Potential Analysis of Karst Reservoir in Linqing Depression of Shandong Province. Geological Survey of China, 5(1): 10-15 (in Chinese with English abstract). Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract). Wang, G. L., Zhang, W., Ma, F., et al., 2018. Overview on Hydrothermal and Hot Dry Rock Researches in China. China Geology, 1(2): 273-285. https://doi.org/10.31035/cg2018021 Wang, M. D., Guo, Q. H., Yan, W. D., et al., 2014. Medium-Low Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province, Earth Science, 39(9): 1317-1322 (in Chinese with English abstract). Wang, M. J., Zhang, X. H., He, D. F., et al., 2012. Tectonic Patterns and Their Formation and Evolution in Eastern Linqing Deprssion. Journal of Daqing Petroleum Institute, 36(3): 25-33 (in Chinese with English abstract). Wang, S. F., Pang, Z. H., Liu, J. R., 2011. Reinjection Experiments in Karstic Geothermal Reservoir in Xiongxian. The 27th Annual Meeting of the Chinese Geophysical Society, Changsha (in Chinese with English abstract). Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract). Wang, Y. Z., Yang, L., Zhang, C., et al., 2019. Status Quo and Challenges of Geothermal Power Generation in China. International Petroleum Economics, 27(1): 95-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-7298.2019.01.022 Xu, C. H., Wang, Y. L., Yang, G. L., 2009. The Genesis and Influential Factors of Layered Reservoir of Yeli- Liangjiashan Formation in the Jiyang Depression of the Bohai Bay Basin. Petroleum Geology and Experiment, 31(4): 362-365 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2009.04.009 Yin, X. X., Shen, J., Zhao, Y. T., et al., 2021. Study on Tracer Test of Carbonate Geothermal Reservoir under Centralized Pumping and Re-Injection Conditions. Acta Geologica Sinica, 95(6): 1984-1994 (in Chinese with English abstract). doi: 10.1111/1755-6724.14721 Zan, N. M., Wang, Y. Z., Cao, Y. C., et al., 2018. Characteristics and Development Patterns of Reservoir Space of the Lower Paleozoic Buried Hills in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 39(2): 355-365 (in Chinese with English abstract). Zhang, B. J., Gao, Z. J., Zhang, F. Y., et al., 2015. Hydrodynamic Condition and Response of Formation Water Chemical Fields of Geothermal Water in North China Basin. Earth Science Frontiers, 22(6): 217-226 (in Chinese with English abstract). Zhang, C. X., 2008. Stratum Framework and Distribution Characteristics in the Eastern Area of Linqing Depression (Dissertation). China University of Petroleum, Dongying (in Chinese with English Abstract). Zhang, Y., Feng, J. Y., Luo, J., et al., 2020. Screening of Hot Dry Rock in the South-Central Part of the Bohai Bay Basin. Earth Science Frontiers, 27(1): 35-47 (in Chinese with English abstract). Zhang, Z. Q., Liu, S. C., Du, S. X., et al., 2011. Determination Opinions on Sratigraphic Division and Correlation in Shandong Province. Shandong Land and Resources. 27(9): 1-9 (in Chinese with English abstract). Zhang, Z. Q., Zhang, S. F., Song, Z. Y., et al., 1994a. Gestions on the Division of the Ordovision Majiagou Formation in Shandong Province. Geology of Shandong, 10(S1): 40-45 (in Chinese with English abstract). Zhang, Z. Q., Zhang, S. F., Song, Z. Y., et al., 1994b. Suggestions on the Division and Correlation of the Cambrian-Early Ordovician Stratigraphy in Shandong Province. Geology of Shandong, 10(S1): 28-38 (in Chinese with English abstract). Zheng, K. Y., Pan, X. P., 2014. Successful Experience in Sustaining Long-Term Operation of Larderello Geothermal Power Station: The 100th Anniversary of Startup of Larderello Geothermal Power Station. Sino-Global Energy, 19(2): 25-29 (in Chinese with English abstract). Zhu, J. Z., Cheung, K., 2012. Summary of Environment Impact of Renewable Energy Resources. Advanced Materials Research, 616-618: 1133-1136. https://doi.org/10.4028/www.scientific.net/amr.616-618.1133 陈墨香, 1988. 华北地热. 北京: 科学出版社, 93-129. https://cdmd.cnki.com.cn/Article/CDMD-10016-1020633385.htm 陈墨香, 汪集旸, 汪缉安, 等, 1990. 华北断陷盆地热场特征及其形成机制. 地质学报, 64(1): 80-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199001007.htm 胡亮光, 庞风彪, 王之安, 等, 1989. 中低温能源全流发电螺杆膨胀机的性能及实验研究. 工程热物理学报, 10(4): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB198904001.htm 胡小成, 周瑶琪, 姚旭, 2015. 临清坳陷东部火成岩对油气成藏作用的影响. 海洋地质前沿, 31(5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201505005.htm 华晓莉, 李慧勇, 孙希家, 等, 2020. 渤中凹陷碳酸盐岩潜山岩溶分带特征与优质储层分布规律研究. 高校地质学报, 26(3): 333-338. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202003010.htm 贾秀梅, 1993. 华北平原深部岩溶和岩溶水. 中国地质科学院水文地质工程地质研究所所刊, (9): 118-128. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199300003009.htm 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版), 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm 蒋有录, 熊继辉, 1997. 临清坳陷东部地温及有机质热演化特征. 石油大学学报(自然科学版), 21(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX701.001.htm 李德生, 刘友元, 1991. 中国深埋古岩溶. 地理科学, 11(3): 234-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199103004.htm 李庆平, 董仁国, 李秀章, 等, 2005. 鲁西寒武系‒下奥陶统层序地层研究新进展. 地层学杂志, 29(4): 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200504011.htm 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社. 廖志杰, 1985. 台湾省地热开发简史. 地质论评, 31(3): 285-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198503015.htm 刘金侠, 毛翔, 季汉成, 等, 2017. 东濮凹陷奥陶系岩溶型热储分布特征及成因研究. 地学前缘, 24(3): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703021.htm 刘书才, 杜圣贤, 张增奇, 等, 2010. 山东九龙群炒米店组概念新议. 地层学杂志, 34(4): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201004014.htm 吕太, 高学伟, 李楠, 2009. 地热发电技术及存在的技术难题. 沈阳工程学院学报(自然科学版), 5(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDL200901001.htm 马峰, 王贵玲, 张薇, 等, 2021. 雄安新区地热资源预可行性勘查技术规程(试行). 雄安: 河北雄安新区管理委员会. 马哲民, 仝路, 贾琛, 等, 2018. 山东省菏泽市城区岩溶热储回灌试验. 山东国土资源, 34(11): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201811008.htm 毛翔, 国殿斌, 罗璐, 等, 2019. 世界干热岩地热资源开发进展与地质背景分析. 地质论评, 65(6): 1462-1472 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm 彭第, 孙友宏, 潘殿琦, 2008. 地热发电技术及其应用前景. 可再生能源, 26(6): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY200806037.htm 邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社, 90-105. 沈显杰, 1985. 我国第一个高温地热田的地热资源评价. 科学通报, 30(15): 1171-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198515014.htm 宋明春, 2008. 山东省大地构造格局和地质构造演化(博士学位论文). 北京: 中国地质科学院. 谭志容, 康凤新, 2018. 山东省临清坳陷区岩溶热储地热能潜力分析. 中国地质调查, 5(1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201801002.htm 王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm 王敏黛, 郭清海, 严维德, 等, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113 王明健, 张训华, 何登发, 等, 2012. 临清拗陷东部构造样式及其形成演化. 大庆石油学院学报, 36(3): 25-33 https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201203006.htm 王树芳, 庞忠和, 刘久荣, 2011. 雄县岩溶热储回灌试验. 长沙: 中国地球物理学会第二十七届年会. 汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059 王永真, 杨柳, 张超, 等, 2019. 中国地热发电发展现状与面临的挑战. 国际石油经济, 27(1): 95-100 https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ201901023.htm 徐春华, 王亚琳, 杨贵丽, 2009. 渤海湾盆地济阳坳陷冶里‒亮甲山组层状储层成因及其影响因素. 石油实验地质, 31(4): 362-365. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200904011.htm 殷肖肖, 沈健, 赵艳婷, 等, 2021. 集中采灌条件下碳酸盐岩热储群井示踪试验. 地质学报, 95(6): 1984-1994 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106022.htm 张保建, 高宗军, 张凤禹, 等, 2015. 华北盆地地下热水的水动力条件及水化学响应. 地学前缘, 22(6): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201506020.htm 张存霞, 2008. 临清坳陷东部地区地层格架及展布特征(硕士学位论文). 东营: 中国石油大学 昝念民, 王艳忠, 操应长, 等, 2018. 东营凹陷下古生界碳酸盐岩古潜山储层储集空间特征及发育模式. 石油与天然气地质, 39(2): 355-365 https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802015.htm 张增奇, 刘书才, 杜圣贤, 等, 2011. 山东省地层划分对比厘定意见. 山东国土资源, 27(9): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201109003.htm 张增奇, 张淑芳, 宋志勇, 等, 1994a. 山东省寒武纪‒早奥陶世岩石地层清理意见. 山东地质, 10(S1): 28-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI4S1.003.htm 张增奇, 张淑芳, 宋志勇, 等, 1994b. 山东省奥陶纪马家沟组厘定意见. 山东地质, 10(S1): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI4S1.004.htm 张英, 冯建赟, 罗军, 等, 2020. 渤海湾盆地中南部干热岩选区方向. 地学前缘, 27(1): 35-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001006.htm 郑克棪, 潘小平, 2014. 拉德瑞罗地热电站可持续开发经验: 记拉德瑞罗地热发电100周年. 中外能源, 19(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201402006.htm -