Application of Modified Iron-Based LDH Materials in Geothermal Water Treatment
-
摘要: 地热水常富集多种有害组分,以热泉形式非集中排泄时将威胁周边居民饮用水安全.本文制备了5种铁基阴离子黏土(Fe-LDH)改性材料,用于云南典型地热区热泉的处理中.结果显示Fe-LDH对砷的去除最佳,氟、钨次之,对锑、硼的去除受共存离子影响较大;而改性材料可有效缩小不同有害组分间的竞争吸附差距,表现为乳酸根插层的Fe-LDH能显著提高离子交换能力,对氟、硼的去除提升较大,而分层的Fe-LDH因暴露更多活性位点、增加层间接触面积,对与铁络合为主的砷、钨去除和离子交换为主的氟、硼去除均有明显提升;最后静态吸附表现最佳的吸附剂——L-天冬酰胺分层的Fe-LDH,作为小型水处理装置填充材料能动态、有效地去除热泉中多种有害组分.为地热水污染修复提供了切实可行的方法.Abstract: Geothermal waters are generally enriched in multiple groups of harmful components, which threaten the safety of drinking water for the surrounding residents when non-concentrated discharged in the form of hot springs. In this paper, five iron-based LDH (Fe-LDH) modified materials were prepared and used in the treatment of hot springs in typical geothermal areas of Yunnan. The results show that Fe-LDH has the best removal of arsenic, followed by fluoride and tungsten, and the removal of antimony and boron was influenced by coexisting ions; whereas, the modified materials effectively narrow the gap of competitive sorption between different harmful components, which shows that ion exchange capacity of the lactate intercalated Fe-LDH was significantly improved and the removal of fluorine and boron was enhanced, while the delaminated Fe-LDHs exposed more active sites and increased the interlayer contact, thus it had a greater enhancement on the removal of arsenic and tungsten, which are primarily complexed with iron, along with the removal of fluoride and boron by ion exchange. Finally, the best sorbent in static sorption performance, L-asparagine delaminated Fe-LDH, could dynamically and effectively remove multiple groups of harmful components from hot springs as a filling material for small water treatment devices, which provides a practical method for the remediation of geothermal waters.
-
表 1 三种地热水的地球化学性质和主要有害成分特征
Table 1. Geochemical properties and characteristics of the main harmful components of three geothermal waters
编号 采样位置 地热区 热源 温度(℃) pH EC (μs/cm) F (mg/L) B (mg/L) YJQ 眼镜泉 热海 岩浆 72.5 8.81 3 231 16.25 9.551 DFQ 大沸泉 邦腊掌 非岩浆 96 8.48 1 040 19.40 3.661 GJZ 郭家寨 酒房 非岩浆 77 7.08 1 557 3.109 1.899 编号 As (μg/L) Sb (μg/L) W (μg/L) Cl‒ (mg/L) SO42‒ (mg/L) HCO3‒ (mg/L) CO32‒ (mg/L) YJQ 998.9 70.8 100.6 814.2 30.29 1 069 5.28 DFQ 164.6 5.678 383.6 16.6 73.0 414 24.8 GJZ 0.435 7.236 139.4 6.07 33.1 849 0.624 表 2 五种铁基阴离子黏土改性材料的比表面积
Table 2. Specific surface areas of five modified iron-based LDH materials
参数 样品编号 Fe-LDH1 Fe-LDH2 Fe-LDH3 Fe-LDH4 Fe-LDH5 BET比表面积(m2/g) 80.35 38.59 88.32 90.72 199.90 孔容(cm3/g) 0.137 7 0.296 9 0.262 8 0.265 8 0.129 4 孔径(Å) 68.53 307.80 97.03 115.3 25.88 表 3 铁基阴离子黏土对有害组分的去除机理
Table 3. Removal mechanism of harmful components by iron-based LDH
表 4 动态吸附柱实验数据与Thomas模型的拟合参数
Table 4. Fitting parameters of dynamic sorption column experimental data to Thomas model
地热水样品 有害组分 Thomas模型参数 R2 q0(μg/g) kTh((mL/(μg·min)) YJQ As 0.982 2 385.50 0.012 010 Sb 0.985 7 14.30 0.083 330 W 0.991 1 22.43 0.075 550 F 0.995 7 4 042.00 0.000 424 B 0.963 2 1 720.00 0.001 267 DFQ As 0.980 7 74.57 0.072 900 W 0.985 7 128.90 0.035 190 F 0.966 1 5 492.00 0.000 928 B 0.978 6 608.80 0.002 622 GJZ W 0.989 9 57.73 0.052 370 F 0.990 3 1 014.00 0.001 994 B 0.979 4 433.70 0.005 055 -
Aksoy, N., Şimşek, C., Gunduz, O., 2009. Groundwater Contamination Mechanism in a Geothermal Field: A Case Study of Balcova, Turkey. Journal of Contaminant Hydrology, 103(1-2): 13-28. https://doi.org/10.1016/j.jconhyd.2008.08.006 Ashekuzzaman, S. M., Jiang, J. Q., 2017. Strategic Phosphate Removal/Recovery by a Re-Usable Mg-Fe-Cl Layered Double Hydroxide. Process Safety and Environmental Protection, 107: 454-462. https://doi.org/10.1016/j.psep.2017.03.009 Abdelkader, N. B. H., Bentouami, A., Derriche, Z., et al., 2011. Synthesis and Characterization of Mg-Fe Layer Double Hydroxides and Its Application on Adsorption of Orange G from Aqueous Solution. Chemical Engineering Journal, 169(1-3): 231-238. https://doi.org/10.1016/j.cej.2011.03.019 Brown, K. L., Simmons, S. F., 2003. Precious Metals in High-Temperature Geothermal Systems in New Zealand. Geothermics, 32(4-6): 619-625. https://doi.org/10.1016/S0375-6505(03)00049-X Bunani, S., Arda, M., Kabay, N., 2018. Effect of Operational Conditions on Post-Treatment of RO Permeate of Geothermal Water by Using Electrodeionization (EDI) Method. Desalination, 431: 100-105. https://doi.org/10.1016/j.desal.2017.10.032 Cao, Y. W., Guo, Q. H., Liang, M. S., et al., 2020. Sb(Ⅲ) and Sb(Ⅴ) Removal from Water by a Hydroxyl-Intercalated, Mechanochemically Synthesized Mg-Fe-LDH. Applied Clay Science, 196: 105766. https://doi.org/10.1016/j.clay.2020.105766 Cao, Y. W., Guo, Q. H., Shu, Z., et al., 2019. Tungstate Removal from Aqueous Solution by Nanocrystalline Iowaite: An Iron-Bearing Layered Double Hydroxide. Environmental Pollution, 247: 118-127. https://doi.org/10.1016/j.envpol.2019.01.021 Cao, Y. W., Guo, Q. H., Shu, Z., et al., 2016. Application of Calcined Iowaite in Arsenic Removal from Aqueous Solution. Applied Clay Science, 126: 313-321. https://doi.org/10.1016/j.clay.2016.04.002 Cao, Y. W., Guo, Q. H., Sun, W. H., et al., 2021. Simultaneous Removal of Harmful Anions from Geothermal Waters Using OH- Intercalated Mg-Fe-LDH: Batch and Field Column Studies. Environmental Science and Pollution Research, 28(29): 39345-39356. https://doi.org/10.1007/s11356-021-12939-1 Chen, S. H., Yue, Q. Y., Gao, B. Y., et al., 2012. Adsorption of Hexavalent Chromium from Aqueous Solution by Modified Corn Stalk: A Fixed-Bed Column Study. Bioresource Technology, 113: 114-120. https://doi.org/10.1016/j.biortech.2011.11.110 Das, J., Sairam, P. B., Baliarsingh, N., et al., 2007. Calcined Mg-Fe-CO(3) LDH as an Adsorbent for the Removal of Selenite. Journal of Colloid and Interface Science, 316(2): 216-223. https://doi.org/10.1016/j.jcis.2007.07.082 Guo, Q. H., 2022. Environmental Effects of Harmful Constituents Derived from Geothermal Systems and Their Treatments. Acta Geologica Sinica, 96(5): 1767-1773 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.016 Guo, Q. H., Cao, Y. W., Yin, Z. W., et al., 2017. Enhanced Removal of Arsenic from Water by Synthetic Nanocrystalline Iowaite. Scientific Reports, 7: 17546. https://doi.org/10.1038/s41598-017-17903-z Guo, Q. H., Li, Y. M., Luo, L., 2019. Tungsten from Typical Magmatic Hydrothermal Systems in China and Its Environmental Transport. Science of the Total Environment, 657: 1523-1534. https://doi.org/10.1016/j.scitotenv.2018.12.146 Hudcová, B., Veselská, V., Filip, J., et al., 2017. Sorption Mechanisms of Arsenate on Mg-Fe Layered Double Hydroxides: A Combination of Adsorption Modeling and Solid State Analysis. Chemosphere, 168: 539-548. https://doi.org/10.1016/j.chemosphere.2016.11.031 Jarma, Y. A., Karaoğlu, A., Tekin, Ö., et al., 2022. Integrated Pressure-Driven Membrane Separation Processes for the Production of Agricultural Irrigation Water from Spent Geothermal Water. Desalination, 523: 115428. https://doi.org/10.1016/j.desal.2021.115428 Jiang, J. Q., Ashekuzzaman, S. M., Hargreaves, J. S. J., et al., 2015. Removal of Arsenic (Ⅲ) from Groundwater Applying a Reusable Mg-Fe-Cl Layered Double Hydroxide. Journal of Chemical Technology & Biotechnology, 90(6): 1160-1166. https://doi.org/10.1002/jctb.4607 Kang, D. J., Yu, X. L., Tong, S. R., et al., 2013. Performance and Mechanism of Mg/Fe Layered Double Hydroxides for Fluoride and Arsenate Removal from Aqueous Solution. Chemical Engineering Journal, 228: 731-740. https://doi.org/10.1016/j.cej.2013.05.041 Kelly, A. D. R., Lemaire, M., Young, Y. K., et al., 2013. In Vivo Tungsten Exposure Alters B-Cell Development and Increases DNA Damage in Murine Bone Marrow. Toxicological Sciences: An Official Journal of the Society of Toxicology, 131(2): 434-446. https://doi.org/10.1093/toxsci/kfs324 Khatibikamal, V., Torabian, A., Ahmad, P. H., et al., 2019. Stabilizing of Poly(Amidoamine) Dendrimer on the Surface of Sand for the Removal of Nonylphenol from Water: Batch and Column Studies. Journal of Hazardous Materials, 367: 357-364. https://doi.org/10.1016/j.jhazmat.2018.12.106 Koutsospyros, A. D., Strigul, N., Braida, W., et al., 2011. Tungsten: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health. Amsterdam: Elsevier, 418-426. https://doi.org/10.1016/b978-0-444-52272-6.00650-4 Landrum, J. T., Bennett, P. C., Engel, A. S., et al., 2009. Partitioning Geochemistry of Arsenic and Antimony, El Tatio Geyser Field, Chile. Applied Geochemistry, 24(4): 664-676. https://doi.org/10.1016/j.apgeochem.2008.12.024 Li, Y. L., Yu, C. S., Jiang, Z. C., et al., 2021. An Experimental Study of Heating Tail Water Treatment of the Lindian Geothermal Fields in the Northern Songnen Basin. Hydrogeology & Engineering Geology, 48(1): 188-194 (in Chinese with English abstract). Luo, L., Guo, Q. H., Cao, Y. W., 2019. Uptake of Aqueous Tungsten and Molybdenum by a Nitrate Intercalated, Pyroaurite-Like Anion Exchangeable Clay. Applied Clay Science, 180: 105179. https://doi.org/10.1016/j.clay.2019.105179 Mandal, S., Mayadevi, S., 2008. Cellulose Supported Layered Double Hydroxides for the Adsorption of Fluoride from Aqueous Solution. Chemosphere, 72(6): 995-998. https://doi.org/10.1016/j.chemosphere.2008.03.053 Recepoğlu, Y. K., Kabay, N., Ipek, I. Y., et al., 2018. Packed Bed Column Dynamic Study for Boron Removal from Geothermal Brine by a Chelating Fiber and Breakthrough Curve Analysis by Using Mathematical Models. Desalination, 437: 1-6. https://doi.org/10.1016/j.desal.2018.02.022 Rives, V., Ulibarri, M. A., 1999. Layered Double Hydroxides (LDH) Intercalated with Metal Coordination Compounds and Oxometalates. Coordination Chemistry Reviews, 181(1): 61-120. https://doi.org/10.1016/ S0010-8545(98)00216-1 doi: 10.1016/S0010-8545(98)00216-1 Sasaki, K., Hayashi, Y., Toshiyuki, K., et al., 2018. Simultaneous Immobilization of Borate, Arsenate, and Silicate from Geothermal Water Derived from Mining Activity by Co-Precipitation with Hydroxyapatite. Chemosphere, 207: 139-146. https://doi.org/10.1016/j.chemosphere.2018.05.074 Tomaszewska, B., Akkurt, G. G., Kaczmarczyk, M., et al., 2021. Utilization of Renewable Energy Sources in Desalination of Geothermal Water for Agriculture. Desalination, 513: 115151. https://doi.org/10.1016/j.desal.2021.115151 Tyszer, M., Tomaszewska, B., Kabay, N., 2021. Desalination of Geothermal Wastewaters by Membrane Processes: Strategies for Environmentally Friendly Use of Retentate Streams. Desalination, 520: 115330. https://doi.org/10.1016/j.desal.2021.115330 Wang, R. Z., Liu, J., Wu, J. H., et al., 2019. Preparation of Magnetic Nanocomposite and Their Removal Properties of F and As in Geothermal Water. The Journal of New Industrialization, 9(6): 82-85 (in Chinese with English abstract). Wang, X. X., Yu, S. Q., Wu, Y. H., et al., 2018. The Synergistic Elimination of Uranium (Ⅵ) Species from Aqueous Solution Using Bi-Functional Nanocomposite of Carbon Sphere and Layered Double Hydroxide. Chemical Engineering Journal, 342: 321-330. https://doi.org/10.1016/j.cej.2018.02.102 Wilson, N., Webster-Brown, J., Brown, K., 2012. The Behaviour of Antimony Released from Surface Geothermal Features in New Zealand. Journal of Volcanology and Geothermal Research, 247-248: 158-167. https://doi.org/10.1016/j.jvolgeores.2012.08.009 Witten, M. L., Sheppard, P. R., Witten, B. L., 2012. Tungsten Toxicity. Chemico-Biological Interactions, 196(3): 87-88. https://doi.org/10.1016/j.cbi.2011.12.002 Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632 (in Chinese with English abstract). Yang, T. M., 2018. Test Engineering of Heat-Supply System Using Geothermal Tail Water Treated by Reverse Osmosis Method as Secondary Network Make-Up Water. Guangdong Chemical Industry, 45(1): 61-62, 68 (in Chinese with English abstract). İpek, İ. Y., Kabay, N., Yüksel, M., 2013. Modeling of Fixed Bed Column Studies for Removal of Boron from Geothermal Water by Selective Chelating Ion Exchange Resins. Desalination, 310: 151-157. https://doi.org/10.1016/j.desal.2012.10.009 Yu, Z. Y., Cao, Y. W., Guo, Q. H., 2018. Removing Harmful Constituents from Geothermal Water Using Selected Anion Clays. Environmental Science & Technology, 41(3): 109-117 (in Chinese with English abstract). Zaneva, S., Stanimirova, T., 2004. Crystal Chemistry, Classification Position and Nomenclature of Layered Double Hydroxydes. Bulgarian Geological Society, Annual Scientific Conference "Geology 2004", Sofia. 郭清海, 2022. 地热系统来源有害组分的环境效应及其处理. 地质学报, 96(5): 1767-1773. doi: 10.3969/j.issn.0001-5717.2022.05.016 李永利, 于长生, 姜智超, 等, 2021. 松嫩盆地北部林甸地热田供暖尾水处理试验. 水文地质工程地质, 48(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202101023.htm 王睿智, 刘建, 吴金辉, 等, 2019. 磁性纳米复合物的制备及其在地热水中F和As的去除性能研究. 新型工业化, 9(6): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm 严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105 杨天明, 2018. 反渗透法处理地热尾水作为采暖二次网补水试验工程. 广东化工, 45(1): 61-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201801029.htm 余正艳, 曹耀武, 郭清海, 2018. 基于阴离子粘土去除地热水中多种有害组分. 环境科学与技术, 41(3): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803017.htm -