• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浅谈大气科学与地质学的学科交叉

    张仲石 李双林 王会军 郭正堂

    张仲石, 李双林, 王会军, 郭正堂, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    引用本文: 张仲石, 李双林, 王会军, 郭正堂, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    Zhang Zhongshi, Li Shuanglin, Wang Huijun, Guo Zhengtang, 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    Citation: Zhang Zhongshi, Li Shuanglin, Wang Huijun, Guo Zhengtang, 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350

    浅谈大气科学与地质学的学科交叉

    doi: 10.3799/dqkx.2022.350
    基金项目: 

    科技部国家重点研发计划第二课题 2018YFA0605602

    国家杰出青年科学基金 42125502

    详细信息
      作者简介:

      张仲石(1978-),男,教授,博士生导师,主要从事气候模式开发、过去两千年气候模拟、新生代气候演变和动力学模拟研究.ORCID:0000-0002-2354-1622. E-mail:zhongshi.zhang@cug.edu.cn

    • 中图分类号: P314

    Introduction of Crossing Disciplines between Geology and Atmospheric Science

    • 摘要: 随着新一轮的科技革命蓬勃兴起,大气科学学科正步入地球系统科学的新时代,学科交叉必然产生新的增长点.大气科学的发展经历了观测-理论-模型的三个阶段,很好地践行了“数据-模式驱使科学”的研究范式.然而,地质学具有更深远的时空复杂性,需要更长时间的数据积累.目前,地质学正面临着研究范式由观测向理论和模型的转变.大气科学与地质学的交叉将为这一转变提供经验和启示.同时,大气科学与地质学的交叉,需要研究气候系统上边界(大气顶的太阳辐射)和下边界(固体地球形态)变化导致的大气和海洋环流的响应.研究这些问题,将成为发展同时统辖“分钟、小时”直至“地史”的时间尺度的大气科学理论的关键,也是未来地球系统模式发展的重要方向之一.中国地质大学(武汉)的大气科学专业,作为推动大气科学与地质学交叉的排头兵,任重而道远.

       

    • 图  1  大气科学与地球系统模式的发展历史

      Fig.  1.  History of atmosphere science and Earth system models

      图  2  中国地质大学(武汉)大气科学的学科交叉体系

      Fig.  2.  Disciplinary cross of atmosphere science in China University of Geosciences (Wuhan)

    • Berger, A., Loutre, M. F., 1991. Insolation Values for the Climate of the Last 10 Million Years. Quaternary Science Reviews, 10(4): 297-317. https://doi.org/10.1016/0277-3791(91)90033-q
      Bierman, P., 2021. A Department Terminated. Science, 371(6527): 434. https://doi.org/10.1126/science.371.6527.434
      Bjerknes, J., 1919. On the Structure of Moving Cyclones. Geofysiske Publikasjoner, 1(2): 1-8. https://doi.org/10.1175/1520-0493(1919)47%3C95:otsomc%3E2.0.co;2
      Bryan, K., Manabe, S., Pacanowski, R. C., 1975. A Global Ocean-Atmosphere Climate Model. Part II. The Oceanic Circulation. Journal of Physical Oceanography, 5(1): 30-46. https://doi.org/10.1175/1520-0485(1975)005%3C0003:agoacm%3E2.0.co;2
      Callendar, G. S., 1938. The Artificial Production of Carbon Dioxide and Its Influence on Temperature. Quarterly Journal of the Royal Meteorological Society, 64(275): 223-240. https://doi.org/10.1002/qj.49706427503
      Cess, R. D., Potter, G. L., Blanchet, J. P., et al., 1989. Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models. Science, 245(4917): 513-516. https://doi.org/10.1126/science.245.4917.513
      Charney, J., Eliassen, A., 1964. On the Growth of the Hurricane Depression. Journal of the Atmospheric Sciences, 21(1): 68-75. https://doi.org/10.1175/1520-0469(1964)021<0068: OTGOTH>2.0.CO;2 doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
      Charney, J. G., 1947. The Dynamics of Long Waves in a Baroclinic Westerly Current. Journal of Meteorology, 4(5): 136-162. https://doi.org/10.1175/1520-0469(1947)004%3C0136:tdolwi%3E2.0.co;2
      Cox, P. M., Betts, R. A., Jones, C. D., et al., 2000. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature, 408(6809): 184-187. https://doi.org/10.1038/35041539
      Eady, E. T., 1949. Long Waves and Cyclone Waves. Tellus, 1(3): 33-52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
      Eyring, V., Bony, S., Meehl, G. A., et al., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9(5): 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
      Frisinger, H., 1971. Meteorology before Aristotle. Bulletin of the American Meteorological Society, 52(11): 1078-1080. https://doi.org/10.1175/1520-0477(1971)052%3C1078:mba%3E2.0.co;2
      Guo, Z. F., Wilson, M., Dingwell, D. B., et al., 2021. India-Asia Collision as a Driver of Atmospheric CO2 in the Cenozoic. Nature Communications, 12: 3891. https://doi.org/10.1038/s41467-021-23772-y
      Guo, Z. T., Berger, A., Yin, Q. Z., et al., 2009. Strong Asymmetry of Hemispheric Climates during MIS-13 Inferred from Correlating China Loess and Antarctica Ice Records. Climate of the Past, 5(1): 21-31. https://doi.org/10.5194/cp-5-21-2009
      Guo, Z. T., 2019. Earth System and Evolution: A Future Frame of Earth Sciences. Chinese Science Bulletin, 64(9): 883-884(in Chinese). doi: 10.1360/N972019-00088
      Hasselmann, K., 1979. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Shaw, B. D., ed., Meteorology over the Tropical Oceans. Royal Meteorological Society Publication, Bracknell, 251-259.
      Hoskins, B. J., Karoly, D. J., 1981. The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. Journal of the Atmospheric Sciences, 38(6): 1179-1196. https://doi.org/10.1175/1520-0469(1981)038<1179: TSLROA>2.0.CO;2 doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
      Kuo, H. L., 1949. Dynamic Instability of Two-Dimensional Non-Divergent Flow in a Barotropic Atmosphere. Journal of the Atmospheric Sciences, 6(2): 105-122. https://doi.org/10.1175/1520-0469(1949)006<0105: DIOTDN>2.0.CO;2 doi: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
      Kuo, H. L., 1965. On Formation and Intensification of Tropical Cyclones through Latent Heat Release by Cumulus Convection. Journal of the Atmospheric Sciences, 22(1): 40-63. doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
      Liu, Z., Ding, A. J., Zhang, R. H., 2020. Adjusting Application Codes and Optimizing Funding Layout for the Discipline of Atmospheric Sciences in the National Natural Science Foundation of China. Chinese Science Bulletin, 65(12): 1068-1075(in Chinese). doi: 10.1360/TB-2020-0146
      Liu, Z., He, J. J., Guo, Y. C., 2021. Category-Specific Evaluation Reform by the National Natural Science Foundation of China Benefits the Basic Research of Atmospheric Sciences: A Policy Interpretation. Chinese Science Bulletin, 66(2): 187-192(in Chinese). doi: 10.1360/TB-2020-1444
      Longuet-Higgins, H. C., 1964. Planetary Waves on a Rotating Sphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 279(1379): 446-473. https://doi.org/10.1098/rspa.1964.0116
      Lorenz, E. N., 1963. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences, 20(2): 130-141. https://doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
      Lorenz, E. N., 1969. Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of Atmospheric Sciences, 26(4): 636-646. https://doi.org/10.1175/1520-0469(1969)26%3C636:aparbn%3E2.0.co;2
      Lü, Y. F., Sun, Z. Y., Shao, J., 2019. The Archaeoastronomical Study of the East Gate of the Outer Wall of Shimao Site. Archaeology and Cultural Relics, (1): 46-55(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7830.2019.01.007
      Manabe, S., Wetherald, R. T., 1967. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. Journal of the Atmospheric Sciences, 24(3): 241-259. https://doi.org/10.1175/1520-0469(1967)024%3C0241:teotaw%3E2.0.co;2
      Manabe, S., Wetherald, R. T., 1975. The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. Journal of the Atmospheric Sciences, 32: 3-15. https://doi.org/10.2151/jmsj1965.67.6_1057
      Matsuno, T., 1966. Quasi-Geostrophic Motions in the Equatorial Area. Journal of the Meteorological Society of Japan (Ser II), 44(1): 25-43. https://doi.org/10.2151/jmsj1965.44.1_25
      Meehl, G. A., Covey, C., Delworth, T., et al., 2007. The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 88(9): 1383-1394. https://doi.org/10.1175/bams-88-9-1383
      Millikan, F., 1997. Joseph Henry's Grand Meteorological Crusade. Weatherwise, 50(5): 14-18. https://doi.org/10.1080/00431672.1997.9926074
      Mitchell, J. F. B., Johns, T. C., Gregory, J. M., et al., 1995. Climate Response to Increasing Levels of Greenhouse Gases and Sulphate Aerosols. Nature, 376(6540): 501-504. https://doi.org/10.1038/376501a0
      Philander, S. G. H., 1983. El Niño Southern Oscillation Phenomena. Nature, 302(5906): 295-301. https://doi.org/10.1038/302295a0
      Rossby, C. G., 1939. Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semi-Permanent Centers of Action. Journal of Marine Research, 2(1): 38-55. https://doi.org/10.1357/002224039806649023
      Ruddiman, W. F., 2001. Earth's Climate, Past and Future. W. H. Freeman and Company, New York.
      Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583-018-1002-2
      Sutcliffe, R. C., 1947. A Contribution to the Problem of Development. Quarterly Journal of the Royal Meteorological Society, 73(317‐318): 370-383. https://doi.org/10.1002/qj.49707432007
      Toggweiler, J. R., Bjornsson, H., 2000. Drake Passage and Paleoclimate. Journal of Quaternary Science: Published for the Quaternary Research Association, 15(4): 319-328. https://doi.org/10.1002/1099-1417(200005)15:4%3C319::aid-jqs545%3E3.0.co;2-c
      Ye, X. X., Jiao, Y., Fu, G., 2014. On the Researches and Life Experiences of Bergen School Scientists: Jacob Bjerknes, Halvor Solberg and Tor Bergeron. Advances in Meteorological Science and Technology, 4(6): 35-45(in Chinese with English abstract).
      Zhang, D. E., Demaree, G., 2004. Extreme High Temperature in Summer in North China in 1743: A Study of Historical Hot Summer Events in the Background of Relatively Warm Climate. Chinese Science Bulletin, 49(21): 2204-2210(in Chinese). doi: 10.1360/csb2004-49-21-2204
      Zhou, T. J., Chen, Z. M., Zou, L. W., et al., 2020. Development of Climate and Earth System Models in China: Past Achievements and New CMIP6 Fesults. Acta Meteorologica Sinica, 78(3): 332-350(in Chinese with English abstract).
      Zhou, T. J., Zou, L. W., Chen, X. L., 2019. Commentary on the Coupled Model Intercomparison Project Phase 6(CMIP6). Climate Change Research, 15(5): 445-456(in Chinese with English abstract).
      郭正堂, 2019. 《地球系统与演变》: 未来地球科学的脉络. 科学通报, 64(9): 883-884. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909003.htm
      刘哲, 丁爱军, 张人禾, 2020. 调整国家自然科学基金申请代码, 优化大气学科资助布局. 科学通报, 65(12): 1068-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202012003.htm
      刘哲, 何建军, 郭郁葱, 2021. 基于大气科学学科发展特点, 解读项目分类评审改革新举措. 科学通报, 66(2): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202102010.htm
      吕宇斐, 孙周勇, 邵晶, 2019. 石峁城址外城东门的天文考古学研究. 考古与文物, (1): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KGYW201901006.htm
      叶鑫欣, 焦艳, 傅刚, 2014. 挪威学派气象学家的研究工作和生平: J. 皮叶克尼斯、H. 索尔伯格和T. 贝吉龙. 气象科技进展, 4(6): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201406012.htm
      张德二, Demaree, G., 2004.1743年华北夏季极端高温: 相对温暖气候背景下的历史炎夏事件研究. 科学通报, 49(21): 2204-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200421012.htm
      周天军, 陈梓明, 邹立维, 等, 2020. 中国地球气候系统模式的发展及其模拟和预估. 气象学报, 78(3): 332-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003002.htm
      周天军, 邹立维, 陈晓龙, 2019. 第六次国际耦合模式比较计划(CMIP6)评述. 气候变化研究进展, 15(5): 445-456. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201905001.htm
    • 加载中
    图(2)
    计量
    • 文章访问数:  2131
    • HTML全文浏览量:  1012
    • PDF下载量:  350
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-05
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回