• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示

    饶松 黄顺德 胡圣标 高腾

    饶松, 黄顺德, 胡圣标, 高腾, 2023. 中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示. 地球科学, 48(3): 857-877. doi: 10.3799/dqkx.2022.351
    引用本文: 饶松, 黄顺德, 胡圣标, 高腾, 2023. 中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示. 地球科学, 48(3): 857-877. doi: 10.3799/dqkx.2022.351
    Rao Song, Huang Shunde, Hu Shengbiao, Gao Teng, 2023. Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System. Earth Science, 48(3): 857-877. doi: 10.3799/dqkx.2022.351
    Citation: Rao Song, Huang Shunde, Hu Shengbiao, Gao Teng, 2023. Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System. Earth Science, 48(3): 857-877. doi: 10.3799/dqkx.2022.351

    中国陆区干热岩勘探靶区优选:来自国内外干热岩系统成因机制的启示

    doi: 10.3799/dqkx.2022.351
    基金项目: 

    国家自然科学基金项目 41877210

    国家自然科学基金项目 42074096

    油气资源与勘探技术教育部重点实验室青年创新团队项目 PI2018-04

    详细信息
      作者简介:

      饶松(1985—),男,教授,博士,主要从事地热地质学与油气地质学的教学和科研工作.ORCID:0000-0001-5991-9730.E-mail:raosong08@163.com

      通讯作者:

      胡圣标,E⁃mail:sbhu@mails.iggcas.ac.cn

    • 中图分类号: P314

    Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis Mechanism of Global Hot Dry Rock System

    • 摘要: 干热岩是指地下高温但由于低孔隙度和渗透率而缺少流体的岩石(体),储存于干热岩中的热量需要通过人工压裂形成增强地热系统(EGS)才能得以开采,赋存于干热岩中在当前技术经济条件下可以开采的地热能被称为干热岩型地热资源,它是人类未来的重要替代新能源之一.干热岩的研究始于20世纪70年代,经过近50年的不断发展,干热岩在理论和实践两方面都有了长足发展,美国、日本、法国、德国、澳大利亚等发达国家相继投入巨资进行干热岩勘查、评价和开发实验,并且初步形成了商业开发的成功范例.实践表明,干热岩地热资源是深层地热能的一部分,往往与高温水热系统共热源且存在共生关系,但其地质条件复杂,开采难度较大,应倡导“深层地热能”和“广义EGS”概念,即按照EGS技术着眼深层水热型和干热岩型地热能整体开发.为了克服诱发地震等环境安全问题,干热岩压裂造储技术研发方向正在从“刚性造储”向“柔性造储”发展.近几年来,我国分别在青海、西藏、四川、福建、广东、湖南、黑龙江、海南等高热流区域进行了干热岩地质勘查,并在青海共和、山东利津、广东惠州、四川康定、冀东马头营和琼北等地相继开展了干热岩初步钻探,但仅在青海共和的干热岩勘探与开发实验中取得突破.综合考虑全球高温地热带分布和中国陆区板块构造背景、现今大地热流分布格局、岩石圈热结构、Moho面深度及壳内热源、新生代火山活动、温泉分布、深大断裂分布与活动性,以及现有干热岩勘查结果,认为当前中国陆区最具前景的干热岩勘探靶区为东北新生代火山活动区、海南岛及雷州半岛和滇藏川地区——青藏高原东构造结.此外,高热背景条件下的中厚层碳酸盐岩应作为深层地热能开采的重点目标储层.

       

    • 图  1  全球大地热流分布

      Lucazeau(2019)

      Fig.  1.  Distribution map of global terrestrial heat flow

      图  2  全球HDR试验场地及全球地热异常区分布

      何治亮等(2017)毛翔等(2019)

      Fig.  2.  Distribution of global HDR test site and global geothermal anomaly area

      图  3  Fenton Hill干热岩试验场地质背景(a)、测温曲线(b)

      Kelkar et al.(2016)

      Fig.  3.  Geological background of Fenton Hill HDR test site (a), temperature measurement curve (b)

      图  4  Geysers干热岩项目地理位置(a)、地质剖面(b)及测温曲线(c)

      Garcia et al.(2016)

      Fig.  4.  Geographic location (a), geological profile (b) and thermometric curve (c) of the Geysers Project

      图  5  Soultz地区地质剖面(a), URG地区莫霍面深度(b), GPK-2测温曲线(c)

      Buchmann and Connolly(2007)Genter et al.(2010)Vidal et al.(2018)

      Fig.  5.  Geological section of Soultz area (a), depth contour map of Moho surface in URG (b), GPK-2 temperature measurement curve (c)

      图  6  澳大利亚大地热流(a), 5 km深度温度分布(b)及H-01井测温曲线(c)

      Llanos et al.(2015)Pollett et al.(2019)

      Fig.  6.  Terrestrial heat flow in Australia (a), temperature distribution map at 5 km depth (b); temperature measurement curve of H-01 (c)

      图  7  共和盆地电阻率模型

      Gao et al.(2018)

      Fig.  7.  Resistivity model of the Gonghe basin

      图  8  中国陆区现今热流与大地构造背景关系(a)以及中国西南部、中北部、东部(b~d)的岩石圈热结构及其构造背景

      箭头的颜色、长度表示相对热流贡献,据Jiang et al.(2019)

      Fig.  8.  Relationship between present-day heat flow and geotectonic background in Chinese continent (a), and represent the lithospheric thermal structure and its tectonic background in southwestern, north-central, and eastern China (b-d)

      图  9  中国陆区1.5~9.5 km深度温度分布格局

      Fig.  9.  Temperature distribution pattern at 1.5-9.5 km depth in Chinese continent

      表  1  国内外代表性干热岩项目地质特征

      Table  1.   Geological characteristics of representative HDR projects at home and abroad

      国家 序号 项目名 类型 压裂方式 开发年代 所处构造带 储层岩性 钻井深度(m) 热储温度(℃)
      奥地利 1 Altheim EGS 水力、
      化学压裂
      1989至今 阿尔卑斯褶皱带 碳酸盐岩 2 165~2 306 105
      澳大利亚 2 Paralana 干热岩 水力压裂 2005‒2014 南澳克拉通内的元古宙盆地 花岗岩 1 807~4 003 170
      3 Hunter valley 干热岩 1999‒2015 悉尼盆地 花岗岩 1 946 275
      4 Habanero 干热岩 水力压裂 2003‒2013 库柏盆地 花岗岩 3 700~4 459 242~278
      德国 5 Bruchsal EGS 1983至今 上莱茵地堑 砂岩 1 930~2 540 120~130
      6 Neustadt-Glewe EGS 1984至今 德国盆地 砂岩 2 320 99
      7 Groβ⁃Schnebeck 干热岩 水力压裂 2000至今 德国盆地 砂岩、
      安山岩
      4 309~4 400 145
      8 Unterhaching EGS 化学压裂 2004至今 磨拉石盆地 碳酸盐岩 3 350~3 380 123
      9 Insheim EGS 2007至今 上莱茵地堑 砂岩、
      花岗岩
      3 600~3 800 165
      10 Genesys Hannover 干热岩 水力压裂 2009年至今 德国盆地 砂岩 3 900 150~160
      11 Mauerstetten 干热岩 水力、
      化学压裂
      2011‒2012,2015重启 磨拉石盆地 碳酸盐岩、花岗岩 4 055 130
      12 Landau EGS 2003‒2013 上莱茵地堑 砂岩、
      花岗岩
      3 170~3 300 159
      13 Falkenberg 干热岩 水力压裂 1977‒1986 磨拉石盆地 花岗岩 500 -
      14 Bad Urach 干热岩 1977‒2008 华力西褶皱带 变质岩 4 300~4 445 170
      法德合作 15 GEOSTRAS 干热岩 2012至今(计划) 上莱茵地堑 花岗岩 - > 150
      法国 16 Soultz-sous-Forêts 干热岩 水力、化学压裂 1984至今 上莱茵地堑 花岗岩 3 600~5 000 165
      17 Rittershoffen EGS 2011年至今 上莱茵地堑 花岗岩 ~2 500 163
      18 Le Mayet 干热岩 1978‒1986 华力西褶皱带 花岗岩 200~800 -
      法国西印度群岛 19 Bouillante EGS 爆破压裂 1996至今 Lesser Antilles火山岛弧带 火山岩 1 000~1 500 250~260
      韩国 20 Pohang 干热岩 水力压裂 2010‒2017 Pohang盆地 花岗岩 ~4 340 约180
      美国 21 Raft river EGS 2009至今 内华达盆地 变质岩 1 500~2 000 150
      22 Northwest Geysers EGS 爆破压裂 2009至今 萨克拉门托盆地 变质岩 3 058~3 396 ~400
      23 Newberry Volcano 干热岩 水力压裂 2010至今 内华达盆地 火山岩 3 066 315
      24 Milford EGS 2015至今 内华达盆地 花岗岩 2 133.6~3 854.0 175~230
      25 Fenton Hill 干热岩 水力压裂 1974‒1992 圣胡安盆地 结晶岩 2 932~4 390 200~327
      26 Coso 干热岩 水力、化学、爆破压裂 2002‒2012 内华达盆地 花岗岩 2 430~1 956 300
      27 Bradys EGS 2008‒2015 内华达盆地 火山岩 1 320 200
      28 Desert Peak EGS 2012‒2013 内华达盆地 流纹岩 1 000 210
      29 Southeast Geysers EGS 2008‒2009 萨克拉门托盆地 杂砂岩 3 660 -
      墨西哥-欧洲合作 30 GEMex(Acoculco) EGS 2016至今(计划) 跨墨西哥火山带 花岗岩 2 000 > 300
      日本 31 Hijiori 干热岩 水力压裂 1985‒2002 环太平洋火山带 花岗岩 1 788~2 300 270
      32 Ogachi 干热岩 水力压裂 1989‒2002 环太平洋火山带 花岗岩 400~1 100 60~228
      瑞典 33 Fj¨allbacka 干热岩 水力、化学压裂 1984‒1995 加里东褶皱带 花岗岩 70~500
      瑞士 34 Basel 干热岩 2005‒2009 上莱茵地堑 花岗岩 2 700~5 003 预计200
      35 St.Gallen EGS 水力、化学压裂 2009‒2014 磨拉石盆地 沉积岩 4 450 130~150
      萨尔瓦多 36 Berlín EGS 水力、化学压裂 2001至今 太平洋海岸平原盆地 火山岩 2 000~2 380 183
      匈牙利 37 Szeged 干热岩 2016至今(计划) 潘诺盆地 花岗岩 3 000~3 500 175
      意大利 38 Lardarello EGS 水力、热压裂 20世纪70年代至今 北亚平宁盆地 变质岩 2 500~4 000 300~350
      英国 39 Redruth 干热岩 2009至今 华力西褶皱带 花岗岩 2 500~5 275 190
      40 Eden 干热岩 2010至今(计划) 华力西褶皱带 花岗岩 4 000 180~190
      41 Rosemanowes 干热岩 水力压裂 1984‒1992 华力西褶皱带 花岗岩 2 600 79~100
      中国 42 共和 干热岩 2011至今 共和盆地 花岗岩 2 927.2~3 705.0 150~236
      注:参考Breede et al. (2013)Olasolo et al. (2016)Lu (2018)张森琦等(2019)Parisio and Yoshioka (2020)Park et al. (2020)Gan et al. (2021).
      下载: 导出CSV
    • Aichholzer, C., Duringer, P., Orciani, S., et al., 2016. New Stratigraphic Interpretation of the Soultz-Sous-Forêts 30-Year-Old Geothermal Wells Calibrated on the Recent one from Rittershoffen (Upper Rhine Graben, France). Geothermal Energy, 4(1): 1-26. https://doi.org/10.1186/s40517-016-0055-7
      Aprea, C. M., Hildebrand, S., Fehler, M., et al., 2002. Three-Dimensional Kirchhoff Migration: Imaging of the Jemez Volcanic Field Using Teleseismic Data. Journal of Geophysical Research: Solid Earth, 107(B10): 2247-2258. https://doi.org/10.1029/2000jb000097
      Ayling, B. F., Hogarth, R. A., Rose, P. E., 2016. Tracer Testing at the Habanero EGS Site, Central Australia. Geothermics, 63: 15-26. https://doi.org/10.1016/j.geothermics.2015.03.008
      Beardsmore, G., 2004. The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics, 35(4): 223-235. https://doi.org/10.1071/EG04223
      Breede, K., Dzebisashvili, K., Liu, X. L., et al., 2013. A Systematic Review of Enhanced (or Engineered) Geothermal Systems: Past, Present and Future. Geothermal Energy, 1(1): 1-27. https://doi.org/10.1186/2195-9706-1-4
      Brown, D. W., Duchane, D. V., Heiken, G., et al., 2012. The Future of Hot Dry Rock Geothermal Energy. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Springer, Berlin Heidelberg, 561-569. https://doi.org/10.1007/978-3-540-68910-2_10
      Buchmann, T. J., Connolly, P. T., 2007. Contemporary Kinematics of the Upper Rhine Graben: A 3D Finite Element Approach. Global and Planetary Change, 58(1-4): 287-309. https://doi.org/10.1016/j.gloplacha.2007.02.012
      Bai, D., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358-362. https://doi.org/10.1038/ngeo830
      Chen, Q. F., Ai, Y., Chen, Y. S., 2019. Overview of Deep Structures under the Changbaishan Volcanic Area in Northeast China. Science in China (Series D), 49(5): 778-795 (in Chinese with English abstract).
      Duan, H. X., Liu, Y. G., Wang, G. L., et al., 2023. Characteristics of the Terrestrial Heat Flow and Lithospheric Thermal Structure in Central Cangxian Uplift: A Case Study of Xianxian Geothermal Field. Earth Science, 48(3): 988-1001 (in Chinese with English abstract).
      Gan, H. N., Wang, G. L., Lin, W. J., et al., 2015. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China. Science & Technology Review, 33(19): 22-27 (in Chinese with English abstract).
      Gan, Q., Feng, Z., Zhou, L., et al., 2021. Down-Dip Circulation at the United Downs Deep Geothermal Power Project Maximizes Heat Recovery and Minimizes Seismicity. Geothermics, 96: 102204. https://doi.org/10.1016/j.geothermics.2021.102204
      Gao, J., Zhang, H. J., Zhang, S. Q., et al., 2018. Three-Dimensional Magnetotelluric Imaging of the Geothermal System beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76: 15-25. https://doi.org/10.1016/j.geothermics.2018.06.009
      Gao, W., Guo, Z. H., Zhou, J. X., et al., 2020. High Precision Aeromagnetic Characteristics and Curie Depth Analysis of the Hainan Island. Acta Geologica Sinica, 94(11): 3249-3262 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.006
      Garcia, J., Hartline, C., Walters, M., et al., 2016. The Northwest Geysers EGS Demonstration Project, California. Geothermics, 63: 97-119. https://doi.org/10.1016/j.geothermics.2015.08.003
      Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 342(7-8): 502-516. https://doi.org/10.1016/j.crte.2010.01.006
      Harlé, P., Kushnir, A. R. L., Aichholzer, C., et al., 2019. Heat Flow Density Estimates in the Upper Rhine Graben Using Laboratory Measurements of Thermal Conductivity on Sedimentary Rocks. Geothermal Energy, 7(1): 1-36. https://doi.org/10.1186/s40517-019-0154-3
      He, Z. L., Feng, J. Y., Zhang, Y., et al., 2017. A Tentative Discussion on an Evaluation System of Geothermal Unit Ranking and Classification in China. Earth Science Frontiers, 24(3): 168-179 (in Chinese with English abstract).
      Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.10.001
      Huang, H. B., Qiu, X. L., Xia, S. H., 2012. Crustal Structure and Poisson's Ratio Beneath Hainan Island. Journal of Tropical Oceanography, 31(3): 65-70 (in Chinese with English abstract).
      Jiang, G., Hu, S., Shi, Y., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5-14. https://doi.org/10.1016/j.geothermics.2015.08.008
      Kennedy, B. M., Truesdell, A. H., 1996. The Northwest Geysers High-Temperature Reservoir: Evidence for Active Magmatic Degassing and Implications for the Origin of the Geysers Geothermal Field. Geothermics, 25(3): 365-387. https://doi.org/10.1016/0375-6505(96)00005-3
      Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract).
      Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869 (in Chinese with English abstract).
      Lin, W. J., Wang, G. L., Shao, J. L., et al., 2021. Distribution and Exploration of Hot Dry Rock Resources in China: Progress and Inspiration. Acta Geologica Sinica, 95(5): 1366-1381 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.05.004
      Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735 (in Chinese with English abstract).
      Llanos, E. M., Zarrouk, S. J., Hogarth, R. A., 2015. Numerical Model of the Habanero Geothermal Reservoir, Australia. Geothermics, 53: 308-319. https://doi.org/10.1016/j.geothermics.2014.07.008
      Lu, C., Wang, G. L., 2015. Current Status and Prospect of Hot Dry Rock Research. Science & Technology Review, 33(19): 13-21 (in Chinese with English abstract).
      Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
      Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019gc008389
      Mao, X., Guo, D. B., Luo, L., et al., 2019. The Global Development Process of Hot Dry Rock (Enhanced Geothermal System) and Its Geological Background. Geological Review, 65(6): 1462-1472 (in Chinese with English abstract).
      Meixner, A. J., Kirkby, A. L., Horspool, N., 2014. Using Constrained Gravity Inversions to Identify High-Heat-Producing Granites Beneath Thick Sedimentary Cover in the Cooper Basin Region of Central Australia. Geothermics, 51: 483-495. https://doi.org/10.1016/j.geothermics.2013.10.010
      Mo, X. X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2011.03.001
      Moore, J., McLennan, J., Allis, R., et al., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (Forge): An International Laboratory for Enhanced Geothermal System Technology Development. 44th Workshop on Geothermal Reservoir Engineering 2019, Stanford.
      National Energy Administration, 2018. Terminology for Geothermal Energy. China Petrochemical Press, Beijing (in Chinese with English abstract).
      Olasolo, P., Juárez, M. C., Morales, M. P., et al., 2016. Enhanced Geothermal Systems (EGS): A Review. Renewable and Sustainable Energy Reviews, 56: 133-144. https://doi.org/10.1016/j.rser.2015.11.031
      Oppenheimer, D. H., Herkenhoff, K. E., 1981. Velocity-Density Properties of the Lithosphere from Three-Dimensional Modeling at the Geysers-Clear Lake Region, California. Journal of Geophysical Research: Solid Earth, 86(B7): 6057-6065. https://doi.org/10.1029/jb086ib07p06057
      Pang, Z. H., Kong, Y. L., Pang, J. M., et al., 2017. Geothermal Resources and Development in Xiongan New Area. Bulletin of Chinese Academy of Sciences, 32(11): 1224-1230 (in Chinese with English abstract).
      Pang, Z. H., Luo, J., Cheng, Y. Z., et al., 2020. Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China. Earth Science Frontiers, 27(1): 134-151 (in Chinese with English abstract).
      Parisio, F., Yoshioka, K., 2020. Modeling Fluid Reinjection into an Enhanced Geothermal System. Geophysical Research Letters, 47(19): e2020GL089886. https://doi.org/10.1029/2020gl089886
      Park, S., Kim, K. I., Xie, L., et al., 2020. Observations and Analyses of the First Two Hydraulic Stimulations in the Pohang Geothermal Development Site, South Korea. Geothermics, 88: 101905. https://doi.org/10.1016/j.geothermics.2020.101905
      Peacock, J. R., Earney, T. E., Mangan, M. T., et al., 2020. Geophysical Characterization of the Northwest Geysers Geothermal Field, California. Journal of Volcanology and Geothermal Research, 399: 106882. https://doi.org/10.1016/j.jvolgeores.2020.106882
      Pollett, A., Hasterok, D., Raimondo, T., et al., 2019. Heat Flow in Southern Australia and Connections with East Antarctica. Geochemistry, Geophysics, Geosystems, 20(11): 5352-5370. https://doi.org/10.1029/2019gc008418 doi: 10.1029/2019GC008418
      Rutqvist, J., Dobson, P. F., Garcia, J., et al., 2015. The Northwest Geysers EGS Demonstration Project, California: Pre-Stimulation Modeling and Interpretation of the Stimulation. Mathematical Geosciences, 47(1): 3-29. https://doi.org/10.1007/s11004-013-9493-y
      Sass, J. H., Morgan, P., 1988. Conductive Heat Flux in VC-1 and the Thermal Regime of Valles Caldera, Jemez Mountains, New Mexico. Journal of Geophysical Research, 93(B6): 6027. https://doi.org/10.1029/jb093ib06p06027
      Spell, T. L., Kyle, P. R., 1989. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera, New Mexico: Implications for Evolution of the Jemez Mountains Mgmatic System. Journal of Geophysical Research: Solid Earth, 94(B8): 10379-10396. https://doi.org/10.1029/jb094ib08p10379
      Steck, L. K., Thurber, C. H., Fehler, M. C., et al., 1998. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico: Results from the Jemez Teleseismic Tomography Experiment. Journal of Geophysical Research: Solid Earth, 103(B10): 24301-24320. https://doi.org/10.1029/98jb00750
      Tang, X. C., Liu, S. S., Zhang, D. L., et al., 2022. Geothermal Accumulation Constrained by the Tectonic Transformation in the Gonghe Basin, Northeastern Tibetan Plateau. Lithosphere, 2021(Special 5): 3936881. https://doi.org/10.2113/2022/3936881
      Tang, X. C., Wang, G. L., Ma, Y., et al., 2020. Geological Model of Heat Source and Accumulation for Geothermal Anomalies in the Gonghe Basin, Northeastern Tibetan Plateau. Acta Geologica Sinica, 94(7): 2052-2065 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.013
      Tang, X. C., Zhang, J., Pang Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433-448. https://doi.org/10.1016/j.tecto.2017.08.035
      Tian, J., Pang, Z., Liao, D., et al., 2021. Fluid Geochemistry and Its Implications on the Role of Deep Faults in the Genesis of High Temperature Systems in the Eastern Edge of the Qinghai Tibet Plateau. Applied Geochemistry, 131: 105036. https://doi.org/10.1016/j.apgeochem.2021.105036
      Vidal, J., Patrier, P., Genter, A., et al., 2018. Clay Minerals Related to the Circulation of Geothermal Fluids in Boreholes at Rittershoffen (Alsace, France). Journal of Volcanology and Geothermal Research, 349: 192-204. https://doi.org/10.1016/j.jvolgeores.2017.10.019
      Walters, M. A., Combs, J., 1989. Heat-Flow Regime in the Geysers-Clear Lake Area of Northern California, USA. 1989 Annual Meeting of the Geothermal Resources Council, Santa Rosa.
      Wang, J. Y., 2016. The Belt and Road Initiative, Geothermal First. Science & Technology Review, 34(21): 1 (in Chinese with English abstract).
      Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31 (in Chinese with English abstract).
      Wang, L. D., Wang, H., Zhang, M. D., et al., 2016. Possibility Analysis on the Occurrence of Geothermal Resources in Hot Dry Rock in Chenzhuang Area of Lijin County. Shandong Land and Resources, 32(1): 33-36 (in Chinese with English abstract).
      Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract).
      Weinert, S., Bär, K., Scheuvens, D., et al., 2021. Radiogenic Heat Production of Crystalline Rocks in the Gonghe Basin Complex (Northeastern Qinghai-Tibet Plateau, China). Environmental Earth Sciences, 80(7): 270. https://doi.org/10.1007/s12665-021-09558-x
      Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Progresses and Research Status of China. Acta Geologica Sinica, 92(9): 1936-1947 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2011.00375.x
      Yan, Q., Shi, X., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 2640-2454. https://doi.org/10.1038/s41598-018-20712-7
      Zhang, C., Hu, S. B., Song, R. C., et al., 2020. Genesis of the Hot Dry Rock Geothermal Resources in the Gonghe Basin: Constraints from the Radiogenic Heat Production Rate of Rocks. Chinese Journal of Geophysics, 63(7): 2697-2709 (in Chinese with English abstract).
      Zhang, C., Zhang, S. S., Li, S. T., et al., 2018. Geothermal Characteristics of the Qiabuqia Geothermal Area in the Gonghe Basin, Northeastern Tibetan Plateau. Chinese Journal of Geophysics, 61(11): 4545-4557 (in Chinese with English abstract).
      Zhang, J., Li, W. Y., Tang, X. C., et al., 2017. Geothermal Data Analysis at the High-Temperature Hydrothermal Area in Western Sichuan. Science in China (Series D), 47(8): 899-915 (in Chinese with English abstract).
      Zhang, S. Q., Wen, D. G., Xu, T. F., et al., 2019. The U. S. Frontier Observatory for Research in Geothermal Energy Project and Comparison of Typical EGS Site Exploration Status in China and U. S. Earth Science Frontiers, 26(2): 321-334 (in Chinese with English abstract).
      Zhang, S. Q., Yan, W. D., Li, D. P., et al., 2018. Characteristics of Geothermal Geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geology in China, 45(6): 1087-1102 (in Chinese with English abstract).
      Zhang, S. S., Zhang, L., Tian, C. C., et al., 2019. Occurrence Geological Characteristics and Development Potential of Hot Dry Rocks in Qinghai Gonghe Basin. Journal of Geomechanics, 25(4): 501-508 (in Chinese with English abstract).
      Zheng, K. Y., Chen, Z. H., 2017. Hot Dry Rock Development in China: A Long Way to Go. Sino-Global Energy, 22(2): 21-25 (in Chinese with English abstract).
      Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science in China (Series D), 42(8): 1135-1159 (in Chinese with English abstract).
      陈棋福, 艾印双, 陈赟, 2019. 长白山火山区深部结构探测的研究进展与展望. 中国科学(D辑), 49(5): 778-795. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201905003.htm
      段和肖, 刘彦广, 王贵玲, 等, 2023. 沧县隆起中部大地热流及岩石圈热结构特征——以献县地热田为例. 地球科学, 48(3): 988-1001.
      甘浩男, 王贵玲, 蔺文静, 等, 2015. 中国干热岩资源主要赋存类型与成因模式. 科技导报, 33(19): 22-27. doi: 10.3981/j.issn.1000-7857.2015.19.002
      高维, 郭志宏, 周坚鑫, 等, 2020. 海南岛高精度航磁特征与居里等温面深度分析. 地质学报, 94(11): 3249-3262. doi: 10.3969/j.issn.0001-5717.2020.11.006
      何治亮, 冯建赟, 张英, 等, 2017. 试论中国地热单元分级分类评价体系. 地学前缘, 24(3): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703019.htm
      侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815. doi: 10.3969/j.issn.0001-5717.2020.10.001
      黄海波, 丘学林, 夏少红, 2012. 海南岛地壳厚度与泊松比结构. 热带海洋学报, 31(3): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201203010.htm
      旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128
      李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166
      蔺文静, 王贵玲, 邵景力, 等, 2021. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 95(5): 1366-1381. doi: 10.3969/j.issn.0001-5717.2021.05.004
      刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
      陆川, 王贵玲, 2015. 干热岩研究现状与展望. 科技导报, 33(19): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519010.htm
      毛翔, 国殿斌, 罗璐, 等, 2019. 世界干热岩地热资源开发进展与地质背景分析. 地质论评, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
      莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm
      国家能源局, 2018. 地热能术语. 北京: 中国石化出版社.
      庞忠和, 孔彦龙, 庞菊梅, 等, 2017. 雄安新区地热资源与开发利用研究. 中国科学院院刊, 32(11): 1224-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201711009.htm
      庞忠和, 罗霁, 程远志, 等, 2020. 中国深层地热能开采的地质条件评价. 地学前缘, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm
      唐显春, 王贵玲, 马岩, 等, 2020. 青海共和盆地地热资源热源机制与聚热模式. 地质学报, 94(7): 2052-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm
      汪集旸, 2016. 一带一路, 地热先行. 科技导报, 34(21): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201621002.htm
      汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
      王立东, 王浩, 张明德, 等, 2016. 利津县陈庄地区干热岩地热资源存在可能性分析. 山东国土资源, 32(1): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201601010.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059
      许天福, 胡子旭, 李胜涛, 等, 2018. 增强型地热系统: 国际研究进展与我国研究现状. 地质学报, 92(9): 1936-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809012.htm
      许志琴, 杨经绥, 李海兵, 等, 2011. 印度‒亚洲碰撞大地构造. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm
      张超, 胡圣标, 宋荣彩, 等, 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束. 地球物理学报, 63(7): 2697-2709. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202007019.htm
      张超, 张盛生, 李胜涛, 等, 2018. 共和盆地恰卜恰地热区现今地热特征. 地球物理学报, 61(11): 4545-4557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201811019.htm
      张健, 李午阳, 唐显春, 等, 2017. 川西高温水热活动区的地热学分析. 中国科学(D辑), 47(8): 899-915. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708003.htm
      张森琦, 文冬光, 许天福, 等, 2019. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比. 地学前缘, 26(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm
      张森琦, 严维德, 黎敦朋, 等, 2018. 青海省共和县恰卜恰干热岩体地热地质特征. 中国地质, 45(6): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806002.htm
      张盛生, 张磊, 田成成, 等, 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25(4): 501-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904006.htm
      郑克棪, 陈梓慧, 2017. 中国干热岩开发: 任重而道远. 中外能源, 22(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201702004.htm
      朱日祥, 徐义刚, 朱光, 等, 2012. 华北克拉通破坏. 中国科学(D辑), 42(8): 1135-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907005.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  1236
    • HTML全文浏览量:  1117
    • PDF下载量:  237
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-24
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回