• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用

    王秋霞 平先权 郑建平 戴宏坤

    王秋霞, 平先权, 郑建平, 戴宏坤, 2023. 穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用. 地球科学, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354
    引用本文: 王秋霞, 平先权, 郑建平, 戴宏坤, 2023. 穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用. 地球科学, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354
    Wang Qiuxia, Ping Xianquan, Zheng Jianping, Dai Hongkun, 2023. Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications. Earth Science, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354
    Citation: Wang Qiuxia, Ping Xianquan, Zheng Jianping, Dai Hongkun, 2023. Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications. Earth Science, 48(3): 1217-1231. doi: 10.3799/dqkx.2022.354

    穆斯堡尔光谱仪在揭示地幔氧逸度研究中的应用

    doi: 10.3799/dqkx.2022.354
    基金项目: 

    国家自然科学基金项目 41930215

    国家自然科学基金项目 41873038

    详细信息
      作者简介:

      王秋霞(1996-),女,博士研究生,主要从事地幔岩石学研究.ORCID:0000-0002-8579-3251. E-mail:wangqiuxia@cug.edu.cn

      通讯作者:

      郑建平, E-mail: jpzheng@cug.edu.cn

    • 中图分类号: P584

    Mineral Ferric Iron Contents of Peridotite Xenoliths by Mössbauer Spectroscopy: Oxygen Fugacity Applications

    • 摘要: 利用地幔橄榄岩包体中平衡矿物对的氧逸度计可以有效限定岩石圈地幔的氧化-还原状态.本文使用中国地质大学(武汉)新购置的WSS-10型常温穆斯堡尔光谱仪对华北地块西北部狼山地区橄榄岩包体的四相矿物开展了铁价态的直接测定.结果显示,斜方辉石Fe3+/∑Fe为0.05~0.11,单斜辉石的为0.16~0.25,尖晶石的为0.16~0.22,橄榄石为0.利用橄榄石-斜方辉石-尖晶石氧逸度计,获得狼山地区岩石圈地幔氧逸度为FMQ-0.82至FMQ-0.39(均值为FMQ-0.65).该值略高于依据电子探针测试数据计算获得的氧逸度值(FMQ-1.49至FMQ-0.8,均值为FMQ-1.25),造成这一差异的原因可能是后者忽略了尖晶石晶格中Fe3+过剩和阳离子空位导致的非化学计量比.与全球克拉通岩石圈地幔氧逸度值(均值为FMQ-0.35)相比,华北地块西北缘狼山地区岩石圈地幔整体表现为较还原状态,推测与深部地幔低fO2熔体上升交代有关.

       

    • 图  1  狼山玄武岩中橄榄岩捕掳体野外(a)及橄榄岩包体显微镜下矿物组合照片(b)

      矿物缩写:Ol.橄榄石;Opx.斜方辉石;Cpx.斜方辉石;Spl.尖晶石

      Fig.  1.  Field photo (a) and mineral assemblage microphotographs (b) of the peridotite xenoliths from the Langshan alkali basalts

      图  2  穆斯堡尔光谱及相关参数(据Dyar et al., 2006)修改

      a.同质异能位移(IS)和四极分裂(QS);b.α-Fe磁超精细分裂(Hhf);IS指穆谱中的单峰或双峰的中心位置与多普勒零速度之间的速度差;QS为双峰中两条吸收线中心的距离;磁超精细分裂(Hhf)指原子核处于核外电子形成的磁场中时,原子核能级进一步分裂后形成六线峰

      Fig.  2.  Mössbauer spectrum and Mössbauer parameters (after Dyar et al., 2006)

      图  3  狼山地区地幔橄榄岩矿物的室温穆斯堡尔谱图

      a.橄榄石(Ol);b.单斜辉石(Cpx);c.斜方辉石(Opx);d.尖晶石(Spl);橄榄石中Fe2+(Ⅰ)和Fe2+(Ⅱ)分别指配为Fe2+(M1)和Fe2+(M2).单斜辉石和斜方辉石中Fe2+(Ⅰ)和Fe2+(Ⅱ)分别是Fe2+(M1)和Fe2+(M2),Fe3+在八面体M1位.尖晶石中Fe2+(Ⅰ)、Fe2+(Ⅱ)和Fe2+(Ⅲ)是四面体位置(A)上的不同Fe2+,Fe3+在八面体B位

      Fig.  3.  Mössbauer spectra of typical minerals of the Langshan peridotite xenoliths in room temperature

      图  4  利用Mössbauer光谱和电子探针测定狼山橄榄岩捕虏体矿物中Fe3+/∑Fe比值比较(a)和依据Mössbauer光谱和电子探针测定Fe3+/∑Fe比值计算的ΔlgfO2(FMQ)值对比(b)

      ΔFMQ(Wood91)指示氧逸度计来自Wood et al.(1990)结合Nell and Wood(1991);ΔFMQ(Wood89+Frost91)指示氧逸度计来自Mattioli and Wood(1988)/Wood and Virgo(1989)结合Frost(1991);ΔFMQ(Wood89+O’Neill87)指示氧逸度计来自Mattioli and Wood(1988)/Wood and Virgo(1989)结合O’Neill(1987);ΔFMQ(Ball91)使用氧逸度计来自Ballhaus et al.(1991)

      Fig.  4.  Minerals Fe3+/ΣFe ratios calculated from EPMA analyses of Langshan peridotites plotted against Fe3+/ΣFe ratios of the same Minerals analyzed by Mössbauer spectroscopy (a). The comparison of ΔlgfO2(FMQ) was calculated based on Fe3+/∑Fe by EMPA and Mössbauer spectroscopy (b).

      图  5  不同氧逸度计获取的ΔFMQMöss-EMPA差值与ΔFe3+/∑FeMöss-EMPA在狼山橄榄岩矿物尖晶石(a)和单斜辉石和斜方辉石(b)差值的比较

      Fig.  5.  Comparison of ΔFMQMöss-EMPA and Fe3+/∑Fe Möss-EMPA in spinel(a)、clinopyroxene and orthopyroxene(b) by different oxygen geobarometer.

      图  6  狼山地区橄榄岩的氧逸度值与(a)全球典型构造地区产出橄榄岩氧逸度值对比和(b)华北克拉通地区产出橄榄岩依据探针数据计算氧逸度值比较;地幔橄榄岩的ΔlgfO2(FMQ)-Cr#(Sp)图解(c)

      图例同图 4;数据来源:俯冲环境(Wood and Virgo, 1989Brandon and Draper, 1996;Bénard et al., 2018);深海环境(Bryndzia and Wood, 1990);造山带橄榄岩地体(Woodland et al., 1992Woodland et al., 2006);大陆岩石圈地幔(Wood and Virgo, 1989Canil et al., 1990Ionov and Wood, 1992Canil et al., 1994);克拉通(McCammon and Kopylova, 2004Goncharov et al., 2012);华北克拉通(Zheng et al., 1998Zheng et al., 2001Zheng et al., 2005Zheng et al., 2007陈曦和郑建平,2009余淳梅,2009周媛婷等,2010

      Fig.  6.  Comparison of the fO2 of the peridotites from the Langshan area with those for other typical tectonic regions mantle peridotites (a) and (b) mantle xenoliths from North China Craton and (c) ΔlgfO2(FMQ)-temperature diagrams of Langshan mantle peridotites.

    • Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183
      Bénard, A., Woodland, A. B., Arculus, R. J., et al., 2018. Variation in Sub-Arc Mantle Oxygen Fugacity during Partial Melting Recorded in Refractory Peridotite Xenoliths from the West Bismarck Arc. Chemical Geology, 486: 16-30. https://doi.org/10.1016/j.chemgeo.2018.03.004
      Brandon, A. D., Draper, D. S., 1996. Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10): 1739-1749. https://doi.org/10.1016/0016-7037(96)00056-7
      Brey, G. P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites Ⅱ. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
      Bryndzia, L. T., Wood, B. J., 1990. Oxygen Thermobarometry of Abyssal Spinel Peridotites: The Redox State and C-O-H Volatile Composition of the Earth's Sub-Oceanic Upper Mantle. American Journal of Science, 290(10): 1093-1116. https://doi.org/10.2475/ajs.290.10.1093
      Canil, D., O'neill, H. S. C., 1996. Distribution of Ferric Iron in Some Upper-Mantle Assemblages. Journal of Petrology, 37(3): 609-635. https://doi.org/10.1093/petrology/37.3.609
      Canil, D., O'Neill, H. S. C., Pearson, D. G., et al., 1994. Ferric Iron in Peridotites and Mantle Oxidation States. Earth and Planetary Science Letters, 123(1-3): 205-220. https://doi.org/10.1016/0012-821X(94)90268-2
      Canil, D., Virgo, D., Scarfe, C. M., 1990. Oxidation State of Mantle Xenoliths from British Columbia, Canada. Contributions to Mineralogy and Petrology, 104(4): 453-462. https://doi.org/10.1007/BF01575622
      Chen, X., Zheng, J. P., 2009. Mineral Chemistry of Peridotite Xenoliths in Yangyuan Cenozoic Basalts: Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Earth Science, 34(1): 203-219 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.01.018
      Chen, Y. D., Pearson, N. J., O'Reilly, S. Y., et al., 1991. Applications of Olivine-Orthopyroxene-Spinel Oxygen Geobarometers to the Redox State of the Upper Mantle. Journal of Petrology, Special_Volume(2): 291-306. https://doi.org/10.1093/petrology/Special_Volume.2.291
      Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade(2011-2020)and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 1-35 (in Chinese with English abstract).
      Christie, D. M., Carmichael, I. S. E., Langmuir, C. H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821X(86)90195-0
      Cottrell, E., Lanzirotti, A., Mysen, B., et al., 2018. A Mössbauer-Based XANES Calibration for Hydrous Basalt Glasses Reveals Radiation-Induced Oxidation of Fe. American Mineralogist, 103(4): 489-501. https://doi.org/10.2138/am-2018-6268
      Dai, H. K., Zheng, J. P., 2019. Mantle Xenoliths and Host Basalts Record the Paleo-Asian Oceanic Materials in the Mantle Wedge Beneath Northwest North China Craton. Solid Earth Sciences, 4(4): 150-158. https://doi.org/10.1016/j.sesci.2019.09.001
      Dai, H. K., Zheng, J. P., Griffin, W. L., et al., 2020. Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 62(2): egaa079. https://doi.org/10.1093/petrology/egaa079
      Dai, H. K., Zheng, J. P., Xiong, Q., et al., 2019. Fertile Lithospheric Mantle Underlying Ancient Continental Crust Beneath the Northwestern North China Craton: Significant Effect from the Southward Subduction of the Paleo–Asian Ocean. GSA Bulletin, 131(1-2): 3-20. https://doi.org/10.1130/b31871.1
      Dai, L. D., Karato, S. I., 2014. Influence of Oxygen Fugacity on the Electrical Conductivity of Hydrous Olivine: Implications for the Mechanism of Conduction. Physics of the Earth and Planetary Interiors, 232: 57-60. https://doi.org/10.1016/j.pepi.2014.04.003
      Darby, B. J., Ritts, B. D., 2007. Mesozoic Structural Architecture of the Langshan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29: 2006-2016. https://doi.org/10.1016/j.jsg.2007.06.011
      Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle. Nature, 493(7431): 211-215. https://doi.org/10.1038/nature11731
      Davis, F. A., Cottrell, E., Birner, S. K., et al., 2017. Revisiting the Electron Microprobe Method of Spinel-Olivine-Orthopyroxene Oxybarometry Applied to Spinel Peridotitesk. American Mineralogist, 102(2): 421-435. https://doi.org/10.2138/am-2017-5823
      Dyar, M. D., Agresti, D. G., Schaefer, M. W., et al., 2006. Mössbauer Spectroscopy of Earth and Planetary Materials. Annual Review of Earth and Planetary Sciences, 34: 83-125. https://doi.org/10.1146/annurev.earth.34.031405.125049
      Dyar, M. D., McGuire, A. V., Ziegler, R. D., 1989. Redox Equilibria and Crystal Chemistry of Coexisting Minerals from Spinel Lherzolite Mantle Xenoliths. American Mineralogist, 74(9-10): 969-980.
      Fang, T. H., Ma, H. W., 1998. Ferric Iron Contents of Mantle Xenolith Minerals by Mössbauer Spectroscopy and Its Implications to Calculated Temperature Pressure and Oxygen Fugacity. Geoscience, 12(2): 197-203 (in Chinese with English abstract).
      Feng, F., Xu, Z. Y., Dong, X. J., et al., 2021. Chronology, Geochemistry and Hf Isotope of Granite Porphyry in Wenduermiao-Jining Area, Inner Mongolia and Its Geological Significance. Earth Science, 46(6): 1973-1992 (in Chinese with English abstract).
      Feng, J. Y., Xiao, W. J., Windley, B., et al., 2013. Field Geology, Geochronology and Geochemistry of Mafic-Ultramafic Rocks from Alxa, China: Implications for Late Permian Accretionary Tectonics in the Southern Altaids. Journal of Asian Earth Sciences, 78: 114-142. https://doi.org/10.1016/j.jseaes.2013.01.020
      Frost, B. R., 1991. Introduction to Oxygen Fugacity and Its Petrologic Importance. In: Lindsley, D. H., ed., Volume 25: Oxide Minerals: Petrologic and Magnetic Significance. Stony Brook, New York.
      Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
      Ghiorso, M. S., Evans, B. W., 2008. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the Fe-Ti Two-Oxide Geothermometer and Oxygen-Barometer. American Journal of Science, 308(9): 957-1039. https://doi.org/10.2475/09.2008.01
      Goncharov, A. G., Ionov, D. A., Doucet, L. S., et al., 2012. Thermal State, Oxygen Fugacity and C-O-H Fluid Speciation in Cratonic Lithospheric Mantle: New Data on Peridotite Xenoliths from the Udachnaya Kimberlite, Siberia. Earth and Planetary Science Letters, 357-358: 99-110. https://doi.org/10.1016/j.epsl.2012.09.016
      Hao, X. L., Li, Y. L., 2013. 57Fe Mössbauer Spectroscopy of Mineral Assemblages in Mantle Spinel Lherzolites from Cenozoic Alkali Basalt, Eastern China: Petrological Applications. Lithos, 156-159: 112-119. https://doi.org/10.1016/j.lithos.2012.10.016
      Ionov, D. A., Wood, B. J., 1992. The Oxidation State of Subcontinental Mantle: Oxygen Thermobarometry of Mantle Xenoliths from Central Asia. Contributions to Mineralogy and Petrology, 111(2): 179-193. https://doi.org/10.1007/BF00348950
      Kress, V. C., Carmichael, I. S. E., 1991. The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States. Contributions to Mineralogy and Petrology, 108(1-2): 82-92. https://doi.org/10.1007/BF00307328
      Kumar, A., Singh, M. R., Sarma, P. R., et al., 1989. Optimised Thickness of Diffusive Mössbauer Absorbers. Journal of Physics D: Applied Physics, 22(3): 465–466. https://doi.org/10.1088/0022-3727/22/3/015
      Li, J. P., Wang, J., 2002. Mantle Redox State Evolution in Eastern China and Its Implications. Acta Geologica Sinica - English Edition, 76(2): 238-248. https://doi.org/10.1111/j.1755-6724.2002.tb00089.x
      Li, J. P., Zhang, S., 2002. Redox State of Amphibole-Bearing Mantle Peridotite from Nüshan, Anhui Province in Eastern China and Its Implications. Science in China (Series D), 45(4): 348-357. https://doi.org/10.1360/02yd9036
      Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435-1458 (in Chinese with English abstract).
      Li, X. L., Tao, R. B., Li, Q. Y., et al., 2019. Microprobe Analysis of Ferric Iron in Garnet: The Flank Method and Case Application. Acta Petrologica Sinica, 35(4): 1058-1070 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.04.05
      Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Biotite Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 356-357: 105371. https://doi.org/10.1016/j.lithos.2020.105371
      Li, Z., Ying, Y. P., 1996. Mössbauer Spectroscopy of Minerals. Science Press, Beijing (in Chinese).
      Linnen, R. L., Pichavant, M., Holtz, F., et al., 1995. The Effect of fO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 ℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579-1588. https://doi.org/10.1016/0016-7037(95)00064-7
      Liu, C. Q., Li, H. P., Huang, Z. L., et al., 2001. A Review of Studies on Oxygen Fugacity of the Earth Mantle. Earth Science Frontiers, 8(3): 73-82 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.03.009
      Liu, J. L., Li, H. B., Wang, J., et al., 2021. Characteristics of Oxygen Fugacity of Mantle Peridotites in the Northern Xing'an-Mongolia Orogenic Belt. Acta Petrologica Sinica, 37(7): 2073-2085 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.07
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Luth, R. W., Canil, D., 1993. Ferric Iron in Mantle-Derived Pyroxenes and a New Oxybarometer for the Mantle. Contributions to Mineralogy and Petrology, 113(2): 236-248. https://doi.org/10.1007/BF00283231
      Mattioli, G. S., Wood, B. J., 1988. Magnetite Activities across the MgAl2O4-Fe3O4 Spinel Join, with Application to Thermobarometric Estimates of Upper Mantle Oxygen Fugacity. Contributions to Mineralogy and Petrology, 98(2): 148-162. https://doi.org/10.1007/BF00402108
      McCammon, C., Kopylova, M. G., 2004. A Redox Profile of the Slave Mantle and Oxygen Fugacity Control in the Cratonic Mantle. Contributions to Mineralogy and Petrology, 148(1): 55-68. https://doi.org/10.1007/s00410-004-0583-1
      McGuire, A. V., Dyar, M. D., Nielson, J. E., 1991. Metasomatic Oxidation of Upper Mantle Periodotite. Contributions to Mineralogy and Petrology, 109(2): 252-264. https://doi.org/10.1007/BF00306483
      McGuire, A. V., Dyar, M. D., Ward, K. A., 1989. Neglected Fe3+/Fe2+ Ratios: A Study of Fe3+ Content of Megacrysts from Alkali Basalts. Geology, 17(8): 687. https://doi.org/10.1130/0091-7613(1989)0170687: nffras>2.3.co;2 doi: 10.1130/0091-7613(1989)0170687:nffras>2.3.co;2
      Nell, J., Wood, B. J., 1991. High-Temperature Electrical Measurements and Thermodynamic Properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 Spinels. American Mineralogist, 76(3-4): 405-426.
      Nikitina, L. P., Goncharov, A. G., Saltykova, A. K., et al., 2010. The Redox State of the Continental Lithospheric Mantle of the Baikal-Mongolia Region. Geochemistry International, 48(1): 15-40. https://doi.org/10.1134/s0016702910010027
      O'Neill, H. S. C., 1987. The Quartz-Fayalite-Iron and Quartz-Fayalite- Magnetite Equilibria and the Free Energies of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4). American Mineralogist, 72: 67-75.
      Quintiliani, M., 2006. Fe2+ and Fe3+ Quantification by Different Approaches and fO2 Estimation for Albanian Cr-Spinels. American Mineralogist, 91(5-6): 907-916. https://doi.org/10.2138/am.2006.2000
      Sack, R. O., Carmichael, I. S. E., Rivers, M., et al., 1981. Ferric-Ferrous Equilibria in Natural Silicate Liquids at 1 Bar. Contributions to Mineralogy and Petrology, 75(4): 369-376. https://doi.org/10.1007/BF00374720
      Sobolev, V. N., McCammon, C. A., Taylor, L. A., et al., 1999. Precise Mössbauer Milliprobe Determination of Ferric Iron in Rock-Forming Minerals and Limitations of Electron Microprobe Analysis. American Mineralogist, 84(1-2): 78-85. https://doi.org/10.2138/am-1999-1-208
      Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth's Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679
      Sun, W. D., Wang, J. T., Zhang, L. P., et al., 2017. The Formation of Porphyry Copper Deposits. Acta Geochimica, 36(1): 9-15. https://doi.org/10.1007/s11631-016-0132-4
      Tao, R. B., Zhang, L. F., Liu, X., 2015. Oxygen Fugacity of Earth's Mantle and Deep Carbon Cycle in the Subduction Zone. Acta Petrologica Sinica, 31(7): 1879-1890 (in Chinese with English abstract).
      Wanamaker, B. J., Duba, A. G., 1992. The Thermoelectric Power (Seebeck Coefficient) of San Carlos Olivine as a Function of Oxygen Fugacity and Silica Activity. Transactions-American Geophysical Union, 73: 66.
      Wang, J., Hattori, K. H., Kilian, R., et al., 2007. Metasomatism of Sub-Arc Mantle Peridotites below Southernmost South America: Reduction of fO2 by Slab-Melt. Contributions to Mineralogy and Petrology, 153(5): 607-624. https://doi.org/10.1007/s00410-006-0166-4
      Wang, J., Hattori, K. H., Li, J. P., et al., 2008. Oxidation State of Paleozoic Subcontinental Lithospheric Mantle below the Pali Aike Volcanic Field in Southernmost Patagonia. Lithos, 105(1-2): 98-110. https://doi.org/10.1016/j.lithos.2008.02.009
      Wang, J., Hattori, K., Xie, Z. P., 2013. Oxidation State of Lithospheric Mantle along the Northeastern Margin of the North China Craton: Implications for Geodynamic Processes. International Geology Review, 55(11): 1418-1444. https://doi.org/10.1080/00206814.2013.780722
      Wang, J., Hattori, K., Xu, W. L., et al., 2012. Origin of Ultramafic Xenoliths in High-Mg Diorites from East-Central China Based on Their Oxidation State and Abundance of Platinum Group Elements. International Geology Review, 54(10): 1203-1218. https://doi.org/10.1080/00206814.2011.628206
      Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129-139. https://doi.org/10.1007/BF00372872
      Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
      Wood, B. J., Virgo, D., 1989. Upper Mantle Oxidation State: Ferric Iron Contents of Iherzolite Spinels by 57Fe Mössbauer Spectroscopy and Resultant Oxygen Fugacities. Geochimica et Cosmochimica Acta, 53(6): 1277-1291. https://doi.org/10.1016/0016-7037(89)90062-8
      Woodland, A. B., Kornprobst, J., Tabit, A., 2006. Ferric Iron in Orogenic Lherzolite Massifs and Controls of Oxygen Fugacity in the Upper Mantle. Lithos, 89(1-2): 222-241. https://doi.org/10.1016/j.lithos.2005.12.014
      Woodland, A. B., Kornprobst, J., Wood, B. J., 1992. Oxygen Thermobarometry of Orogenic Lherzolite Massifs. Journal of Petrology, 33(1): 203-230. https://doi.org/10.1093/petrology/33.1.203
      Woodland, A. B., Peltonen, P., 1998. Ferric/Ferrous Iron Contents of Garnet and Clinopyroxene and Calculated Oxygen Fugacities of Peridotite Xenoliths from the Eastern Finland Kimberlite Province. International Kimberlite Conference, Cape Town.
      Wu, D., Liu, Y. S., Chen, C. F., et al., 2017. In-Situ Trace Element and Sr Isotopic Compositions of Mantle Xenoliths Constrain Two-Stage Metasomatism Beneath the Northern North China Craton. Lithos, 288-289: 338-351. https://doi.org/10.1016/j.lithos.2017.07.018
      Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Yang, Q. F., Wang, J., Hattori, K. H., et al., 2011. Redox State of the Lithospheric Mantle Beneath Huinan-Jingyu Area, Southern Jilin Province, China. Acta Petrologica Sinica, 27(6): 1797-1809 (in Chinese with English abstract).
      Ye, C. Y., Ying, J. F., Tang, Y. J., et al., 2021. Oxygen Fugacity Evolution of the Mantle Lithosphere Beneath the North China Craton. International Geology Review, 1-16. https://doi.org/10.1080/00206814.2021.2015630
      Yu, C. M., 2009. Ages of Peridotitic Xenoliths from the Central and Eastern Areas of North China Craton and Mantle Heterogeneity (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhang, B. F., 1991. Mössbauer Spectroscopy. Tianjin University Publishing House, Tianjin (in Chinese).
      Zhang, C., Almeev, R. R., Hughes, E. C., et al., 2018. Electron Microprobe Technique for the Determination of Iron Oxidation State in Silicate Glasses. American Mineralogist, 103(9): 1445-1454. https://doi.org/10.2138/am-2018-6437
      Zhang, F. L., Yi, F., Chen, Y. L., et al., 1997. Determination of the Optimum Thickness of an Absorber in Mossbauer Spectroscopy. Journal of Wuhan University (Natural Science Edition), 43(3): 348-352 (in Chinese with English abstract).
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2007. Mechanism and Timing of Lithospheric Modification and Replacement Beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2005. Late Mesozoic-Eocene Mantle Replacement Beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 47(5): 457-472. https://doi.org/10.2747/0020-6814.47.5.457
      Zheng, J. P., O'reilly, S. Y., Griffin, W. L., et al., 1998. Nature and Evolution of Cenozoic Lithospheric Mantle Beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 40(6): 471-499. https://doi.org/10.1080/00206819809465220
      Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 2001. Relict Refractory Mantle Beneath the Eastern North China Block: Significance for Lithosphere Evolution. Lithos, 57(1): 43-66. https://doi.org/10.1016/S0024-4937(00)00073-6
      Zhou, Y. T., Zheng, J. P., Yu, C. M., et al., 2010. Peridotite Xenoliths in Jining Cenozoic Basalts: Mineral-Chemistry and Significance for Lithospheric Mantle Evolution Beneath the North China Craton. Acta Perologica et Mineralogica, 29(3): 243-257 (in Chinese with English abstract).
      陈曦, 郑建平, 2009. 河北阳原新生代玄武岩中橄榄岩捕虏体矿物化学: 华北岩石圈地幔演化. 地球科学, 34(1): 203-219. http://www.earth-science.net/article/id/1798
      陈意, 胡兆初, 贾丽辉, 等, 2021. 微束分析测试技术十年(2011—2020)进展与展望. 矿物岩石地球化学通报, 40(1): 1-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm
      方同辉, 马鸿文, 1998. 辽宁宽甸地幔矿物三价铁的穆斯堡尔谱测定及意义. 现代地质, 12(2): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ802.007.htm
      冯帆, 徐仲元, 董晓杰, 等, 2021. 内蒙古温都尔庙‒集宁地区花岗斑岩年代学、地球化学、Hf同位素特征及其地质意义. 地球科学, 46(6): 1973-1992. doi: 10.3799/dqkx.2020.007
      李守奎, 刘学龙, 卢映祥, 等, 2022. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435-1458. doi: 10.3799/dqkx.2021.079
      李小犁, 陶仁彪, 李清云, 等, 2019. 石榴子石Fe3+含量电子探针原位分析: Flank Method方法的实例应用. 岩石学报, 35(4): 1058-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904005.htm
      李哲, 应育浦, 1996. 矿物穆斯堡尔谱学. 北京: 科学出版社.
      刘丛强, 李和平, 黄智龙, 等, 2001. 地幔氧逸度的研究进展. 地学前缘, 8(3): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103010.htm
      刘金霖, 李怀滨, 王建, 等, 2021. 兴蒙造山带北部岩石圈地幔橄榄岩氧逸度特征研究. 岩石学报, 37(7): 2073-2085. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107007.htm
      陶仁彪, 张立飞, 刘曦, 2015. 地幔氧逸度与俯冲带深部碳循环. 岩石学报, 31(7): 1879-1890. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507006.htm
      杨清福, 王建, Hattori, K. H., 等, 2011. 吉林南部辉南‒靖宇地区岩石圈地幔氧化‒还原状态及研究意义. 岩石学报, 27(6): 1797-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106019.htm
      余淳梅, 2009. 华北克拉通中东部典型地区橄榄岩捕虏体年龄及地幔不均一性(博士学位论文). 武汉: 中国地质大学.
      张宝峰, 1991. 穆斯堡尔谱学. 天津: 天津大学出版社,
      张富良, 易凡, 陈义龙, 等, 1997. 穆斯堡尔谱学中样品最佳厚度的确定. 武汉大学学报(自然科学版), 43(3): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY703.012.htm
      周媛婷, 郑建平, 余淳梅, 等, 2010. 内蒙古集宁新生代玄武岩中橄榄岩包体矿物化学特征及其地幔演化意义. 岩石矿物学杂志, 29(3): 243-257. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201003002.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  819
    • HTML全文浏览量:  556
    • PDF下载量:  82
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-02
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回