Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section
-
摘要: 震旦系灯影组核形石白云岩作为典型的前寒武纪微生物碳酸盐岩,是我国古老深层油气勘探的岩石类型之一.核形石成因模式的研究,对研究古水体、恢复古环境及其成储模式有重要指导意义.根据核形石结构特征和成因机制将灯影组核形石分为6类,结合岩石学、沉积学和地球化学等研究手段,开展了四川盆地北缘核形石分布特征和沉积过程的综合研究.结果显示:灯影组二段核形石发育于潮下带-潮间坪环境下,水动力和微生物条件的差异影响着微生物生长、自身钙化作用、微生物膜粘结和捕获作用、化学沉淀作用4种核形石纹层形成机理;进一步体现在水动力条件控制着核形石纹层发育厚度、形态特征和伴生岩石类型,而微生物活动习性控制影响着核形石主微量、稀土元素分异特征:贫藻纹层较富藻纹层有较高的Fe/Mn比、实体藻较非实体藻有较高Cu/Zn比,纹层稀土元素富集度一般低于核心.综上所述,灯二段核形石的形成存在4种机理,且它们被海平面变化下的微生物和水动力条件联合控制.Abstract: As a typical Precambrian microbial carbonate rock, the Sinian Dengying Formation oncoidal dolostone is one of the rock types of ancient deep oil and gas exploration in China. The study on the genetic model of oncoids has important guiding significance for the restoration of paleoenvironment, the study of paleo-water and its reservoir-forming model. In this paper, the oncoid of Dengying Formation is divided into six types based on its structural characteristics and genetic mechanism. Combined with petrology, sedimentology, geochemistry and other research methods, a comprehensive study of the distribution characteristics and depositional process of oncoids in the northern margin of the Sichuan basin has been carried out . The results show that the second member of Dengying Formation sedimented in the environment of subtidal flat and intertidal flat. The differences of hydrodynamic and microbial conditions affect the four kinds of formation mechanisms of oncoidal laminations: microbial growth, microbial calcification, bonding and capturing of microbial biofilm, and chemical precipitation. On the other hand, hydrodynamic conditions control the development thickness of laminations, morphological characteristics and associated rock types of the oncoids. The microbial activity habits affects the differentiation characteristics of the main trace and rare earth elements of the oncoids. The Fe/Mn ratio of the pooralgae lamina is higher than that of the rich algae lamina; the Cu/Zn ratio of the solid algae is higher than that of the non-solid algae; and the enrichment of rare earth elements in the lamina is generally lower than that the oncoidal nuclei. In summary, there are four formation mechanisms for oncoids in the second member of Dengying Formation, and they are jointly controlled by microbial and hydrodynamic conditions under sea level change.
-
Key words:
- oncoid /
- microorganism /
- hydrodynamics /
- Dengying Formation /
- Liuwan Section /
- petrology
-
图 9 核形石类型与水动力、生物活动关系(据李熙哲等,2000修改)
Fig. 9. The relationship between oncoid types and hydrodynamic and biological activities(modified from Li et al., 2000)
表 1 典型核形石分类依据及分类方式
Table 1. Classification basis and classification method of typical oncoids
主要依据 具体依据 参考文献 分类内容 几何形态特征 整体形态 李熙哲等(2000) 似球状、棒状、帽状、不规则状 纹层形态 Kapila(1977) Ⅰ: Lm, Lo、Ⅱ: Lm, Lo, Lg、Ⅲ: Lm, Lo、Ⅳ-C: 缺少纹层,藻网孔包含其他生物壳、Ⅳ-S: 缺少纹层,藻网孔包含其他核形石(Lm:微晶纹层;Lo:含生物碎屑纹层;Lg:凝块纹层) 核心形态 李熙哲等(2000) 简单核形石、复合核形石 水动力成因特征 水动力 贺自爱(1982) 动态型、静态型、动静交替型 微生物成因(组分)特征 微生物种属 Flügel(2010) 泥晶核形石、绵层类核形石、孔层类核形石、有孔虫核形石、复合核形石 代表性组分 边立曾和黄志诚(1988) 骨骼核形石、非骨骼核形石 结构、成因和形态等多因素结合 形态大小+内外部构造 杜汝霖(1992) 同心纹层构造的核形石、具放射状构造的核形石、具同心纹层和放射状构造的核形石 结构特征+成因 杨仁超等(2011) 泥晶纹层核形石、富屑纹层核形石、藻(菌)核形石、复合纹层核形石、放射状核形石、凝块核形石 表 2 柳湾剖面灯影组核形石分类方案(据Kapila, 1977;李熙哲等, 2000修改)
Table 2. The classification scheme of the Dengying Formation oncoids in Liuwan Section (modified after Kapila, 1977; Li et al., 2000)
纹层内组分类型 组分具体特征 纹层形成机制 生物环境 水体能量 凝块纹层 / 捕获和粘结作用 富藻 低能环境 微生物纹层 生物碎屑纹层 丛状藻体纹层 微生物和藻类生长作用 微晶纹层 波状泥晶纹层 略高能环境 致密暗线纹层 强烈而持续高能环境 致密亮晶纹层 化学沉淀作用 贫藻 波状亮晶纹层 低能环境 表 3 柳湾剖面部分核形石样品数据处理结果
Table 3. Data processing results of some oncoidal samples in Liuwan section
类型 Fe含量
(10-6)Mn含量
(10-6)Sr含量(10-6) Cu/Zn Fe/Mn Eu/Eu* Dy异常
指数Yb异常
指数丛状藻体纹层 79.45 28.23 45.97 1.48 2.81 2.23 174.03 69.20 49.93 2.70 2.51 0.81 1.21 185.15 93.53 55.43 1.12 1.98 1.30 0.85 1.31 99.54 32.17 46.47 0.80 3.09 1.87 凝块纹层 283.32 44.40 47.93 0.27 6.38 0.97 0.60 178.76 62.91 47.04 0.48 2.84 2.41 240.70 59.40 56.71 0.17 4.05 1.27 0.33 267.36 113.74 43.48 0.72 2.35 0.41 波状泥晶纹层(泥晶) 203.85 42.81 48.28 0.67 4.76 1.60 0.37 315.86 65.12 47.25 1.49 4.85 2.52 0.83 256.95 57.49 42.84 0.14 4.38 0.79 致密暗色纹层 129.20 80.75 34.64 0.22 1.60 0.51 0.37 0.87 158.71 75.68 36.63 0.29 2.10 2.22 131.70 102.83 38.55 0.39 1.28 0.82 0.65 148.09 100.93 39.68 0.32 1.47 1.70 0.16 107.75 45.77 28.85 0.08 3.73 0.80 230.33 102.94 47.95 0.07 2.24 0.62 1.11 259.46 68.72 40.80 0.29 3.78 0.58 182.80 100.21 41.62 0.23 1.82 0.80 波状或致密亮晶纹层(亮晶) 475.80 70.03 42.21 1.17 6.79 0.81 0.72 302.48 75.87 48.44 0.77 3.99 1.41 0.36 2.31 144.01 43.51 31.79 0.33 3.31 0.33 凝块核心 82.27 81.33 39.38 0.46 4.84 1.75 0.47 1.32 525.77 190.99 37.19 0.13 2.75 0.88 后期流体 29.58 232.23 25.74 0.13 0.13 2.56 0.10 17.78 154.80 26.40 0.07 0.11 2.44 0.64 1.53 -
[1] Adachi, M., Yamamoto, K., Suigiski, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8 [2] Aitken, J. D., 1967. Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of SouthWestern Alberta. SEPM Journal of Sedimentary Research, 37(4): 1163-1178. https://doi.org/10.1306/74d7185c-2b21-11d7-8648000102c1865d [3] Bai, Y., Luo, P., Liu, W., et al., 2019. Characteristics and Origin of Oncolite from Changping Formation in the Series 2 of Cambrian in Western Beijing. Geoscience, 33(3): 587-597(in Chinese with English abstract). [4] Bian, L. Z., Huang, Z. C., 1988. On Classification and Paleoecological Significance of Oncolite and Features of Non-skeletal Oncolite in Ordovician, Anhui, China. Acta Palaeontologica Sinica, 27(5): 544-552, 666(in Chinese with English abstract). [5] Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-p [6] Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2020. Paired δ13Ccarb-δ13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science, 31(2): 342-353. https://doi.org/10.1007/s12583-018-0886-1 [7] Du, R. L., 1992. Precambrian Paleontology and Geoscience. Geological Publishing House, Beijing(in Chinese). [8] Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Science & Business Media, Berlin, 289-563. [9] Glass, S. W., Wilkinson, B. H., 1980. The Peterson Limestone—Early Cretaceous Lacustrine Carbonate Deposition in Western Wyoming and Southeastern Idaho. Sedimentary Geology, 27(2): 143-160. https://doi.org/10.1016/0037-0738(80)90034-2 [10] He, Z. A., 1982. Classification and Origin of Oncolite. Oil & Gas Geology, 3(1): 41-48, 99 (in Chinese with English abstract). [11] Heim, A., 1916. Monographie der Churfrsten Mattstock Gruppe (3 Teil). Lithogenesis Beitr Geol Karte, Schweiz NF 20, 369-537. [12] Huang, Y. R., 2019. Study of Mineralization Mechanism of Carbonates and Sulfates Mediated by Marine Microbes(Dissertation). University of Science and Technology of China, Hefei, 3-13(in Chinese with English abstract). [13] Jiang, M., Hu, X. W., Li, S., et al., 2014. Influence of Pb2+ on the Extracellular Polymeric Substances(EPS) of Bio-Membranes. Journal of Safety and Environment, 14(4): 237-241 (in Chinese with English abstract). [14] Kapila, D., 1977. Classification of Oncoids from the Upper Jurassic Carbonates of the French Jura. Sedimentary Geology, 18(4): 337-353. https://doi.org/10.1016/0037-0738(77)90058-6 [15] Li, S., 2014. The Interaction Influence between Biofilm and Its Extracellular Polymers by Cu2+(Dissertation). Kunming University of Science and Technology, Kunming, 29-58(in Chinese with English abstract). [16] Li, W., Liu, J. J., Deng, S. H., et al., 2015. The Nature and Role of Late Sinian-Early Cambrian Tectonic Movement in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 36(5): 546-556, 563 (in Chinese with English abstract). [17] Li, X. Z., Guan, S. R., Xie, Q. B., et al., 2000. The Oncoids Genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin. Acta Petrologica Sinica, 16(2): 261-268 (in Chinese with English abstract). [18] Li, Y. F., Li, F., 2022. How did Reefs Evolve During the Precambrian-Cambrian Transition? Earth Science, 47(10): 3853-3855(in Chinese with English abstract). [19] Liang, T. Y., Liu, J. D., Li, M. M., et al., 2021. Discovery of Oncolitic in the Upper Permian Linxi Formation in Central Great Xing'an Mountains and Its Geological Significances. Geological Review, 67(3): 593-611 (in Chinese with English abstract). [20] Liu, J. J., Li, W., Zhang, B. M., et al., 2015. Sedimentary Palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography, 17(6): 735-753 (in Chinese with English abstract). [21] Logan, B. W., Rezak, R., Ginsburg, R. N., 1964. Classification and Environmental Significance of Algal Stromatolites. The Journal of Geology, 72(1): 68-83. https://doi.org/10.1086/626965 [22] Mei, M. X., 2007. Revised Classification of Microbial Carbonates: Complementing the Classification of Limestones. Earth Science Frontiers, 14(5): 222-234 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X [23] Riding, R., 2000. Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms. Sedimentology, 47(Suppl. 1): 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x [24] Sverjensky, D. A., 1984. Prediction of Gibbs Free Energies of Calcite-Type Carbonates and the Equilibrium Distribution of Trace Elements between Carbonates and Aqueous Solutions. Geochimica et Cosmochimica Acta, 48(5): 1127-1134. https://doi.org/10.1016/0016-7037(84)90203-5 [25] Tang, X., Liu, S. G., Song, J. M., et al., 2018. Characteristics and Environmental Significance of the Sinian Dengying Formation Oncoids in the Northeastern Sichuan Basin. Acta Sedimentologica Sinica, 36(2): 232-242(in Chinese with English abstract). [26] Wang, W. Z., Wen, L., Yao, J., et al., 2019. Sequence Classification and Discovery of Multi-Stage Platform Margin Belts of Sinian Dengying Formation, Sichuan Basin. Natural Gas Exploration and Development, 42(4): 46-54(in Chinese with English abstract). [27] Wolf, K. H., 1965. Petrogenesis and Palaeoenvironment of Devonian Algal Limestones of New South Wales. Sedimentology, 4(1-2): 113-178. https://doi.org/10.1111/j.1365-3091.1965.tb01285.x [28] Xu, Y. T., 1997. Genetic Geochemistry for the Bedded Silicalite in the Late Permian Dalong Formation and Its Sedimehtary Setting in Southeastern Hubei. Journal of Guilin Institute of Technology, 17(3): 204-212(in Chinese with English abstract). [29] Xu, Z. H., Lan, C. J., Ma, X. L., et al., 2020. Sedimentary Models and Physical Properties of Mound-Shoal Complex Reservoirs in Sinian Dengying Formation, Sichuan Basin. Earth Science, 45(4): 1281-1294(in Chinese with English abstract). [30] Yang, R. C., Fan, A. P., Han, Z. Z., et al., 2011. Status and Prospect of Studies on Oncoid. Advances in Earth Science, 26(5): 465-474(in Chinese with English abstract). [31] Yang, R. Q., Yang, F. L., Zhou, X. F., et al., 2019. Paleogeographic Evolution of the Dengying Formation in Hannan-Northeastern Sichuan Basin: Sedimentary Evidence of the Extensional Tectonic Setting for the Northwest Margin of the Yangtze Block in the Late Sinian. Acta Sedimentologica Sinica, 37(1): 189-199(in Chinese with English abstract). [32] Zhang, Q. H., Su, J. H., Wan, L., et al., 2021. Analysis of Origin and Existing Problems of Siliceous Minerals in Marine Carbonate Rocks in Sichuan Basin. Advances in Geosciences, 11 (6): 869-878(in Chinese with English abstract). doi: 10.12677/AG.2021.116081 [33] Zhang, X. Y., 2016. The Calcification of Cyanobacteria from Microbial Carbonates in the Cambrian, Western Henan (Dissertation). Henan Polytechnic University, Jiaozuo, 51-71(in Chinese with English abstract). [34] Zhang, Y. F., Tang, Y., Tang, H. M., et al., 2022. Fabric Characteristics of Oncoids from Yangba Section, Ediacaran Dengying Formation, Northwestern Sichuan. Acta Sedimentologica Sinica, 40(5): 1302-1312(in Chinese with English abstract). [35] 白莹, 罗平, 刘伟, 等, 2019. 北京西郊丁家滩剖面寒武系第二统昌平组核形石特征及成因. 现代地质, 33(3): 587-597. doi: 10.19657/j.geoscience.1000-8527.2019.03.11 [36] 边立曾, 黄志诚, 1988. 核形石的分类及生态研究. 古生物学报, 27(5): 544-552, 666. doi: 10.19800/j.cnki.aps.1988.05.003 [37] 杜汝霖, 1992. 前寒武纪古生物学及地史学. 北京: 地质出版社. [38] 贺自爱, 1982. 藻灰结核分类及其成因. 石油与天然气地质, 3(1): 41-48, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198201005.htm [39] 黄亚蓉, 2019. 海洋微生物调控的碳酸盐和硫酸盐的矿化机制研究(博士学位论文). 合肥: 中国科学技术大学, 3-13. [40] 江孟, 胡学伟, 李姝, 等, 2014. Pb2+对生物膜胞外聚合物(EPS)的影响研究. 安全与环境学报, 14(4): 237-241. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201404051.htm [41] 李姝, 2014. Cu2+对生物膜及其胞外多聚物的作用规律研究(硕士学位论文). 昆明: 昆明理工大学, 29-58. [42] 李伟, 刘静江, 邓胜徽, 等, 2015. 四川盆地及邻区震旦纪末-寒武纪早期构造运动性质与作用. 石油学报, 36(5): 546-556, 563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505003.htm [43] 李熙哲, 管守锐, 谢庆宾, 等, 2000. 平邑盆地下第三系官中段核形石成因分析. 岩石学报, 16(2): 261-268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002015.htm [44] 李杨凡, 李飞, 2022. 前寒武-寒武纪重大转折期生物礁是如何演化的? 地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838 [45] 梁天意, 刘敬党, 李猛猛, 等, 2021. 大兴安岭中段上二叠统林西组核形石的发现及其地质意义. 地质论评, 67(3): 593-611. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202103003.htm [46] 刘静江, 李伟, 张宝民, 等, 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201506002.htm [47] 梅冥相, 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200705024.htm [48] 唐玄, 刘树根, 宋金民, 等, 2018. 四川盆地东北缘灯影组核形石特征及环境意义. 沉积学报, 36(2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201802002.htm [49] 王文之, 文龙, 姚军, 等, 2019. 四川盆地震旦系灯影组层序划分及多期台缘带的发现. 天然气勘探与开发, 42(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201904010.htm [50] 徐跃通, 1997. 鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境. 桂林工学院学报, 17(3): 204-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX703.001.htm [51] 徐哲航, 兰才俊, 马肖琳, 等, 2020. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征. 地球科学, 45(4): 1281-1294. doi: 10.3799/dqkx.2019.138 [52] 杨仁超, 樊爱萍, 韩作振, 等, 2011. 核形石研究现状与展望. 地球科学进展, 26(5): 465-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201105001.htm [53] 杨瑞青, 杨风丽, 周晓峰, 等, 2019. 汉南—川东北灯影组古地理演化: 晚震旦世扬子西北缘拉张背景的沉积学证据. 沉积学报, 37(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901019.htm [54] 张倩慧, 苏进红, 万漓, 等, 2021. 四川盆地海相碳酸盐岩中硅质含有物成因及存在问题分析. 地球科学前沿, (6): 869-878. [55] 张喜洋, 2016. 豫西寒武纪微生物碳酸盐岩中蓝细菌的钙化作用(硕士学位论文). 焦作: 河南理工大学, 51-71. [56] 张云峰, 唐雨, 唐洪明, 等, 2022. 川西北杨坝剖面埃迪卡拉系灯影组核形石组构特征. 沉积学报, 40(5): 1302-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202205010.htm -