• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    堰塞体溃决流量与溃口形态演化数值模拟

    梅胜尧 钟启明 陈生水 单熠博

    梅胜尧, 钟启明, 陈生水, 单熠博, 2023. 堰塞体溃决流量与溃口形态演化数值模拟. 地球科学, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360
    引用本文: 梅胜尧, 钟启明, 陈生水, 单熠博, 2023. 堰塞体溃决流量与溃口形态演化数值模拟. 地球科学, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360
    Mei Shengyao, Zhong Qiming, Chen Shengshui, Shan Yibo, 2023. Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching. Earth Science, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360
    Citation: Mei Shengyao, Zhong Qiming, Chen Shengshui, Shan Yibo, 2023. Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching. Earth Science, 48(4): 1634-1648. doi: 10.3799/dqkx.2022.360

    堰塞体溃决流量与溃口形态演化数值模拟

    doi: 10.3799/dqkx.2022.360
    基金项目: 

    国家自然科学基金联合基金重点项目 U2040221

    国家重点研发计划课题 2018YFC1508604

    中央级公益性科研院所基本科研业务费专项资金 Y721006

    详细信息
      作者简介:

      梅胜尧(1995—),男,博士研究生,主要从事堰塞湖溃决灾害预测理论与防控方面研究. ORCID:0000-0002-0107-4998. E-mail:symei@nhri.cn

      通讯作者:

      钟启明, E-mail: qmzhong@nhri.cn

    • 中图分类号: P694

    Numerical Simulation of Breach Hydrograph and Morphology Evolution during Landslide Dam Breaching

    • 摘要: 堰塞体是山区常见的地质灾害,一旦发生溃决,将对下游人民的生命财产安全构成严重威胁.在应急响应时需要对堰塞体溃口流量过程和溃口形态演化进行快速准确的预测,但目前的溃坝数学模型大多未充分考虑堰塞体的地貌学特征,无法合理反映复杂地形下堰塞体的溃决过程.采用雷诺平均Navier-Stokes方程和湍流重正化群k-ε模型相结合的数值方法,对复杂地形下的溃决水流进行模拟,并利用可考虑推移质和悬移质输移的冲蚀公式模拟溃口冲蚀过程,选择拥有详细勘测资料和水文数据的“11·03”白格堰塞体溃决案例进行反演分析.对比计算和实测的溃口流量过程线、溃决过程水动力学特征及最终溃口断面形态发现,模拟结果可较好地反映堰塞体的实际溃决过程,验证了模型的合理性.

       

    • 图  1  我国典型堰塞体溃决案例

      a.唐家山堰塞体;b.“11·03”白格堰塞体

      Fig.  1.  Typical failure cases of landslide dams in China

      图  2  漫顶溃决过程示意图

      Fig.  2.  Schematic diagram of overtopping breach process

      图  3  唐家山堰塞体溃口实测等高线及溃决前后纵断面形态示意图

      Fig.  3.  The measured contour line of Tangjiashan landslide dam breach and the schematic diagram of longitudinal section before and after the breach

      图  4  “11·03”白格堰塞体溃口实测等高线及溃决前后纵断面形态示意图

      Fig.  4.  The measured contour line of "11·03" Baige landslide dam breach and the schematic diagram of longitudinal section before and after the breach

      图  5  坝料冲蚀模型示意图

      a.推移质与悬移质转化;b.溃口物质运动模式转化分析(局部放大图)

      Fig.  5.  Schematic representation of dam material erosion model

      图  6  典型推移质公式比较

      Fig.  6.  Comparison of typical bed load formulas

      图  7  白格堰塞体地理位置

      Fig.  7.  Geographical location of Baige landslide dam

      图  8  “11·03”白格堰塞体区域图像

      a.现场滑坡区域;b.堰塞体形态;c.滑坡区域三维示意图

      Fig.  8.  Regional images of "11·03" Baige landslide dam

      图  9  “11·03”白格堰塞体断面示意图

      a.横河向断面; b.顺河向断面

      Fig.  9.  Section diagrams of profiles of "11·03" Baige landslide dam

      图  10  数值模型示意图

      a.堰塞体模型; b.堰塞体监测

      Fig.  10.  Schematic diagrams of numerical model

      图  11  “11·03”白格堰塞体溃口流量过程计算值与实测值对比

      Fig.  11.  Comparison of calculated and measured breach hydrographs of "11·03" Baige landslide dam

      图  12  现场实测与数值模拟的“11·03”白格堰塞体溃口形态对比

      a.泄流槽过流; b.溯源冲蚀; c.沿程侵蚀; d.溃口稳定

      Fig.  12.  Comparison of calculated and measured breach morphologies of "11·03" Baige landslide dam

      图  13  不同监测点自由液面变化(a)、水深变化(b)和平均流速变化(c)

      Fig.  13.  Variations of free surface elevation (a), flow depth (b) and flow velocity (c) at different monitoring points

      图  14  “11·03”白格堰塞体溃决后实测断面位置

      Fig.  14.  The locations of measured cross sections after the breach of "11·03" Baige landslide dam

      图  15  四处典型断面最终溃口形态计算值与实测值比较

      a.断面1-1';b.断面2-2';c.断面3-3';d.断面4-4'

      Fig.  15.  Comparison of calculated and measured final breach topographies at four typical cross sections

      图  16  堰塞体溃决后纵断面计算与实测形态对比

      Fig.  16.  Comparison of calculated and measured topographies in the longitudinal section after landslide dam breaching

      表  1  数学模型输入参数

      Table  1.   Input parameters of numerical model

      参数 d50 (mm) ρs (kg/m3) α K φ (°)
      输入值 8 2 650 0.018 8 38
      下载: 导出CSV
    • [1] ASCE/EWRI Task Committee on Dam/Levee Breaching, 2011. Earthen Embankment Breaching. Journal of Hydraulic Engineering, 137(12): 1549-1564. https://doi.org/10.1061/(asce)hy.1943-7900.0000498
      [2] Bagnold, R. A., 1966. An Approach to the Sediment Transport Problem from General Physics. U. S. Geological Survey Professional Paper, 422(1): 231-291.
      [3] Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y
      [4] Cai, Y. J., Luan, Y. S., Yang, Q. G., et al., 2019. Study on Structural Morphology and Dam-Break Characteristics of Baige Barrier Dam on Jinsha River. Yangtze River, 50(3): 15-22(in Chinese with English abstract).
      [5] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract).
      [6] Chang, D. S., Zhang, L. M., 2010. Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Natural Hazards and Earth System Sciences, 10(4): 933-946. https://doi.org/10.5194/nhess-10-933-2010
      [7] Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603
      [8] Chen, S. S., Chen, Z. Y., Zhong, Q. M., 2019. Progresses of Studies on Failure Mechanism and Numerical Dam Failure Model of Earth-Rockfill Dam and Landslide Dam. Water Resources and Hydropower Engineering, 50(8): 27-36(in Chinese with English abstract).
      [9] Chen, Z. Y., Ma, L. Q., Yu, S., et al., 2015. Back Analysis of the Draining Process of the Tangjiashan Barrier Lake. Journal of Hydraulic Engineering, 141(4): 05014011. https://doi.org/10.1061/(asce)hy.1943-7900.0000965
      [10] Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)1001054: tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)1001054:tfafon>2.3.co;2
      [11] Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626
      [12] Fan, X. M., Zhan, W. W., Dong, X. J., et al., 2018. Analyzing Successive Landslide Dam Formation by Different Triggering Mechanisms: The Case of the Tangjiawan Landslide, Sichuan, China. Engineering Geology, 243: 128-144. https://doi.org/10.1016/j.enggeo.2018.06.016
      [13] Guan, M. F., Wright, N. G., Andrew Sleigh, P., 2014. Multimode Morphodynamic Model for Sediment-Laden Flows and Geomorphic Impacts. Journal of Hydraulic Engineering, 141(6): 04015006. https://doi.org/10.1061/(asce)hy.1943-7900.0000997
      [14] Jiang, X. G., Wei, Y. W., 2020. Erosion Characteristics of Outburst Floods on Channel Beds under the Conditions of Different Natural Dam Downstream Slope Angles. Landslides, 17(8): 1823-1834. https://doi.org/10.1007/s10346-020-01381-y
      [15] Kaurav, R., Mohapatra, P. K., 2019. Studying the Peak Discharge through a Planar Dam Breach. Journal of Hydraulic Engineering, 145(6): 06019010. https://doi.org/10.1061/(asce)hy.1943-7900.0001613
      [16] Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract).
      [17] Liang, C. F., Abbasi, S., Pourshahbaz, H., et al., 2019. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water, 11(2): 235. https://doi.org/10.3390/w11020235
      [18] Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake-Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011
      [19] Marsooli, R., Wu, W. M., 2015. Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds. Journal of Hydraulic Engineering, 141(1): 04014066. https://doi.org/10.1061/(asce)hy.1943-7900.0000947
      [20] Mastbergen, D. R., van den Berg, J. H., 2003. Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
      [21] Mei, S. Y., Chen, S. S., Zhong, Q. M., et al., 2021. Effects of Grain Size Distribution on Landslide Dam Breaching—Insights from Recent Cases in China. Frontiers in Earth Science, 9: 658578. https://doi.org/10.3389/feart.2021.658578
      [22] Meyer-Peter, E., Muller, R., 1948. Formulas for Bed-Load Transport. Process of Congress IAHR, 6(2): 39-64.
      [23] Movahedi, A., Kavianpour, M. R., Yamini, O. A., 2018. Evaluation and Modeling Scouring and Sedimentation around Downstream of Large Dams. Environmental Earth Sciences, 77(8): 320. https://doi.org/10.1007/s12665-018-7487-2
      [24] Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y
      [25] Qian, N., 1980. A Comparison of the Bed Load Formulas. Journal of Hydraulic Engineering, 11(4): 1-11(in Chinese with English abstract).
      [26] Roseberry, J. C., Schmeeckle, M. W., Furbish, D. J., 2012. A Probabilistic Description of the Bed Load Sediment Flux: 2. Particle Activity and Motions. Journal of Geophysical Research: Earth Surface, 117(F3): F03032. https://doi.org/10.1029/2012jf002353
      [27] Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385-401. https://doi.org/10.2166/hydro.2020.091
      [28] Shi, Z. M., Ma, X. L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790(in Chinese with English abstract).
      [29] van Rijn, L. C., 1984. Sediment Transport, Part Ⅰ: Bed Load Transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(asce)0733-9429(1984)110: 10(1431) doi: 10.1061/(asce)0733-9429(1984)110:10(1431
      [30] van Rijn, L. C., 2020. Erodibility of Mud-Sand Bed Mixtures. Journal of Hydraulic Engineering, 146(1): 04019050. https://doi.org/10.1061/(asce)hy.1943-7900.0001677
      [31] Walder, J. S., Iverson, R. M., Godt, J. W., et al., 2015. Controls on the Breach Geometry and Flood Hydrograph during Overtopping of Noncohesive Earthen Dams. Water Resources Research, 51(8): 6701-6724. https://doi.org/10.1002/2014wr016620
      [32] Yakhot, V., Orszag, S. A., Thangam, S., et al., 1992. Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Physics of Fluids A: Fluid Dynamics, 4(7): 1510-1520. https://doi.org/10.1063/1.858424
      [33] Zhang, J. Y., Fan, G., Li, H. B., et al., 2021. Large-Scale Field Model Tests of Landslide Dam Breaching. Engineering Geology, 293: 106322. https://doi.org/10.1016/j.enggeo.2021.106322
      [34] Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y
      [35] Zhao, T. L., Chen, S. S., Wang, J. J., et al., 2016. Centrifugal Model Tests Overtopping Failure of Barrier Dams. Chinese Journal of Geotechnical Engineering, 38(11): 1965-1972(in Chinese with English abstract).
      [36] Zhong, Q. M., Chen, S. S., Wang, L., et al., 2020. Back Analysis of Breaching Process of Baige Landslide Dam. Landslides, 17(7): 1681-1692. https://doi.org/10.1007/s10346-020-01398-3
      [37] Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/10.1016/j.earscirev.2021.103597
      [38] Zhu, X. H., Liu, B. X., Peng, J. B., et al., 2021. Experimental Study on the Longitudinal Evolution of the Overtopping Breaching of Noncohesive Landslide Dams. Engineering Geology, 288: 106137. https://doi.org/10.1016/j.enggeo.2021.106137
      [39] 蔡耀军, 栾约生, 杨启贵, 等, 2019. 金沙江白格堰塞体结构形态与溃决特征研究. 人民长江, 50(3): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201903004.htm
      [40] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      [41] 陈生水, 陈祖煜, 钟启明, 2019. 土石坝和堰塞坝溃决机理与溃坝数学模型研究进展. 水利水电技术, 50(8): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201908004.htm
      [42] 李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      [43] 钱宁, 1980. 推移质公式的比较. 水利学报, 11(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198004000.htm
      [44] 石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm
      [45] 赵天龙, 陈生水, 王俊杰, 等, 2016. 堰塞坝漫顶溃坝离心模型试验研究. 岩土工程学报, 38(11): 1965-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611007.htm
    • 加载中
    图(16) / 表(1)
    计量
    • 文章访问数:  93
    • HTML全文浏览量:  44
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-04
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回