Applicability of Geothermometer to Granitic Mylonites in Nabu Ductile Shear Zone, Southeast Guangxi
-
摘要: 糜棱岩的变质变形温度测定对其变形演化过程和热年代学同位素定年结果解释具有重要的意义.本文仅讨论各地质温度计在那卜韧性剪切带中的适用性.利用糜棱岩中的矿物组合、矿物动态重结晶特征以及EBSD(electron back-scattered diffraction)石英 < c > 轴组构等塑性变形特征,估算出那卜韧性剪切带的变质变形温度范围为400~550 ℃.在电子探针分析技术基础上,利用绿泥石成分地质温度计、白云母-绿泥石地质温度计以及白云母/黑云母Ti温度计对那卜韧性剪切带中的花岗质糜棱岩样品进行变质变形温度计算,获得相应的温度分别为305~325 ℃、390~500 ℃、395~492 ℃和473~565 ℃、431~574 ℃.通过对比分析发现,利用绿泥石成分地质温度计获得的结果明显低于利用塑性变形特征估算出的温度范围和其他温度计的计算结果,结合前人研究结果表明其仅适用于低温变质变形作用的温度计算;而另外3种温度计获得的结果在误差范围内均位于利用塑性变形特征估算出的温度范围内,表明其均适用于该剪切带的变质变形温度计算.其中白云母-绿泥石地质温度计适用于低温糜棱岩,白云母/黑云母Ti温度计适用于相对高温的糜棱岩.Abstract: The measurement of metamorphic and deformation temperature of mylonites is of great significance for the interpretation of deformation evolution process and thermochronological isotope dating results. In this paper it only discusses the applicability of each geothermometers in the Nabu ductile shear zone. Using the plastic deformation characteristics, such as the mineral assemblage, dynamic recrystallization characteristics of minerals and EBSD (electron back-scattered diffraction) quartz c-axis fabrics in mylonites, the metamorphic deformation temperature range of the Nabu ductile shear zone is estimated to be 400 to 550 ℃. Based on the electron probe microanalysis (EMPA), the chlorite compositional geothermometer, muscovite-chlorite geothermometer, Ti-in-muscovite and Ti-in-biotite geothermometers were applied to calculate the metamorphic deformation temperature of the granitic mylonite samples in the Nabu ductile shear zone. The corresponding temperatures are 305 to 325 ℃, 390 to 500 ℃, 395 to 492 ℃ and 473 to 565 ℃, 431 to 574 ℃. Through comparative analysis, it is found that the results obtained by using chlorite compositional geothermometer are obviously lower than the temperature range estimated by using plastic deformation characteristics and the results calculated by other geothermometers. Combined with the results of previous studies, the chlorite compositional geothermometer is only suitable for the temperature calculation of low temperature metamorphic deformation. The results obtained by the other three geothermometers are all within the error range of the temperature estimated by using the plastic deformation characteristics, indicating that they are suitable for the calculation of metamorphic deformation temperature of the Nabu ductile shear zone. Among them, the muscovite-chlorite geothermometer is suitable for low temperature mylonite, and Ti-in-muscovite and Ti-in-biotite geothermometers are suitable for relatively high temperature mylonite.
-
Key words:
- mylonitization /
- ductile shear zone /
- geothermometer /
- metamorphic deformation temperature /
- Nabu Town /
- tectonics
-
图 1 桂东南地区大地构造位置简图(a)和那卜韧性剪切带区域地质图及采样位置(b)
1.第四系桂平组;2.古近系邕宁群;3.白垩系罗文组;4.白垩系新隆组;5.泥盆系信都组;6.志留系连滩组;7.奥陶系兰瓮组;8.中(新)元古界天堂山群;9.新元古界云开群;10.白垩纪细-中(粗中)粒斑状黑云二长花岗岩;11.三叠纪中-中粗粒斑状堇青黑云二长花岗岩;12.泥盆纪片麻状细粒二长花岗岩;13.志留纪片麻眼球状中细粒黑云二长花岗岩;14.志留纪片麻状中细粒黑云二长花岗岩;15.志留纪中细粒堇青花岗闪长岩;16.新元古代花岗岩;17.韧性剪切带;18.大断裂;19.小断裂;20.采样位置;21.城镇;图a底图据毛景文等(2011);图b底图据赵国英(2017)
Fig. 1. Simplified geological sketch map of tectonic position in Southeast Guangxi, southern China (a) and simplified geological map and sampling location of Nabu ductile shear zone (b)
图 7 绿泥石Si-Fe分类图解(a)、绿泥石Al+□-Mg-Fe分类图解(b)和绿泥石R2+-Si分类图解(c)
图a底图据Deer et al.(1962);图b底图据Zane and Weiss(1998);图c底图据Wiewióra and Weiss(1990)
Fig. 7. Illustration of Si-Fe classification of chlorite (a), illustration of Al+□-Mg-Fe ternary of chlorite (b) and illustration of R2+-Si classification of chlorite (c)
图 8 那卜韧性剪切带花岗质糜棱岩白云母成分图
底图据Massonne and Schreyer(1987)
Fig. 8. Muscovite chemical compositions plotted in the granitic mylonites from the Nabu ductile shear zone
图 9 那卜韧性剪切带花岗质糜棱岩中原生白云母和次生白云母判别图
Fig. 9. Muscovite chemical compositions plotted in the ternary Mg-Ti-Na diagram of granitic mylonites from the Nabu ductile shear zone
图 10 那卜花岗质糜棱岩黑云母分类图(a)和黑云母10×TiO2-FeO*-MgO分类图(b)
图a底图据Foster(1960);图b底图据Nachit et al.(2005)
Fig. 10. Biotite classification diagram (a) and biotite ternary 10×TiO2-FeO*-MgO diagram (b)
图 11 共存的白云母-绿泥石Al分配等温线图(a)和形成温度直方图(b)
图a底图据Kotov(1975)
Fig. 11. Isothermal line of Al partition between coexisting muscovite and chlorite (a) and distribution histogram of formation temperature (b)
表 1 那卜韧性剪切带糜棱岩特征及估算温度
Table 1. Characters and temperature estimation of mylonites in Nabu ductile shear zone
样品号 采样地点 基质矿物组合 残斑矿物组合 长石变形特征 石英变形特征 估算温度 G22 N: 21°50′20.69″
E: 109°46′22.91″Qtz+Ms+Chl+Bt+Kfs Qtz+Ms+Bt+Kfs 显微破裂+塑性拉长 亚颗粒旋转+颗粒边界迁移 400~550 ℃ G23 N: 21°50′55.56″
E: 109°55′34.38″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 颗粒边界迁移 400~550 ℃ G24 N: 21°57′29.72″
E: 110°01′55.52″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 颗粒边界迁移 400~550 ℃ G25 N: 21°58′10.61″
E: 110°02′50.87″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 颗粒边界迁移 400~550 ℃ G27 N: 21°52′24.05″
E: 109°53′02.01″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 颗粒边界迁移 400~550 ℃ G29 N: 21°51′54.71″
E: 109°50′30.60″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 亚颗粒旋转+颗粒边界迁移 400~550 ℃ G30 N: 21°52′19.61″
E: 109°51′00.79″Qtz+Ms+Bt+Kfs Qtz+Ms+Bt+Kfs 显微破裂+塑性拉长 亚颗粒旋转+颗粒边界迁移 400~550 ℃ G31 N: 21°52′22.16″
E: 109°51′13.86″Qtz+Ms+Bt+Pl Qtz+Ms+Bt+Pl 显微破裂+塑性拉长 亚颗粒旋转+颗粒边界迁移 400~550 ℃ 注:Qtz.石英;Ms.白云母;Chl.绿泥石;Bt.黑云母;Kfs.钾长石;Pl.斜长石. 表 2 糜棱岩中共生白云母和绿泥石电子探针分析及温度计算结果
Table 2. Electron microprobe analysis and temperature calculation results of coexisting muscovite and chlorite in mylonite
样品号 矿物 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Total Si AlⅣ AlⅥ Ti Fetotal Mn Mg Ca Na K TC88 TJ91 KT75 P96 WMT15 G22-DX1 白云母 49.65 0.19 30.33 2.28 0.06 2.48 0.01 0.16 11.32 96.48 3.29 0.71 1.65 0.01 0.13 0.00 0.24 0.00 0.02 0.96 400 0.66 406 绿泥石 26.56 0.00 19.93 22.82 0.88 16.26 0.00 0.01 0.01 86.46 2.81 1.19 1.29 0.00 2.02 0.08 2.56 0.00 0.00 0.00 322 325 白云母 48.68 0.34 32.05 2.33 0.06 2.06 0.00 0.23 11.21 96.97 3.21 0.79 1.70 0.02 0.13 0.00 0.20 0.00 0.03 0.94 420 0.54 472 绿泥石 27.16 0.03 19.37 23.27 0.96 16.44 0.01 0.00 0.03 87.27 2.85 1.15 1.25 0.00 2.04 0.09 2.57 0.00 0.00 0.00 308 312 白云母 48.84 0.25 31.68 2.57 0.11 2.09 0.00 0.21 11.10 96.85 3.22 0.78 1.69 0.01 0.14 0.01 0.21 0.00 0.03 0.93 410 0.52 427 绿泥石 26.92 0.02 19.72 22.95 0.94 16.46 0.01 0.02 0.00 87.06 2.83 1.17 1.27 0.00 2.02 0.08 2.58 0.00 0.00 0.00 316 319 白云母 48.28 0.36 31.64 2.25 0.05 1.99 0.01 0.22 11.12 95.92 3.21 0.79 1.70 0.02 0.13 0.00 0.20 0.00 0.03 0.94 410 0.57 482 绿泥石 26.93 0.00 19.85 22.92 0.84 16.32 0.00 0.00 0.01 86.87 2.83 1.17 1.29 0.00 2.02 0.07 2.56 0.00 0.00 0.00 314 318 白云母 49.49 0.33 30.76 2.34 0.07 2.57 0.00 0.19 11.19 96.94 3.26 0.74 1.65 0.02 0.13 0.00 0.25 0.00 0.02 0.94 390 0.68 474 绿泥石 26.81 0.06 19.66 22.93 0.92 16.46 0.02 0.02 0.01 86.88 2.82 1.18 1.26 0.00 2.02 0.08 2.58 0.00 0.00 0.00 317 321 白云母 49.18 0.31 30.88 2.53 0.12 2.31 0.10 0.20 10.88 96.51 3.25 0.75 1.66 0.02 0.14 0.01 0.23 0.01 0.03 0.92 400 0.65 462 绿泥石 27.47 0.04 19.33 23.43 0.95 16.66 0.00 0.00 0.01 87.88 2.86 1.14 1.23 0.00 2.04 0.08 2.59 0.00 0.00 0.00 305 308 白云母 48.97 0.29 31.06 2.10 0.09 2.35 0.03 0.21 11.25 96.34 3.24 0.76 1.67 0.01 0.12 0.01 0.23 0.00 0.03 0.95 410 0.62 456 绿泥石 26.99 0.04 19.74 23.36 0.98 16.35 0.02 0.03 0.02 87.51 2.83 1.17 1.26 0.00 2.05 0.09 2.55 0.00 0.01 0.00 316 320 G22-DX2 白云母 48.50 0.20 32.05 2.00 0.00 2.05 0.00 0.26 11.23 96.29 3.21 0.79 1.71 0.01 0.11 0.00 0.20 0.00 0.03 0.95 450 0.47 406 绿泥石 26.82 0.00 19.59 24.37 1.27 15.75 0.02 0.04 0.03 87.89 2.82 1.18 1.24 0.00 2.14 0.11 2.47 0.00 0.01 0.00 319 323 白云母 48.98 0.19 31.93 2.19 0.06 2.15 0.02 0.19 11.24 96.94 3.22 0.78 1.70 0.01 0.12 0.00 0.21 0.00 0.02 0.94 410 0.49 400 绿泥石 27.35 0.00 19.88 22.90 0.98 16.42 0.00 0.02 0.02 87.58 2.85 1.15 1.29 0.00 2.00 0.09 2.55 0.00 0.00 0.00 308 312 白云母 48.75 0.28 32.22 1.88 0.06 1.90 0.01 0.22 11.17 96.49 3.22 0.78 1.72 0.01 0.10 0.00 0.19 0.00 0.03 0.94 490 0.53 446 绿泥石 27.34 0.03 19.69 22.61 1.05 16.97 0.00 0.04 0.04 87.78 2.84 1.16 1.25 0.00 1.97 0.09 2.63 0.00 0.01 0.01 311 314 白云母 48.96 0.38 32.09 1.98 0.05 2.06 0.01 0.24 11.25 97.02 3.22 0.78 1.70 0.02 0.11 0.00 0.20 0.00 0.03 0.94 430 0.59 492 绿泥石 27.71 0.15 20.33 22.04 0.93 16.86 0.03 0.13 0.08 88.26 2.85 1.15 1.31 0.01 1.90 0.08 2.58 0.00 0.03 0.01 309 312 白云母 47.56 0.10 33.03 1.76 0.04 1.55 0.00 0.23 11.39 95.65 3.17 0.83 1.77 0.01 0.10 0.00 0.15 0.00 0.03 0.97 500 0.35 400 绿泥石 27.07 0.01 20.06 23.70 1.00 16.02 0.01 0.02 0.02 87.91 2.82 1.18 1.29 0.00 2.07 0.09 2.49 0.00 0.00 0.00 317 321 白云母 48.43 0.26 32.47 2.17 0.06 1.94 0.01 0.24 11.22 96.78 3.19 0.81 1.72 0.01 0.12 0.00 0.19 0.00 0.03 0.94 400 0.45 432 绿泥石 27.50 0.08 20.50 22.98 1.12 15.89 0.02 0.02 0.09 88.19 2.85 1.15 1.35 0.01 1.99 0.10 2.45 0.00 0.00 0.01 310 314 白云母 49.39 0.18 32.21 1.86 0.09 2.07 0.05 0.17 11.36 97.38 3.23 0.77 1.71 0.01 0.10 0.00 0.20 0.00 0.02 0.95 420 0.51 395 绿泥石 27.49 0.06 19.63 22.92 0.93 16.64 0.10 0.07 0.03 87.88 2.86 1.14 1.26 0.00 1.99 0.08 2.58 0.01 0.01 0.00 306 310 注:表中矿物成分以氧化物百分数(%)和原子数(a.p.f.u)表示.TC88为利用Cathelineau (1988)的绿泥石温度计求得的温度值(℃); TJ91为利用Jowett (1991)的绿泥石温度计求得的温度值(℃); KT75为利用Kotov (1975)白云母-绿泥石地质温度计求得的温度值(℃); P96为利用Anderson (1996)的白云母压力计求得的压力值(GPa); WMT15为利用Wu and Chen (2015b)的白云母Ti温度计求得的温度值(℃). 表 3 糜棱岩中共生白云母和黑云母电子探针分析及温度计算结果
Table 3. Electron microprobe analysis and temperature calculation results of coexisting muscovite and biotite in mylonite
样品 G22 G22 G29 G29 G29 G29 G30 G30 G30 G30 G31 G31 G31 G31 矿物 Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j Ms-j 位置 416 90 269 274 279 287 308 319 323 324 346 350 356 375 SiO2 49.07 49.78 49.35 46.56 48.89 48.33 48.70 48.84 49.52 46.67 49.49 48.93 49.69 49.09 TiO2 0.42 0.34 0.35 0.49 0.45 0.46 0.63 0.50 0.43 0.51 0.37 0.38 0.47 0.37 Al2O3 31.87 31.64 30.90 32.20 31.98 31.56 30.91 31.97 30.67 31.39 31.76 32.71 32.28 33.02 FeO 2.35 2.27 2.91 2.86 2.84 2.99 2.50 2.68 2.53 2.64 2.19 2.01 2.24 2.15 MnO 0.09 0.16 0.04 0.00 0.03 0.06 0.01 0.05 0.05 0.01 0.04 0.04 0.04 0.04 MgO 2.03 2.00 1.89 1.41 1.72 1.56 1.67 1.51 1.84 1.62 1.67 1.56 1.63 1.55 CaO 0.01 0.16 0.00 0.00 0.01 0.07 0.02 0.02 0.06 0.05 0.01 0.00 0.02 0.07 Na2O 0.20 0.25 0.22 0.23 0.21 0.30 0.26 0.27 0.24 0.26 0.20 0.22 0.28 0.36 K2O 11.22 10.97 10.92 10.84 10.81 10.86 10.96 11.01 11.06 10.77 11.18 11.26 11.14 10.87 total 97.24 97.56 96.57 94.58 96.94 96.18 95.66 96.85 96.40 93.93 96.91 97.10 97.79 97.51 Si 3.22 3.25 3.26 3.15 3.22 3.22 3.25 3.22 3.28 3.18 3.25 3.21 3.24 3.20 AlⅣ 0.78 0.75 0.74 0.85 0.78 0.78 0.75 0.78 0.72 0.82 0.75 0.79 0.76 0.80 AlⅥ 1.69 1.69 1.67 1.72 1.70 1.69 1.68 1.71 1.67 1.70 1.71 1.74 1.71 1.74 Ti 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 Fetotal 0.13 0.12 0.16 0.16 0.16 0.16 0.14 0.15 0.14 0.15 0.12 0.11 0.12 0.12 Mn 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.20 0.19 0.19 0.14 0.17 0.15 0.17 0.15 0.18 0.16 0.16 0.15 0.16 0.15 Ca 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 K 0.94 0.91 0.92 0.94 0.91 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.93 0.90 Mg/(Fe+Mg) 0.61 0.61 0.54 0.47 0.52 0.48 0.54 0.50 0.56 0.52 0.58 0.58 0.56 0.56 P96 0.61 0.66 0.69 0.45 0.61 0.61 0.77 0.64 0.77 0.54 0.68 0.56 0.67 0.54 WMT15 500 473 474 513 505 506 565 521 506 528 485 486 515 479 样品 G22 G22 G29 G29 G29 G29 G30 G30 G30 G30 G31 G31 G31 G31 矿物 Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j Bt-j 位置 95 94 282 285 273 294 301 311 326 312 353 365 354 359 SiO2 39.88 38.95 37.16 36.91 36.61 36.55 36.54 36.73 36.35 36.79 36.71 36.73 36.86 37.06 TiO2 0.80 1.22 1.39 1.49 1.51 1.54 1.41 1.62 1.67 1.76 1.60 1.58 1.43 1.59 Al2O3 17.08 17.38 17.36 17.26 17.33 17.15 17.45 17.71 16.93 16.97 17.14 17.61 17.49 17.68 FeO 16.28 16.94 20.93 21.98 21.90 22.08 21.76 20.64 20.86 21.55 21.61 21.35 22.04 22.00 MnO 0.76 0.63 0.35 0.36 0.41 0.39 0.37 0.31 0.37 0.32 0.38 0.34 0.38 0.37 MgO 11.64 11.09 8.12 8.13 8.35 8.35 8.51 8.66 8.60 8.77 8.49 8.35 8.00 8.31 CaO 0.10 0.06 0.02 0.16 0.01 0.11 0.00 0.02 0.02 0.00 0.00 0.09 0.02 0.00 Na2O 0.10 0.10 0.09 0.07 0.07 0.10 0.09 0.08 0.15 0.09 0.07 0.12 0.08 0.09 K2O 9.75 9.72 9.60 9.24 9.66 9.45 9.71 8.98 9.60 9.67 9.85 9.56 9.75 9.71 total 96.37 96.08 95.02 95.58 95.84 95.72 95.84 94.75 94.53 95.92 95.86 95.71 96.04 96.81 Si 2.94 2.89 2.85 2.83 2.81 2.81 2.80 2.82 2.82 2.81 2.81 2.81 2.82 2.81 AlⅣ 1.06 1.11 1.15 1.17 1.19 1.19 1.20 1.18 1.18 1.19 1.19 1.19 1.18 1.19 AlⅥ 0.43 0.42 0.42 0.39 0.37 0.36 0.38 0.42 0.36 0.34 0.36 0.40 0.40 0.39 Ti 0.04 0.07 0.08 0.09 0.09 0.09 0.08 0.09 0.10 0.10 0.09 0.09 0.08 0.09 Fetotal 1.00 1.05 1.34 1.41 1.40 1.42 1.39 1.32 1.35 1.38 1.39 1.37 1.41 1.39 Mn 0.05 0.04 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Mg 1.28 1.23 0.93 0.93 0.95 0.96 0.97 0.99 0.99 1.00 0.97 0.95 0.91 0.94 Ca 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 Na 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 K 0.92 0.92 0.94 0.90 0.95 0.93 0.95 0.88 0.95 0.94 0.96 0.93 0.95 0.94 XTi 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 XFe 0.36 0.38 0.48 0.50 0.50 0.50 0.49 0.47 0.48 0.49 0.49 0.49 0.50 0.50 XMg 0.46 0.44 0.33 0.33 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.34 0.33 0.33 Ps 0.29 0.66 0.69 0.45 0.61 0.61 0.77 0.64 0.77 0.54 0.68 0.56 0.67 0.54 WBT15 431 505 558 542 552 553 553 563 574 556 561 556 558 556 Fe3+ 0.04 0.05 0.07 0.09 0.08 0.09 0.08 0.07 0.08 0.08 0.09 0.08 0.08 0.08 Fe2+ 0.96 1.00 1.27 1.32 1.32 1.33 1.31 1.25 1.27 1.30 1.30 1.29 1.33 1.31 注:表中矿物成分以氧化物百分数(%)和原子数(a.p.f.u)表示.WBT15为利用Wu and Chen (2015a)的黑云母Ti温度计求得的温度值(℃); WMT15为利用Wu and Chen (2015b)的白云母Ti温度计求得的温度值(℃); P96为利用Anderson (1996)的白云母压力计求得的压力值(GPa); Ps基于黑云母共生白云母压力计结果(GPa). -
Anderson, J. L., 1996. Status of Thermobarometry in Granitic Batholiths. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 125-138. https://doi.org/10.1017/s0263593300006544 Bai, D. Y., Zhong, X., Jia, P. Y., et al., 2014. Zircon SHRIMP U-Pb Dating and Geochemistry of Caledonian Miao'ershan Pluton in the Western Part of the Nanling Mountains and Their Tectonic Significance. Acta Petrologica et Mineralogica, 33(3): 407-423(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2014.03.001 Cathelineau, M., 1988. Cation Site Occupancy in Chlorites and Illites as a Function of Temperature. Clay Minerals, 23(4): 471-485. https://doi.org/10.1180/claymin.1988.023.4.13 Cathelineau, M., Nieva, D., 1985. A Chlorite Solid Solution Geothermometer the Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91(3): 235-244. https://doi.org/10.1007/bf00413350 Culshaw, N., Mosonyi, E., Reynolds, P., 2012. New 40Ar/39Ar Laser Single-Grain Ages of Muscovites from Mylonitic Schists in the Rodna Mountains, Eastern Carpathians, Romania: Correlations with Microstructure. International Journal of Earth Sciences, 101(1): 291-306. https://doi.org/10.1007/s00531-011-0674-y Deer, W. A., Howie, R. A., Iussman, J., 1962. Rock-Forming Minerals: Sheet Silicates. Longman, London, 270. Dong, S. W., Zhang, Y. Q., Long, C. X., et al., 2007. Jurassic Tectonic Revolution in China and New Interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.11.001 Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. US Geology Survey Professional Paper, 354, Washington, D.C., U.S.A., 11-49. Foster, M. D., 1962. Interpretation of the Composition and a Classification of the Chlorites. Geology Survey Professional Paper, 414, Washington, D.C., U.S.A., 1-30. Gomez-Rivas, E., Butler, R. W. H., Healy, D., et al., 2020. From Hot to Cold: The Temperature Dependence on Rock Deformation Processes: An Introduction. Journal of Structural Geology, 132: 103977. https://doi.org/10.1016/j.jsg.2020.103977 Guo, S. Y., Huang, X. Q., Nong, J. N., et al., 2020. Deformation Characteristics and 40Ar-39Ar Age of the Sanbao Ductile Shear Zone on the Northwestern Margin of Yunkai Block, South China. Geotectonica et Metallogenia, 44(3): 357-366(in Chinese with English abstract). Harrison, T. M., Celeier, J., Aikman, A. B., et al., 2009. Diffusion of 40Ar in Muscovite. Geochimica et Cosmochimica Acta, 73(4): 1039-1051. doi: 10.1016/j.gca.2008.09.038 Harrison, T. M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in Biotite: Temperature, Pressure and Compositional Effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468. https://doi.org/10.1016/0016-7037(85)90246-7 Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145-159. https://doi.org/10.1016/0191-8141(92)90053-y Holdaway, M. J., 2000. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 85(7-8): 881-892. https://doi.org/10.2138/am-2000-0701 Hu, R. G., Feng, Z. H., Wu, J., et al., 2022. Mineral Feature and Temperature Conditions of Mylonitization of the Yuanbao Mountain Ductile Shear Zone, Northern Guangxi. Geochimica, 51(2): 176-193(in Chinese with English abstract). Jowett, E. C., 1991. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. GAC/MAC/SEG Joint Annual Meeting, Toronto, 27-29. Kotov, N. V., 1975. Muscovite-Chlorite Paleothermometer. Proceedings of the USSR Academy of Sciences, 222(3): 700-704. Lanari, P., Wagner, T., Vidal, O., 2014. A Thermodynamic Model for Di-Trioctahedral Chlorite from Experimental and Natural Data in the System MgO-FeO-Al2O3-SiO2-H2O: Applications to P-T Sections and Geothermometry. Contributions to Mineralogy and Petrology, 167(2): 968. https://doi.org/10.1007/s00410-014-0968-8 Larson, K. P., Price, R. A., Archibald, D. A., 2006. Tectonic Implications of 40Ar/39Ar Muscovite Dates from the Mt. Haley Stock and Lussier River Stock, near Fort Steele, British Columbia. Canadian Journal of Earth Sciences, 43(11): 1673-1684. https://doi.org/10.1139/e06-048 Law, R. D., 2014. Deformation Thermometry Based on Quartz c-Axis Fabrics and Recrystallization Microstructures: A Review. Journal of Structural Geology, 66: 129-161. https://doi.org/10.1016/j.jsg.2014.05.023 Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2012.06.002 Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/B30021.1 Lin, W. W., Peng, L. J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. Journal of Changchun University Earth Sciences, 24(2): 155-162(in Chinese with English abstract). Liu, J. H., Chen, Y. C., Li, Z. M. G., et al., 2021. Temperature and Timing of Ductile Deformation of the Longquanguan Shear Zone, Trans-North China Orogen. Precambrian Research, 359: 106217. https://doi.org/10.1016/j.precamres.2021.106217 Liu, J. L., Cao, S. Y., Zou, Y. X., et al., 2008. EBSD Analysis of Rock Fabrics and Its Application. Geological Bulletin of China, 27(10): 1638-1645(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.10.005 Liu, Y. J., Genser, J., Ge, X. H., et al., 2003. 40Ar/39Ar Age Evidence for Altyn Fault Tectonic Activities in Western China. Chinese Science Bulletin, 48(18): 2024-2030. https://doi.org/10.1007/bf03183998 Luo, Z., 1990. The Geological Features and Tectonic Evolution in Bobai-Cenxi Deep Fault Zone, Guangxi. . Geology of Guangxi, 3(1): 25-34(in Chinese with English abstract). Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract). Massonne, H. J., Schreyer, W., 1987. Phengite Geobarometry Based on the Limiting Assemblage with K-Feldspar, Phlogopite, and Quartz. Contributions to Mineralogy and Petrology, 96(2): 212-224. https://doi.org/10.1007/bf00375235 McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York. Meng, L. X., Zhou, Y., Cai, Y. F., et al., 2020. Southwestern Boundary between the Yangtze and Cathaysia Blocks: Evidence from Detrital Zircon U-Pb Ages of Early Paleozoic Sedimentary Rocks from Qinzhou-Fangchenggang Area, Guangxi. Earth Science, 45(4): 1227-1242(in Chinese with English abstract). Miller, C. F., Stoddard, E. F., Bradfish, L. J., et al., 1981. Composition of Plutonic Muscovite: Genetic Implications. Canadian Mineralogist, 19(1): 25-34. Mukherjee, S., 2017. Review on Symmetric Structures in Ductile Shear Zones. International Journal of Earth Sciences, 106(5): 1453-1468. https://doi.org/10.1007/s00531-016-1366-4 Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002. Passchier, C. W., Trouw, R. A. J., 1996. Microtectonics. Springer, Berlin, 40-41. Qin, X. F., 2002. Characteristics and Deformation Mechanism of the Dextral Strike-Slip Ductile Shear Zone in Nabu Area, Southeastern Guangxi. Geology and Mineral Resources of South China, 18(2): 13-23(in Chinese with English abstract). Qin, Y., Feng, Z. H., Huang, J. Z., et al., 2021. Discovery of Sanmen Ductile Shear Zone in North Guangxi and Its Tectonic Significances. Earth Science, 46(11): 4017-4032(in Chinese with English abstract). Ren, J. S., Niu, B. G., He, Z. J., et al., 1997. Tectonic Framework and Geodynamic Evolution of Eastern China. Dixue Yanjiu, (29-30): 61-73(in Chinese). Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003 Shu, L. S., 2021. Principal Features of Intracontinental Orogenic Belt and Discussions on Its Dynamics. Acta Geologica Sinica, 95(1): 98-106(in Chinese with English abstract). Simpson, C., 1985. Deformation of Granitic Rocks across the Brittle-Ductile Transition. Journal of Structural Geology, 7(5): 503-511. https://doi.org/10.1016/0191-8141(85)90023-9 Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861-1884. https://doi.org/10.1016/s0191-8141(02)00035-4 Sun, H. S., Li, J. H., Zhang, Y. Q., et al., 2018. Early Paleozoic Tectonic Reactivation of the Shaoxing-Jiangshan Fault Zone: Structural and Geochronological Constraints from the Chencai Domain, South China. Journal of Structural Geology, 110: 116-130. https://doi.org/10.1016/j.jsg.2018.03.003 Tullis, J., Yund, R. A., 1991. Diffusion Creep in Feldspar Aggregates: Experimental Evidence. Journal of Structural Geology, 13(9): 987-1000. https://doi.org/10.1016/0191-8141(91)90051-j Wang, D. Z., Shen, W. Z., 2003. Genesis of Granitoids and Crustal Evolution in Southeast China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.03.020 Wang, L., Long, W. G., Zhou, D., 2013. Zircon LA-ICP-MS U-Pb Age of Caledonian Granites from Precambrian Basement in Yunkai Area and Its Geological Implications. Geology in China, 40(4): 1016-1029 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.04.003 Wang, X. D., Xu, D. M., Wang, L., et al., 2020. Reworking of Indosinian Tectono-Thermal Events in the Yunkai Massif: Gneissic Multi-Mineral U-Pb Geochronological Evidence. Earth Science, 45(5): 1653-1675(in Chinese with English abstract). Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696(in Chinese with English abstract). Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Wang, Y. J., Fan, W., Cawood, P. A., et al., 2007a. Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China: Kinematics and 40Ar/39Ar Geochronological Constraints Tectonics, 26: 1-21. https://doi.org/10.1029/2007tc002099 Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007b. Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4): 404-416. https://doi.org/10.1016/j.gr.2006.10.003 Wang, Y. S., Yang, B. F., Wang, H. F., et al., 2016. A Discussion on Influence Factors of Quartz c-Axis Fabrics: An Example from Mylonite in the Tan-Lu Fault Zone. Acta Petrologica Sinica, 32(4): 965-975(in Chinese with English abstract). Wang, Y. S., Zhu, G., Wang, D. X., et al., 2005. An Attempt to Apply Three Geothermometers in the Interpretation of Low-Temperature Mylonites in the Southern Segment of the Tanlu Fault Zone. Geology in China, 32(4): 625-633 (in Chinese with English abstract). Wiewióra, A., Weiss, Z., 1990. Crystallochemical Classifications of Phyllosilicates Based on the Unified System of Projection of Chemical Composition: Ⅱ. The Chlorite Group. Clay Minerals, 25(1): 83-92. https://doi.org/10.1180/claymin.1990.025.1.09 Wu, C. M., Chen, H. X., 2015a. Revised Ti-in-Biotite Geothermometer for Ilmenite- or Rutile-Bearing Crustal Metapelites. Science Bulletin, 60(1): 116-121. https://doi.org/10.1007/s11434-014-0674-y Wu, C. M., Chen, H. X., 2015b. Calibration of a Ti-in-Muscovite Geothermometer for Ilmenite- and Al2SiO5-Bearing Metapelites. Lithos, 212: 122-127. https://doi.org/10.1016/j.lithos.2014.11.008 Wu, C. M., Cheng, B. H., 2006. Valid Garnet-Biotite (GB) Geothermometry and Garnet-Aluminum Silicate-Plagioclase-Quartz (GASP) Geobarometry in Metapelitic Rocks. Lithos, 89(1-2): 1-23. https://doi.org/10.1016/j.lithos.2005.09.002 Xia, J. L., Huang, G. C., Ding, L. X., et al., 2018. Zircon U-Pb Dating, Petrogenesis and Tectonic Background of the Early Paleozoic Ningtan Gneissic Granitic Pluton, in the Yunkai Terrane. Earth Science, 43(7): 2276-2293 (in Chinese with English abstract). Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020 Xiang, B. W., Zhu, G., Wang, Y. S., et al., 2007. Mineral Deformation Thermometer for Mylonitization. Advances in Earth Science, 22(2): 126-135 (in Chinese with English abstract). Xing, G. F., Lu, Q. D., Chen, R., et al., 2008. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China—Comparing to the Yanshan Area in North China. Acta Geologica Sinica, 82(4): 451-463(in Chinese with English abstract). Xing, G. F., Yang, Z. L., Mao, J. R., et al., 2002. Characteristics of Early Jurassic Igneous Rocks on the Continental Margin of Southeastern China and Their Tectonic Significance. Geological Bulletin of China, 21(7): 384-391 (in Chinese with English abstract). Xu, H. J., Zhang, J. F., Zong, K. Q., et al., 2015. Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China. Lithos, 226: 17-30. https://doi.org/10.1016/j.lithos.2015.02.010 Xu, Z. Q., Wang, Q., Liang, F. H., et al., 2009. Electron Backscatter Diffraction (EBSD) Technique and Its Application to Study of Continental Dynamics. Acta Petrologica Sinica, 25(7): 1721-1736 (in Chinese with English abstract). Yan, Q. R., Li, Z. Y., Li, J. L., et al., 2000. Application of Rock Magnetic Fabric in the Study of Fault—Examplified by the Bobai-Hepu Fault. Chinese Journal of Geology (Scientia Geologica Sinica), 35(3): 363-369 (in Chinese with English abstract). Yang, X. Y., 2005. On the Studies of Ductile Shear Zones: Their Geological Significance. Advance in Earth Sciences, 20(7): 765-771 (in Chinese with English abstract). Yavuz, F., Kumral, M., Karakaya, N., et al., 2015. A Windows Program for Chlorite Calculation and Classification. Computers & Geosciences, 81: 101-113. https://doi.org/10.1016/j.cageo.2015.04.011 Zane, A., Weiss, Z., 1998. A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9(1): 51-56. https://doi.org/10.1007/BF02904455 Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China: Earth Sciences, 43(10): 1553-1582(in Chinese). Zhang, H., Wang, J., Peng, T., et al., 2018. Temperature Conditions of Mylonitization of the Dashuiyu Ductile Shear Zone, Mt. Yunmeng, Beijing. Acta Petrologica Sinica, 34(6): 1801-1812 (in Chinese with English abstract). Zhang, Q., Li, X., 2021. The Application and Associated Problems of EBSD Technique in Fabric Analysis. Acta Petrologica Sinica, 37(4): 1000-1014 (in Chinese with English abstract). Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279(in Chinese with English abstract). Zhao, G. Y., 2017. Deformational Characteristics and 40Ar/39Ar Geochronology of the Ductile Shear Zone in the North Margin of Yunkai Block, Southeastern Guangxi (Dissertation). Guilin University of Technology, Guilin (in Chinese with English abstract). Zhao, Y., Xu, G., Zhang, S. H., et al., 2004. Yanshanian Movement and Conversion Oftectonic Regimes in East Asia. Earth Science Frontiers, 11(3): 319-328 (in Chinese with English abstract). Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 Zhu, G., Wang, Y. S., Niu, M. L., et al., 2004. Synorogenic Movement of the Tan-Lu Fault Zone. Earth Science Frontiers, 11(3): 169-182 (in Chinese with English abstract). 柏道远, 钟响, 贾朋远, 等, 2014. 南岭西段加里东期苗儿山岩体锆石SHRIMPU-Pb年龄、地球化学特征及其构造意义. 岩石矿物学杂志, 33(3): 407-423. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201403001.htm 董树文, 张岳桥, 龙长兴, 等, 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm 郭尚宇, 黄锡强, 农军年, 等, 2020. 云开地块西北缘三堡韧性剪切带变形特征及40Ar-39Ar年代学研究. 大地构造与成矿学, 44(3): 357-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003003.htm 胡荣国, 冯佐海, 吴杰, 等, 2022. 桂北元宝山韧性剪切带糜棱岩矿物化学特征及变质条件. 地球化学, 51(2): 176-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202202003.htm 李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解: 观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm 林文蔚, 彭丽君, 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+. 长春地质学院学报, 24(2): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ402.004.htm 刘俊来, 曹淑云, 邹运鑫, 等, 2008. 岩石电子背散射衍射(EBSD)组构分析及应用. 地质通报, 27(10): 1638-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810006.htm 罗璋, 1990. 广西博白-岑溪断裂带地质特征与构造演化. 广西地质, 3(1): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199001002.htm 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm 蒙麟鑫, 周云, 蔡永丰, 等, 2020. 扬子与华夏地块西南端界线: 来自钦防地区碎屑锆石U-Pb年代学的制约. 地球科学, 45(4): 1227-1242. doi: 10.3799/dqkx.2019.090?viewType=HTML 覃小锋, 2002. 桂东南那卜韧性剪切带的基本特征及形成机制. 华南地质与矿产, 18(2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200202002.htm 秦亚, 冯佐海, 黄靖哲, 等, 2021. 桂北地区三门韧性剪切带的厘定及其构造意义. 地球科学, 46(11): 4017-4032. doi: 10.3799/dqkx.2020.353?viewType=HTML 任纪舜, 牛宝贵, 和政军, 等, 1997. 中国东部的构造格局和动力演化. 地学研究, (29-30): 61-73. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199700001006.htm 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm 舒良树, 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101008.htm 王德滋, 沈渭洲, 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303031.htm 王磊, 龙文国, 周岱, 2013. 云开地区加里东期花岗岩锆石U-Pb年龄及其地质意义. 中国地质, 40(4): 1016-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304004.htm 王祥东, 徐德明, 王磊, 等, 2020. 云开地块印支期构造热事件叠加改造: 来自片麻岩中多矿物U-Pb年代学的证据. 地球科学, 45(5): 1653-1675. doi: 10.3799/dqkx.2019.151?viewType=HTML 王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm 王勇生, 杨秉飞, 王海峰, 等, 2016. 石英c轴组构影响因素探讨: 以郯庐断裂带糜棱岩为例. 岩石学报, 32(4): 965-975. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604003.htm 王勇生, 朱光, 王道轩, 等, 2005. 地质温度计在郯庐断裂带南段低温糜棱岩中的尝试. 中国地质, 32(4): 625-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200504011.htm 夏金龙, 黄圭成, 丁丽雪, 等, 2018. 云开地区早古生代宁潭片麻状花岗质岩体锆石U-Pb定年、岩石成因及构造背景. 地球科学, 43(7): 2276-2293. doi: 10.3799/dqkx.2018.529?viewType=HTML 向必伟, 朱光, 王勇生, 等, 2007. 糜棱岩化过程中矿物变形温度计. 地球科学进展, 22(2): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm 邢光福, 卢清地, 陈荣, 等, 2008. 华南晚中生代构造体制转折结束时限研究: 兼与华北燕山地区对比. 地质学报, 82(4): 451-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804003.htm 邢光福, 杨祝良, 毛建仁, 等, 2002. 东南大陆边缘早侏罗世火成岩特征及其构造意义. 地质通报, 21(7): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200207004.htm 许志琴, 王勤, 梁凤华, 等, 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200907016.htm 阎全人, 李增悦, 李继亮, 等, 2000. 岩石磁组构在断裂变形性状与期次研究中的应用: 以广西博白-合浦断裂为例. 地质科学, 35(3): 363-369. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200003010.htm 杨晓勇, 2005. 论韧性剪切带研究及其地质意义. 地球科学进展, 20(7): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200507010.htm 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm 张慧, 王娟, 彭涛, 等, 2018. 北京云蒙山大水峪韧性剪切带糜棱岩的变形温度. 岩石学报, 34(6): 1801-1812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806016.htm 张青, 李馨, 2021. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题. 岩石学报, 37(4): 1000-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104004.htm 张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm 赵国英, 2017. 云开地块北缘韧性剪切带的变形特征及40Ar/39Ar年代学研究(硕士学位论文). 桂林: 桂林理工大学 赵越, 徐刚, 张拴宏, 等, 2004. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403042.htm 朱光, 王勇生, 牛漫兰, 等, 2004. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403023.htm -