Heat Flow Distribution in the Continental Area of China Based on the Relationship between Geologic Age and Heat Flow
-
摘要: 大地热流是表征地球内部热状态传输到表层的重要参数,大地热流分布是地热研究中的基础工作. 我国陆区大地热流数据质量差异大且空间分布不均匀,对大地热流的科学预测是开展大地热流及相关研究的重要基础. 在地质年代与热流关系的基础上,采用地理信息系统(GIS)技术,利用中国陆区数字地质图定义不同地质区域的热流值,对热流离散性较大的地质年代结合构造分区统计赋值,使热流预测更符合我国构造-热背景. 热流预测采用1°×1°等经度网格将热流的影响范围约束在网格单元中. 我国陆区的大地热流预测平均值为63.54 mW/m2,中值为62.32 mW/m2,热流分布离散性较小.预测结果接近我国构造-热背景,为热流数据空白区的热流值预测提供科学依据.Abstract: Terrestrial heat flow is an important parameter to characterize the heat transfer from the earth's interior to the surface. The distribution of terrestrial heat flow is the basic work in geothermal research. The data quality of terrestrial heat flow varies greatly and the spatial distribution of heat flow data in China is uneven. The scientific prediction of continental heat flow is an essential basis for the development of continental heat flow and related research. Based on the relationship between geologic age and heat flow, this paper uses geographic information system (GIS) technology to define heat flow values in different geological regions by using digital geological map of the Chinacontinentalarea, and assigns statistical values to geologic age with large heat flow dispersion combined with tectonic subdivision, so that heat flow prediction is more in line with Chinese tectonic-thermal background. Heat flow prediction is based on 1×1 degree equal longitude grid to restrict the influence range of heat flow in grid cell. The predicted mean value of terrestrial heat flow in China continental area is 63.54 mW/m2, and the median value is 62.32 mW/m2, with small discreteness of heat flow distribution. The prediction results in this paper are close to the tectonic-thermal background in China, which provides a scientific basis for the prediction of heat flow in the blank area of heat flow data.
-
Key words:
- terrestrial heat flow /
- geologic age /
- tectonic subdivision /
- heat flow prediction /
- GIS
-
图 1 中国陆区大地热流测点地理分布图
构造分区据潘桂棠等(2009)修改;Ⅰ. 兴蒙造山系;Ⅱ. 西北陆块区;Ⅲ. 华北陆块区;Ⅳ. 秦祁昆造山系;Ⅴ. 台湾造山系;Ⅵ. 武夷-云开造山系;Ⅸ. 扬子陆块区;Ⅶ. 西藏-三江造山系
Fig. 1. Geographic distribution of heat flow sites in the continental area of China
表 1 中国陆区四版热流数据汇编及统计结果
Table 1. Statistics of heat flow compilations in the continental area of China
NO. 汇编人与汇编时间 数量* 热流/mW/m2 范围 平均值±标准偏差 平均值(去D类) 质量加权平均** 1 汪集旸和黄少鹏(1988) 167/- 25.5~242 67.4±24.6 - - 2 汪集旸和黄少鹏(1990) 366/353 25.1~319 69.2±31.3 65±17.2 65.3(25.1~140) 3 胡圣标等(2001) 862/816 23.4~319 63.4±25.3 61.4±16.0 61.4(25.1~140) 4 姜光政等(2016) 1 230/1 188 23.4~319 61.5±22.3 60.2±15.4 60.2(25.1~140) 注:*. 代表剔除了D类数据后的热流数据量;**.括号内为剔除D类数据后的热流值范围;质量加权平均中剔除D类数据,减少异常值对热流分布的影响,将A,B,C,D类数据的权重设置为3,2,1,0 表 2 中国陆区地质年代-热流关系统计表
Table 2. Statistics of geologic age-heat flow relationship in the continental area of China
No. 地质年代 数据量 热流(mW/m2) 面积(km2) 平均值 标准偏差 中值 1 第四纪(总) 932 62.6 18.4 60.0 2 797 905.0 2 新近纪(总) 89 76.4 26.0 66.0 305 333.8 3 古近纪(总) 29 141.9 37.0 75.0 126 632.4 4 古近纪-新近纪 12 64.7 21.3 60.5 61 081.7 5 新生代(未划分) 5 75.5 14.3 70.9 75 434.6 6 白垩纪-古近纪(总) 17 81.9 30.3 78.0 118 909.2 7 中生代-新生代 0 - - - 6 719.5 8 白垩纪 56 62.7 13.4 62.0 458 693.9 9 侏罗纪-白垩纪 54 71.2 20.5 72.2 293 607.8 10 侏罗纪 114 64.2 19.5 61.8 812 237.5 11 三叠纪-侏罗纪 29 63.3 12.1 63.5 148 208.2 12 三叠纪 41 63.2 12.7 66.2 841 649.0 13 中生代(未划分) 5 112.0 30.2 123.1 52 142.6 14 二叠纪-三叠纪 3 40.4 0.5 40.0 29 049.1 15 古生代-中生代 2 85.5 2.5 85.5 22 756.1 16 二叠纪 38 71.2 9.2 68.9 327 436.1 17 石炭纪-二叠纪 16 51.7 13.5 48.6 226 313.6 18 晚古生代 24 58.1 9.6 59.1 531 752.1 19 石炭纪 22 55.8 14.2 53.7 472 286.4 20 泥盆纪-石炭纪 9 56.2 13.1 56.0 69 967.6 21 泥盆纪 25 69.6 22.6 67.0 283 751.0 22 志留纪-泥盆纪 0 - - - 48 212.2 23 志留纪 2 69.3 4.2 69.3 101 601.2 24 奥陶纪-志留纪 1 40.0 0 40.0 79 552.6 25 奥陶纪 9 54.4 10.4 47.0 109 301.4 26 寒武纪-奥陶纪 16 45.9 7.8 43.3 80 730.5 27 早古生代 18 59.0 13.1 54.7 172 419.5 28 寒武纪 21 63.9 17.0 65.9 170 149.7 29 古生代(未划分) 1 55.0 0 55.0 18 699.7 30 前寒武纪-古生代 1 67.2 0 67.2 52 601.2 31 元古代 123 61.5 17.5 59.8 543 565.5 32 太古代 23 58.4 18.4 49.3 110 531.1 33 前寒武纪(未划分) 1 61.0 0 61.0 84 577.7 34 未知地质类 1 40.0 0 40.0 242 471.7 35 未定义年龄 0 - - - 16 416.8 36 水域(总) 64 97.0 29.9 91.4 70 857.0 37 第四纪-Ⅰ 77 65.1 13.4 63.2 424 535.5 38 第四纪-Ⅱ 169 45.0 6.3 42.7 874 979.9 39 第四纪-Ⅲ 422 65.6 16.4 64.0 727 415.6 40 第四纪-Ⅳ 118 57.1 15.1 56.0 292 239.1 41 第四纪-Ⅴ 23 77.6 25.7 80.0 9 970.5 42 第四纪-Ⅵ 11 65.8 8.8 65.8 28 884.5 43 第四纪-Ⅸ 100 68.0 19.3 67.7 162 958.1 44 第四纪-Ⅶ 12 105.7 32.6 102.0 276 921.5 45 新近纪-Ⅴ 37 88.0 30.4 80.0 16 293.7 46 新近纪* 52 60.4 13.6 57.7 289 040.1 47 古近纪-Ⅴ 15 115.3 36.6 140.0 7 097.2 48 古近纪-Ⅶ 1 47.0 0 47.0 31 920.2 49 古近纪* 13 68.0 12.1 71.4 87 615.0 50 白垩纪-古近纪-Ⅶ 3 140.0 0 140.0 87 554.3 51 白垩纪-古近纪* 14 69.5 15.4 72.9 31 354.9 52 水域-Ⅴ 2 93.5 13.5 93.5 516.4 53 水域-Ⅶ 35 117.6 22.0 126.9 12 132.3 54 水域* 27 70.6 15.3 70.0 58 208.3 55 汇总 64.8 62.0 9 963 554.8 注:-表示无对应热流数据,赋值时采用汇总的平均值/中值;总:未进行构造分区划分的地质年代;未划分:该地质年代未进行详细划分;Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅸ、Ⅶ分别对应于图 1中的构造分区;*表示排除台湾造山系、西藏-三江造山系两个构造分区的热流统计值 -
Chapman, D. S., Pollack, H. N., 1975. Global Heat Flow: a New Look. Earth and Planetary Science Letters, 28(1): 23-32. https://doi.org/10.1016/0012-821X(75)90069-2 Cui, P., Jia, Y., Su, F. H., et al., 2017. Natural Hazards in Tibetan Plateau and Key Issue forFeature Research. Bulletin of Chinese Academy of Sciences, 32(9): 985-992(in Chinese with English abstract). Davies, J. H., 2013. Global Map of Solid Earth Surface Heat Flow. Geochemistry, Geophysics, Geosystems, 14(10): 4608-4622. https://doi.org/10.1002/ggge.20271 Davies, J. H., Davies, D. R., 2010. Earth's Surface Heat Flux. Solid Earth, 1(1): 5-24. https://doi.org/10.5194/se-1-5-2010 Diao, Q., Niu, S. Y., Sun, A. Q., et al., 2019. Development Potential and Suggestions of Geothermal in Eastern China. Journal of Hebei GEO University, 42(5): 1-8(in Chinese with English abstract). Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean-Paleoproterozoic Multi-Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195(in Chinese with English abstract). Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present-Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762(in Chinese with English abstract). Feng, C. G., Liu, S. W., Wang, L. S., et al., 2010. Present-Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation. Earth Science, 35(4): 645-656(in Chinese with English abstract). Fuchs, S., Beardsmore, G., Chiozzi, P., et al., 2021. A New Database Structure for the IHFC Global Heat Flow Database. International Journal of Terrestrial Heat Flow and Applications, 4(1): 1-14. https://doi.org/10.31214/ijthfa.v4i1.62 Goes, S., Hasterok, D., Schutt, D. L., et al., 2020. Continental Lithospheric Temperatures: a Review. Physics of the Earth and Planetary Interiors, 306: 106509. https://doi.org/10.1016/j.pepi.2020.106509 Goutorbe, B., Poort, J., Lucazeau, F., et al., 2011. Global Heat Flow Trends Resolved from Multiple Geological and Geophysical Proxies. Geophysical Journal International, 187(3): 1405-1419. https://doi.org/10.1111/j.1365-246X.2011.05228.x Hamza, V. M., Vieira, F., 2018. Global Heat Flow: New Estimates Using Digital Maps and GIS Techniques. International Journal of Terrestrial Heat Flow andApplications, 1(1): 6-13. https://doi.org/10.31214/ijthfa.v1i1.6 Hao, C. Y., Liu, S. W., Wang, H. Y., et al., 2014. Global Heat Flow: an Overview over Past 20 Years. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3): 754-770(in Chinese with English abstract). He, L. J., Wang, J. Y., 2021. Concept and Application of Some Important Terms in Geothermicsand Geophysics such as Terrestrial Heat Flow. China Terminology, 23(3): 3-9(in Chinese with English abstract). Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: a New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. https://doi.org/10.1016/S0012-821X(00)00126-6 Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 604-618. https://doi.org/10.1002/cjg2.180 Jiang, G., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910(in Chinese with English abstract). Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480(in Chinese with English abstract). Li, Z. X., Gao, J., Li, W. F., et al., 2016. The Characteristics of Geothermal Field and Controlling Factors in Qaidam Basin, Northwest China. Earth Science Frontiers, 23(5): 23-32(in Chinese with English abstract). Lin, W. J., Gan, H. N., Wang, G. L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China. Acta Geologica Sinica, 90(8): 2043-2058(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.031 Lin, W. J., Liu, Z. M., Ma, F., et al., 2012. An Estimation of HDR Resources in China's Mainland. Acta Geoscientica Sinica, 33(5): 807-811(in Chinese with English abstract). Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019GC008389 Ma, F., Lin, W. J., Lang, X. J., et al., 2015. Deep Geothermal Structures of Potential Hot Dry Rock Resources Area in China. Bulletin of Geological Science and Technology, 34(6): 176-181(in Chinese with English abstract). Mareschal, J. C., Jaupart, C., Iarotsky, L., 2017. The Earth Heat Budget, Crustal Radioactivity and Mantle Geoneutrinos. Neutrino Geoscience, 4.1-4.46. Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.01.001 Pollack, H. N., Hurter, S. J., Johnson, J. R., 1993. Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31(3): 267-280. https://doi.org/10.1029/93RG01249 Qiu, N. S., Tang, B. N., Zhu, C. Q., 2022. Deep Thermal Background of Hot Spring Distribution in the Chinese Continent. Acta GeologicaSinica, 96(1): 195-207(in Chinese with English abstract). Steinshouer, D., Qiang, J., McCabe, P., et al., 2006. Maps Showing Geology, Oil and Gas Fields, and Geologic Provinces of the Asia Pacific Region. U. S. Geological Survey Open-File Report 97-470-F, 16. https://doi.org/10.3133/ofr97470F Sun, Y. J., Dong, S. W., Wang, X. Q., et al., 2022. Three-Dimensional Thermal Structure of East Asian Continental Lithosphere. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023432. https://doi.org/10.1029/2021JB023432 Tao, W., Shen, Z. K., 2008. Heat Flow Distribution in Chinese Continent and Its Adjacent Areas. Progress in Natural Science, 18(7): 843-849. https://doi.org/10.1016/j.pnsc.2008.01.018 Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160(in Chinese with English abstract). Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31(in Chinese with English abstract). Wang, J. Y., Huang, S. P., 2001. Compilation of Heat Flow Data for Continental Area of China. Chinese Journal of Geology (Scientia GeologicaSinica), (2): 196-204(in Chinese). Wang, J. Y., Huang, S. P., 1990. Compilation of Heat Flow Data for Continental Area of China (2nd Edition). Seismology and Geology, 12(4): 351-363+366(in Chinese with English abstract). Xu, C. J., Zhang, J., Zhang, L., et al., 2021. Estimation of Geothermal Resource Potential of Dry Hot Rock in Shandong Province. Shandong Land and Resources, 37(10): 44-50(in Chinese with English abstract). Zhang, J., Fang, G., HE, Y. B., 2022. The Deep High Temperature Characteristics and Geodynamic Background of Geothermal Anomaly Areas in Eastern China. Earth Science Frontiers, 30(2): 316-332 (in Chinese with English abstract). Zhi, J. L., Du, J. S., Chen, C., 2018. Characteristics of Large-Scale Thermal Structure in Lithosphere Beneath Junggar Basin and Surroundings. Earth Science, 43(Suppl. 2): 103-118(in Chinese with English abstract). Zhu, W. J., Liu, S. W., Huang, S. P., 2022. Heat Flow in the Asian Continent and Surrounding Areas. International Journal of Terrestrial Heat Flow andApplications, 5(1): 1-8. https://doi.org/10.31214/ijthfa.v5i1.77 崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题. 中国科学院院刊, 32(9): 985-992. 刁谦, 牛树银, 孙爱群, 等, 2019. 中国东部地热资源开发潜力与建议. 河北地质大学学报, 42(5): 1-8. 杜利林, 杨崇辉, 宋会侠, 等, 2020. 华北克拉通阜平杂岩新太古代-古元古代多期地质事件及其构造性质. 地球科学, 45(9): 3179-3195. doi: 10.3799/dqkx.2020.240 冯昌格, 刘绍文, 王良书, 等, 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系. 地球科学(中国地质大学学报), 35(4): 645-656. 郝春艳, 刘绍文, 王华玉, 等, 2014. 全球大地热流研究进展. 地质科学, 49(3): 754-770. 何丽娟, 汪集旸, 2021. "大地热流"等地热学重要术语的概念与应用. 中国科技术语, 23(3): 3-9. 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. 旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128 李宗星, 高俊, 李文飞, 等, 2016. 柴达木盆地地温场分布特征及控制因素. 地学前缘, 23(5): 23-32. 蔺文静, 甘浩男, 王贵玲, 等, 2016. 我国东南沿海干热岩赋存前景及与靶区选址研究. 地质学报, 90(8): 2043-2058. 蔺文静, 刘志明, 马峰, 等, 2012. 我国陆区干热岩资源潜力估算. 地球学报, 33(5): 807-811. 马峰, 蔺文静, 郎旭娟, 等, 2015. 我国干热岩资源潜力区深部热结构. 地质科技情报, 34(6): 176-181. 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-16+255+217-228. 邱楠生, 唐博宁, 朱传庆, 2022. 中国大陆地区温泉分布的深部热背景. 地质学报, 96(1): 195-207. 万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121 汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. 汪集旸, 黄少鹏, 1988. 中国大陆地区大地热流数据汇编. 地质科学, (2): 196-204. 汪集旸, 黄少鹏, 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351-363+366. 许传杰, 张军, 张玲, 等, 2021. 山东省干热岩地热资源潜力估算. 山东国土资源, 37(10): 44-50. 张健, 方桂, 何雨蓓, 2023. 中国东部地热异常区深层高温分布特征与动力学背景. 地学前缘, 30(2): 316-332. 支剑丽, 杜劲松, 陈超, 2018. 准噶尔盆地及邻区的岩石圈大尺度热结构特征. 地球科学, 43(Suppl. 2): 103-118. doi: 10.3799/dqkx.2018.550 -
dqkxzx-50-2-763-附表.docx
-