• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系

    江文剑 秦明宽 范洪海 贾立城 郭强 黄少华 宁君 肖菁

    江文剑, 秦明宽, 范洪海, 贾立城, 郭强, 黄少华, 宁君, 肖菁, 2023. 松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系. 地球科学, 48(3): 1232-1245. doi: 10.3799/dqkx.2022.388
    引用本文: 江文剑, 秦明宽, 范洪海, 贾立城, 郭强, 黄少华, 宁君, 肖菁, 2023. 松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系. 地球科学, 48(3): 1232-1245. doi: 10.3799/dqkx.2022.388
    Jiang Wenjian, Qin Mingkuan, Fan Honghai, Jia Licheng, Guo Qiang, Huang Shaohua, Ning Jun, Xiao Jing, 2023. Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin. Earth Science, 48(3): 1232-1245. doi: 10.3799/dqkx.2022.388
    Citation: Jiang Wenjian, Qin Mingkuan, Fan Honghai, Jia Licheng, Guo Qiang, Huang Shaohua, Ning Jun, Xiao Jing, 2023. Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin. Earth Science, 48(3): 1232-1245. doi: 10.3799/dqkx.2022.388

    松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系

    doi: 10.3799/dqkx.2022.388
    基金项目: 

    松辽盆地项目 地HSL1403-9

    核地院长基金 地QJ2102

    中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目 NRE2021-18

    详细信息
      作者简介:

      江文剑(1984-),男,讲师,博士后,主要从事沉积学和砂岩型铀矿教学与科研工作.ORCID:0000-0002-6348-0326. E-mail:jiangwj2014@qq.com

      通讯作者:

      秦明宽, E-mail:qinmk9818@163.com

    • 中图分类号: P612

    Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin

    • 摘要: 含铀岩系沉积时的古气候条件对铀成矿起着重要的控制作用,但是长期以来未引起人们足够重视.以松辽盆地西南部HLJ地区含矿目的层姚家组下段为研究对象,通过对代表性钻孔岩心的泥岩样品进行全岩主、微量元素和TOC测试,采用K/Na、aAlNa、CPACIXPIACIWCIA等多项化学风化指标来判断样品化学风化作用强度,重建其沉积时期古气候条件.同时,结合U和TOC含量及Fe2+/Fe3+比值来探讨含铀岩系沉积时的古气候条件对铀成矿的制约.结果表明,目的层碎屑岩经历了由弱-强-弱的化学风化作用,显示其沉积时的古气候由相对寒冷干旱-相对温暖潮湿-相对寒冷干旱的演变规律.这种古气候变化导致了铀储层砂体中TOC含量低(平均值0.05%),层间氧化带发育规模大,铀矿体主要形成于远离蚀源区的盆地腹部;形成于潮湿气候条件下的暗色泥岩具有更高TOC(平均值0.61%)和U含量(最高可达885×10-6),其沉积时发生了强烈的预富集作用而成为后期成矿过程中重要铀来源之一,其成岩期排泄出还原性孔隙水可能是铀储层砂体中构建氧化-还原屏障的主要因素.沉积时的温暖潮湿气候增强了蚀源区化学风化作用强度,有利于母岩铀元素活化和淋漓及沉积区泥岩铀的预富集作用.

       

    • 图  1  松辽盆地西南部地质概况图(a~c;据郭福能,2017修改)和HLJ地区钻孔HLJ-15姚下段岩心沉积相分析柱状图(d)

      Fig.  1.  Geological map of study area in southwest Songliao basin (a-c; modified from Guo, 2017) and the histogram of sedimentary facies analysis from HLJ-15 borehole core in HLJ area (d)

      图  2  松辽盆地西南部姚家组下段典型野外钻孔岩石颜色照片

      a.钻孔ZK48-30,489.4~492.5 m,灰白色砂岩与暗色泥岩呈紧密伴生关系;b.为图a中对应点位①局部放大照片;c.钻孔ZK80-8,521.6 m,红色砂岩中发育红色泥砾;d.钻孔HLJ-15,641 m,灰白色砂岩中发育灰色泥砾;e.钻孔ZK40-8,560 m,浅红色砂岩中发育灰色和红色泥砾

      Fig.  2.  Rock color photos of typical field boreholes in the lower member of Yaojia Formation in the southwest of Songliao basin

      图  3  研究区钻孔HLJ-15姚家组下段泥岩样品Sc/Th、CIW与CIA交会图

      Fig.  3.  cross plot of Sc/Th, CIW and CIA of mudstone samples from the lower member of Yaojia Formation of Borehole HJL-15 in the study area

      图  4  研究区钻孔HLJ-15姚家组下段泥岩样品A-CN-K图解

      Fig.  4.  A-CN-K diagram of mudstone samples in the lower member of Yaojia Formation of Borehole HLJ-15 in the study area

      图  5  研究区钻孔HLJ-15姚家组下段泥岩代表性化学风化指标纵向变化曲线

      Fig.  5.  Longitudinal variation curve of representative chemical weathering indexes of mudstone from the lower member of Yaojia Formation of Borehole HLJ-15 in the study area

      图  6  研究区钻孔HLJ-15姚家组下段碎屑岩U含量、Fe2+/Fe3+、TOC含量变化曲线

      Fig.  6.  Variation curve of U content, Fe2+/Fe3+ and TOC content of clastic rocks in the lower section of Yaojia Formation from Borehole HLJ-15 in the study area

      图  7  研究区钻孔HLJ-15姚家组下段碎屑岩U含量与Fe2+/Fe3+和TOC含量交会图

      Fig.  7.  Cross plot of U content, Fe2+/Fe3+ and TOC content of clastic rocks in the lower member of Yaojia Formation from Borehole HLJ-15 in the study area

      图  8  松辽盆地西南部HLJ地区铀成矿模式(修改自焦养泉等,2015

      Fig.  8.  Uranium metallogenic model of HLJ area in the southwest of Songliao basin (modified from Jiao et al., 2015)

      表  1  松辽盆地西南部HLJ地区钻孔HLJ-15碎屑岩样品主、微量及化学风化指标值

      Table  1.   Main, trace and chemical weathering index values of clastic rock samples from Borehole HLJ-15 in HLJ area in southwest Songliao basin

      样品号 HPL-1 HPL-2 HPL-3 HPL-4 HPL-5 HPL-6 HPL-7 HPL-8 HPL-9 HPL-10 HPL-11 HPL-12 HPL-13 HPL-14 HPL-15 HPL-17 HPL-18 HPL-19 HPL-20
      岩性 红色泥岩 红色砂岩 红色泥岩 红色砂岩 红色砂岩 红色砂岩 暗色泥岩 灰色砂岩 灰色砂岩 灰色砂岩 暗色泥岩 暗色泥岩 灰色砂岩 灰色砂岩 灰色砂岩 红色泥岩 灰色砂岩 灰色砂岩 暗色泥岩
      深度(m) 720 714 708 705 702 700 690 686 680 676 674 672 670 668 660 656 652 650 646
      SiO2(%) 56.13 66.48 61.23 73.56 81.01 78.46 65.29 77.39 76.47 76.76 59.64 56.57 76.28 79.27 69.09 64.53 68.83 78.12 62.24
      Al2O3(%) 13.59 10.12 13.28 12.58 10.17 10.01 16.95 11.44 8.92 10.12 20.43 22.04 10.43 10.47 16.81 15.33 11.77 10.79 20.27
      TFe2O3(%) 4.47 1.48 3.96 2.02 1.42 1.46 3.41 1.56 1.83 1.25 3.26 3.36 1.60 1.26 2.23 7.48 2.23 1.17 2.33
      MgO(%) 2.770 2.980 1.840 0.307 0.195 0.626 0.943 0.424 0.924 0.861 1.180 1.350 0.712 0.395 0.582 0.860 1.460 0.492 0.953
      CaO(%) 5.510 4.990 4.670 2.080 0.296 1.380 0.736 0.859 2.470 1.980 0.539 0.569 1.750 0.829 0.209 0.340 3.340 1.010 0.197
      Na2O(%) 1.300 1.270 1.340 1.380 1.170 1.080 1.120 1.200 0.831 0.869 0.853 0.858 0.901 0.942 1.030 0.548 0.980 0.936 0.710
      K2O(%) 2.51 2.33 2.54 2.78 2.87 2.91 3.31 3.32 2.69 2.90 3.51 3.74 3.24 3.27 3.43 2.87 3.07 3.49 3.68
      MnO(%) 0.158 0.081 0.098 0.039 0.011 0.049 0.024 0.024 0.098 0.062 0.027 0.022 0.057 0.033 0.014 0.058 0.074 0.019 0.016
      TiO2(%) 0.622 0.347 0.616 0.375 0.427 0.244 0.778 0.301 0.253 0.358 0.876 0.915 0.237 0.263 0.804 0.725 0.496 0.241 0.928
      P2O5(%) 0.143 0.086 0.092 0.084 0.096 0.072 0.154 0.073 0.085 0.100 0.216 0.242 0.069 0.075 0.123 0.232 0.095 0.065 0.116
      Sc 12.30 10.10 8.28 10.90 12.50 12.50 10.40
      Th 7.58 8.22 12.20 17.00 18.10 13.00 14.30
      烧失量(%) 12.77 9.84 10.11 4.77 1.94 3.68 7.24 3.32 5.36 4.71 9.47 10.31 4.64 3.12 5.65 6.89 7.56 3.57 8.49
      FeO(%) 0.44 0.40 0.24 0.45 0.35 0.58 0.72 0.59 1.41 1.05 1.34 1.09 1.37 1.00 1.4 2.12 1.76 0.93 1.22
      有机C(%) 0.069 0.081 0.072 0.045 0.033 0.032 0.208 0.036 0.031 0.043 0.214 0.213 0.044 0.033 0.040 0.125 0.076 0.048 0.981
      U 1.61 1.16 1.60 1.22 2.42 2.16 6.64 2.93 14.70 260.00 6.97 885.00 19.00 5.60 3.76 2.84 11.60 5.91 4.49
      Fe2+/Fe3+ 0.123 0.431 0.072 0.330 0.379 0.794 0.308 0.728 6.070 14.625 0.845 0.566 20.790 7.647 2.328 0.462 7.294 7.750 1.401
      K/Na 2.16 2.12 3.31 4.60 4.88 5.86 5.80
      αALNa 2.68 2.54 3.88 6.14 6.59 10.06 7.32
      CPA 86.40 85.76 90.20 93.57 93.98 94.45 94.55
      CIX 73.65 72.80 75.72 79.67 80.12 79.24 79.71
      PIA 72.23 71.26 82.61 89.87 90.58 92.69 92.87
      CIW 76.48 75.78 85.77 91.60 92.18 94.09 94.19
      CIA 66.32 65.48 72.58 78.24 78.80 78.99 79.45
      Sc/Th 1.62 1.23 0.68 0.64 0.69 0.96 0.73
      样品号 HPL-23 HPL-24 HPL-25 HPL-26 HPL-27 HPL-29 HPL-30 HPL-31 HPL-32 HPL-33 HPL-34 HPL-36 HPL-37 HPL-39 HPL-40 HPL-48 HPL-55 HPL-56 HPL-58
      岩性 灰色砂岩 灰色砂岩 灰色砂岩 暗色泥岩 灰色砂岩 红色泥岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色泥岩 红色泥岩 红色砂岩 暗色泥岩 红色泥岩 红色泥岩 红色泥岩
      深度(m) 636 632 629 625 623 622 616 610 607 604 602 600 594 592 591 590 586 580 578
      SiO2(%) 79.98 70.94 77.65 53.67 77.12 65.9 78.08 77.22 77.51 75.16 71.54 74.19 64.68 62.37 73.05 52.94 62.49 63.5 66.39
      Al2O3(%) 9.29 13.00 10.68 23.07 11.37 15.10 12.05 11.79 12.26 13.07 13.05 13.24 16.48 16.12 12.98 14.96 16.1 16.21 15.26
      TFe2O3(%) 1.34 2.57 1.43 3.75 1.30 4.63 1.32 2.55 1.76 2.54 3.69 2.94 5.34 6.45 2.11 5.8 6.17 6.11 5.42
      MgO(%) 0.537 0.379 0.542 1.54 0.492 0.854 0.221 0.22 0.205 0.29 0.62 0.365 0.789 1.02 0.674 1.99 1.01 0.957 0.796
      CaO(%) 1.200 2.280 1.200 0.593 1.030 1.430 0.245 0.245 0.200 0.180 1.050 0.213 0.202 0.212 0.795 3.01 0.177 0.173 0.352
      Na2O(%) 0.881 1 0.987 1.02 1.25 0.802 1.54 1.52 1.59 1.49 1.38 1.47 1.32 1.36 1.53 1.42 1.43 1.4 1.42
      K2O(%) 3.10 3.32 3.36 3.98 3.50 3.00 3.74 3.35 3.61 3.54 3.19 3.36 3.56 3.94 3.56 2.81 3.89 3.84 3.84
      MnO(%) 0.035 0.074 0.027 0.021 0.036 0.07 0.008 0.017 0.012 0.011 0.062 0.015 0.018 0.023 0.024 0.073 0.031 0.024 0.018
      TiO2(%) 0.183 0.511 0.319 0.918 0.298 0.688 0.323 0.546 0.360 0.507 0.723 0.543 0.721 0.699 0.446 0.566 0.684 0.687 0.632
      P2O5(%) 0.050 0.158 0.070 0.160 0.055 0.250 0.082 0.100 0.070 0.095 0.111 0.089 0.146 0.167 0.088 0.128 0.118 0.098 0.071
      Sc 13.30 14.00 9.61 9.03 12.40 11.80 12.10 7.53
      Th 18.00 12.60 17.90 15.60 11.90 17.10 17.80 14.10
      烧失量(%) 3.38 5.71 3.70 11.26 3.45 7.13 2.29 2.35 2.36 3.02 4.55 3.56 6.66 7.62 4.69 16.23 7.81 6.92 5.79
      FeO(%) 0.99 0.98 1.05 0.92 0.62 0.77 0.50 0.46 0.34 0.35 0.44 0.36 0.34 0.59 0.47 1.98 0.63 0.58 0.49
      有机C(%) 0.046 0.065 0.066 0.536 0.044 0.053 0.059 0.050 0.030 0.052 0.042 0.052 0.039 0.056 0.043 1.850 0.117 0.078 0.084
      U 2.01 3.22 2.46 4.06 1.78 3.41 1.77 1.90 1.62 1.78 2.20 2.66 1.99 2.06 1.70 3.05 2.38 2.38 2.46
      Fe2+/Fe3+ 4.657 0.739 4.500 0.376 1.134 0.227 0.730 0.252 0.274 0.181 0.153 0.158 0.076 0.113 0.330 0.614 0.128 0.118 0.112
      K/Na 4.36 4.18 3.02 3.24 2.21 3.04 3.07 3.02
      αAlNa 5.80 4.83 3.20 3.04 2.70 2.89 2.97 2.76
      CPA 93.22 91.96 88.36 87.81 86.49 87.25 87.56 86.72
      CIX 79.37 76.75 73.20 71.22 73.53 71.01 71.47 70.12
      PIA 88.77 83.51 85.20 84.05 73.13 83.23 83.47 79.82
      CIW 90.68 86.59 88.26 87.76 77.37 87.06 87.17 84.47
      CIA 77.52 72.97 73.13 71.19 66.83 70.88 71.22 68.64
      Sc/Th 0.74 1.11 0.54 0.58 1.04 0.69 0.68 0.53
      注:TFe2O3(%)表示样品中以Fe2O3形式的全铁总含量;K/Na、αAlNa、CPACIXPIACIWCIA计算公式参照表 2;Sc、Th和U单位为μg/g;HPL-9,HPL-10,HPL-11,HPL-12,HPL-13,HPL-14样品来自含矿层段.
      下载: 导出CSV

      表  2  化学风化指数及其计算公式

      Table  2.   Chemical weathering index and its calculation formula

      风化指标 计算公式 参考文献
      K/Na (K2O×0.83)/(Na2O×0.74) Guo et al., 2018
      aAlNa (Al/Na)样品/(Al/Na)UCC Garzanti et al., 2013
      CPA 100×(Al2O3)/(Al2O3+Na2O) Cullers, 2000
      CIX 100×(Al2O3)/(Al2O3+Na2O+K2O) Garzanti et al., 2014
      PIA 100×(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O) Fedo et al., 1995
      CIW 100×Al2O3/(Al2O3+CaO*+Na2O) Harnois, 1988
      CIA 100×Al2O3/(Al2O3+CaO*+Na2O+K2O) Nesbitt and Young, 1982
      注:K/Na和aAlNa式中化学分子式代表质量百分比,其他式中分子式代表摩尔百分比;UCC代表上陆壳;CaO*是指硅酸盐中CaO含量.
      下载: 导出CSV

      表  3  研究区钻孔HLJ-15姚家组下段碎屑岩U含量、Fe2+/Fe3+和TOC含量

      Table  3.   Statistical data of U content, Fe2+/Fe3+ and TOC content of clastic rocks in the lower member of Yaojia Formation from Borehole HLJ-15 in the study area

      区域 岩性 有机碳含量(%) Fe2+/Fe3+ U(×10-6
      范围 平均值 范围 平均值 范围 平均值
      松辽盆地HLJ地区 红色泥岩 0.04~0.13 0.08 0.07~0.46 0.16 1.60~3.41 2.30
      红色砂岩 0.03~0.08 0.05 0.15~0.79 0.40 1.16~3.22 1.98
      暗色泥岩 0.21~1.85 0.61 0.31~2.56 0.95 3.05~885 131.97
      灰色砂岩 0.03~0.08 0.05 0.73~20.79 7.05 1.78~260 29.98
      伊犁盆地洪海沟 铀矿石带(砂岩) 0.58 1.59 544.26
      注:伊犁盆地洪海沟地区数据引自陈奋雄等(2016).
      下载: 导出CSV
    • Bao, J., Song, C. H., Yang, Y. B., et al., 2019. Reduced Chemical Weathering Intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. Journal of Asian Earth Sciences, 170: 155-165. https://doi.org/10.1016/j.jseaes.2018.10.018
      Bonnetti, C., Cuney, M., Malartre, F., et al., 2015. The Nuheting Deposit, Erlian Basin, NE China: Synsedimentary to Diagenetic Uranium Mineralization. Ore Geology Reviews, 69: 118-139. https://doi.org/10.1016/j.oregeorev.2015.02.010
      Cai, C. F., Li, H. T., Qin, M. K., et al., 2007. Biogenic and Petroleum-Related Ore-Forming Processes in Dongsheng Uranium Deposit, NW China. Ore Geology Reviews, 32(1-2): 262-274. https://doi.org/10.1016/j.oregeorev.2006.05.003
      Cai, J. F., Yan, Z. B., Zhang, L. L., et al., 2018. Relationship between Grey Sandstone and Uranium Mineralization in Yaojia Formation of Upper Cretaceous in Tongliao, Inner Mongolia. Journal of East China University of Technology (Natural Science), 41(4): 328-335 (in Chinese with English abstract).
      Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466 (in Chinese with English abstract).
      Chen, D. S., Liu, W. S., Jia, L. C., 2011. Paleo-Climate Evolution in China and Its Control on the Metallization of Sandstone Type Uranium Deposit of Meso-Cenozoic Basins. Uranium Geology, 27(6): 321-326, 344 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2011.06.001
      Chen, F. X., Nie, F. J., Zhang, C. Y., et al., 2016. Geological Characteristics and Genetic Mechanism of the Honghaigou Uranium Deposit in the Southern Margin of Yili Basin. Acta Geologica Sinica, 90(12): 3324-3336 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.12.003
      Chen, Z. Y., Guo, Q. Y., 2007. Mechanism of U-Reduction and Concentration by Sulphides at Sandstone Type Uranium Deposits. Uranium Geology, 23(6): 321-327, 334 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.001
      Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8
      Cuney, M., 2009. The Extreme Diversity of Uranium Deposits. Mineralium Deposita, 44(1): 3-9. https://doi.org/10.1007/s00126-008-0223-1
      Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921: uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2
      Friedrich, O., Norris, R. D., Erbacher, J., 2012. Evolution of Middle to Late Cretaceous Oceans-A 55 M. y. Record of Earth's Temperature and Carbon Cycle. Geology, 40(2): 107-110. https://doi.org/10.1130/g32701.1
      Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060
      Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance Versus Weathering Control on the Composition of Tropical River Mud (Southern Africa). Chemical Geology, 366: 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016
      Guo, F. N., 2017. Uranium Metallogenic Regularity and Prospect Prediction of Upper Cretaceous Yaojia Formation in Southern Songliao Basin (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract).
      Guo, W., 2007. The Study of Cretaceous Tectono-Sedimentary Evolution and Petroleum Accumulation Dynamics in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Guo, Y. L., Yang, S. Y., Su, N., et al., 2018. Revisiting the Effects of Hydrodynamic Sorting and Sedimentary Recycling on Chemical Weathering Indices. Geochimica et Cosmochimica Acta, 227: 48-63. https://doi.org/10.1016/j.gca.2018.02.015
      Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3-4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
      Hou, M. C., Jiang, W. J., Ni, S. J., et al., 2016. Geochemical Characteristic of the Lower and Middle Jurassic Clastic Rocks in the Southern Margin of the Yili Basin, Xinjiang and Its Constraints on Provenance. Acta Geologica Sinica, 90(12): 3337-3351 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.12.004
      Hu, X. W., Yang, X. Y., Ren, Y. S., et al., 2020. Sedimentary Environment and Tectonic Evolution of Junggar Basin: Constrains on the Mineralization of Sandstone-Type Uranium Deposits. Geotectonica et Metallogenia, 44(4): 725-741 (in Chinese with English abstract).
      Jiang, H. Y., Xia, Y. Q., Liu, S. P., et al., 2021. Weathering Intensity and Color Genesis of Continental Sediments: A Case Study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan Basin. Acta Sedimentologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2021.149
      Jiang, W. J., Qin, M. K., Fan, H. H., et al., 2022. Study on the Relationship between Diagenesis of Cretaceous Yaojia Formation Clastic Rocks and Uranium Mineralization in the Southwest of Songliao Basin. Uranium Geology, 38(2): 181-193 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English abstract).
      Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin "Red and Black Beds" Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract).
      Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract).
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Ning, J., Xia, F., Nie, F. J., et al., 2018. Analysis of the Relation between Uranium Mineralization and the Grey Sand Body in the Lower Part of Yaojia Formation in the South of Songliao Basin. Journal of East China University of Technology (Natural Science), 41(4): 336-342 (in Chinese with English abstract).
      Qin, M. K., He, Z. B., Liu, Z. Y., et al., 2017. Study on Metallogenic Environments and Prospective Direction of Sandstone Type Uranium Deposits in Junggar Basin. Geological Review, 63(5): 1255-1269 (in Chinese with English abstract).
      Romer, R. L., Cuney, M., 2018. Phanerozoic Uranium Mineralization in Variscan Europe-More than 400 Ma of Tectonic, Supergene, and Climate-Controlled Uranium Redistribution. Ore Geology Reviews, 102: 474-504. https://doi.org/10.1016/j.oregeorev.2018.09.013
      Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336
      Wang, M., Wu, B. L., Li, Y. Q., et al., 2022. Experimental Study on Possibility of Deep Uranium-Rich Source Rocks Providing Uranium Source in Ordos Basin. Earth Science, 47(1): 224-239 (in Chinese with English abstract).
      Xia, Y. L., Liu, H. B., 2005. Pre-Enrichment and Metallogeny of Uranium in Zhiluo Formation Sand Bodies of Dongsheng Area, Ordos Basin. World Nuclear Geoscience, 22(4): 187-191 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2005.04.001
      Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract).
      Xu, Z. L., Li, J. G., Zhu, Q., et al., 2019. Late Cretaceous Paleoclimate Change and Its Impact on Uranium Mineralization in the Kailu Depression, Southwest Songliao Basin. Ore Geology Reviews, 104: 403-421. https://doi.org/10.1016/j.oregeorev.2018.10.020
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2016. Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices. Geological Society of America Bulletin, 128(5-6): 739-751. https://doi.org/10.1130/b31371.1
      Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921 (in Chinese with English abstract).
      Yu, W. B., 2009. Research on Metallogenic Conditions of Sandstone Type Uranium Deposit of Cretaceous in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      蔡建芳, 严兆彬, 张亮亮, 等, 2018. 内蒙古通辽地区上白垩统姚家组灰色砂体成因及其与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 328-335. doi: 10.3969/j.issn.1674-3504.2018.04.004
      曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375
      陈戴生, 刘武生, 贾立城, 2011. 我国中新生代古气候演化及其对盆地砂岩型铀矿的控制作用. 铀矿地质, 27(6): 321-326, 344. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201106001.htm
      陈奋雄, 聂逢君, 张成勇, 等, 2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究. 地质学报, 90(12): 3324-3336. doi: 10.3969/j.issn.0001-5717.2016.12.003
      陈祖伊, 郭庆银, 2007. 砂岩型铀矿床硫化物还原富集铀的机制. 铀矿地质, 23(6): 321-327, 334. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200706000.htm
      郭福能, 2017. 松辽盆地西南部上白垩统姚家组铀成矿规律与远景预测(硕士学位论文). 南昌: 东华理工大学.
      郭巍, 2007. 松辽盆地南部白垩纪构造沉积演化与成藏动力学研究(博士学位论文). 长春: 吉林大学.
      侯明才, 江文剑, 倪师军, 等, 2016. 伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约. 地质学报, 90(12): 3337-3351. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612004.htm
      胡小文, 杨晓勇, 任伊苏, 等, 2020. 准噶尔盆地沉积环境-构造演化对砂岩型铀矿成矿的控制作用. 大地构造与成矿学, 44(4): 725-741. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004014.htm
      蒋昊原, 夏燕青, 刘善品, 等, 2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 网络首发. https://doi.org/10.14027/j.issn.1000-0550.2021.149
      江文剑, 秦明宽, 范洪海, 等, 2022. 松辽盆地西南部白垩系姚家组碎屑岩成岩作用与铀成矿. 铀矿地质, 38(2): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202202003.htm
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      金若时, 程银行, 李建国, 等, 2017. 中国北方晚中生代陆相盆地红-黑岩系耦合产出对砂岩型铀矿成矿环境的制约. 中国地质, 44(2): 205-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702002.htm
      李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望. 高校地质学报, 28(1): 51-63 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202201004.htm
      宁君, 夏菲, 聂逢君, 等, 2018. 浅析松辽盆地南部姚下段灰色砂体与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 336-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804005.htm
      秦明宽, 何中波, 刘章月, 等, 2017. 准噶尔盆地砂岩型铀矿成矿环境与找矿方向研究. 地质论评, 63(5): 1255-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705010.htm
      王苗, 吴柏林, 李艳青, 等, 2022. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究. 地球科学, 47(1): 224-239. doi: 10.3799/dqkx.2021.050
      夏毓亮, 刘汉彬, 2005. 鄂尔多斯盆地东胜地区直罗组砂体铀的预富集与铀成矿. 世界核地质科学, 22(4): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200504002.htm
      谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164
      杨江海, 马严, 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
      于文斌, 2009. 松辽盆地南部白垩系砂岩型铀矿成矿(博士学位论文). 长春: 吉林大学.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  606
    • HTML全文浏览量:  601
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-20
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回