Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin
-
摘要: 含铀岩系沉积时的古气候条件对铀成矿起着重要的控制作用,但是长期以来未引起人们足够重视.以松辽盆地西南部HLJ地区含矿目的层姚家组下段为研究对象,通过对代表性钻孔岩心的泥岩样品进行全岩主、微量元素和TOC测试,采用K/Na、aAlNa、CPA、CIX、PIA、CIW、CIA等多项化学风化指标来判断样品化学风化作用强度,重建其沉积时期古气候条件.同时,结合U和TOC含量及Fe2+/Fe3+比值来探讨含铀岩系沉积时的古气候条件对铀成矿的制约.结果表明,目的层碎屑岩经历了由弱-强-弱的化学风化作用,显示其沉积时的古气候由相对寒冷干旱-相对温暖潮湿-相对寒冷干旱的演变规律.这种古气候变化导致了铀储层砂体中TOC含量低(平均值0.05%),层间氧化带发育规模大,铀矿体主要形成于远离蚀源区的盆地腹部;形成于潮湿气候条件下的暗色泥岩具有更高TOC(平均值0.61%)和U含量(最高可达885×10-6),其沉积时发生了强烈的预富集作用而成为后期成矿过程中重要铀来源之一,其成岩期排泄出还原性孔隙水可能是铀储层砂体中构建氧化-还原屏障的主要因素.沉积时的温暖潮湿气候增强了蚀源区化学风化作用强度,有利于母岩铀元素活化和淋漓及沉积区泥岩铀的预富集作用.Abstract: Although, the paleoclimate plays an important role in controlling uranium mineralization during the deposition of uranium-bearing rocks, it has not attracted enough attention of uranium geologists for a long time. The lower member of Yaojia formation is the ore bearing target layer in the southwest of Songliao basin. Taking the lower member of Yaojia formation as the research object, the contents of the main and trace elements and total organic carbon of mudstone samples from representative boreholes were tested. A number of chemical weathering indexes, such as K/Na ratio, aAlNa, chemical proxy of alteration (CPA), modified chemical index of alteration (CIX), plagioclase index of alteration (PIA), chemical index of weathering (CIW), chemical index of alteration (CIA), are used to judge the intensity of chemical weathering of the samples, and reconstruct the paleoclimate conditions during the depositional period. At the same time, combined with the contents of U and TOC and the ratio of Fe2+/Fe3+, the constraints of paleoclimate conditions on uranium mineralization during the deposition of uranium-bearing rock series in the study area are discussed. The results show that the clastic rocks in the study area have experienced the change of chemical weathering intensity from weak to strong to weak, indicating that the evolution law of paleoclimate from relative cold and drought to relative warm and humidity to relative cold and drought. This paleoclimate change leads to low TOC content in uranium reservoir sand bodies (average value 0.05%) and large-scale development of interlayer oxidation zone, so uranium ore bodies are mainly located in the hinterland of the basin far away from the erosion source area. Dark mudstone formed in humid climate has higher TOC (average 0.61%) and U content (up to 885×10-6). It has become one of the important sources of uranium due to its strong preconcentration during deposition. The discharge of reducing pore water during diagenesis may be the main factor for the construction of oxidation-reduction barrier in uranium reservoir sand bodies. During deposition, the warm and humid climate enhances the intensity of chemical weathering in the source area, which is conducive to the activation and leaching of uranium in the parent rock and the uranium preconcentration of mudstone in the sedimentary area.
-
图 2 松辽盆地西南部姚家组下段典型野外钻孔岩石颜色照片
a.钻孔ZK48-30,489.4~492.5 m,灰白色砂岩与暗色泥岩呈紧密伴生关系;b.为图a中对应点位①局部放大照片;c.钻孔ZK80-8,521.6 m,红色砂岩中发育红色泥砾;d.钻孔HLJ-15,641 m,灰白色砂岩中发育灰色泥砾;e.钻孔ZK40-8,560 m,浅红色砂岩中发育灰色和红色泥砾
Fig. 2. Rock color photos of typical field boreholes in the lower member of Yaojia Formation in the southwest of Songliao basin
图 8 松辽盆地西南部HLJ地区铀成矿模式(修改自焦养泉等,2015)
Fig. 8. Uranium metallogenic model of HLJ area in the southwest of Songliao basin (modified from Jiao et al., 2015)
表 1 松辽盆地西南部HLJ地区钻孔HLJ-15碎屑岩样品主、微量及化学风化指标值
Table 1. Main, trace and chemical weathering index values of clastic rock samples from Borehole HLJ-15 in HLJ area in southwest Songliao basin
样品号 HPL-1 HPL-2 HPL-3 HPL-4 HPL-5 HPL-6 HPL-7 HPL-8 HPL-9 HPL-10 HPL-11 HPL-12 HPL-13 HPL-14 HPL-15 HPL-17 HPL-18 HPL-19 HPL-20 岩性 红色泥岩 红色砂岩 红色泥岩 红色砂岩 红色砂岩 红色砂岩 暗色泥岩 灰色砂岩 灰色砂岩 灰色砂岩 暗色泥岩 暗色泥岩 灰色砂岩 灰色砂岩 灰色砂岩 红色泥岩 灰色砂岩 灰色砂岩 暗色泥岩 深度(m) 720 714 708 705 702 700 690 686 680 676 674 672 670 668 660 656 652 650 646 SiO2(%) 56.13 66.48 61.23 73.56 81.01 78.46 65.29 77.39 76.47 76.76 59.64 56.57 76.28 79.27 69.09 64.53 68.83 78.12 62.24 Al2O3(%) 13.59 10.12 13.28 12.58 10.17 10.01 16.95 11.44 8.92 10.12 20.43 22.04 10.43 10.47 16.81 15.33 11.77 10.79 20.27 TFe2O3(%) 4.47 1.48 3.96 2.02 1.42 1.46 3.41 1.56 1.83 1.25 3.26 3.36 1.60 1.26 2.23 7.48 2.23 1.17 2.33 MgO(%) 2.770 2.980 1.840 0.307 0.195 0.626 0.943 0.424 0.924 0.861 1.180 1.350 0.712 0.395 0.582 0.860 1.460 0.492 0.953 CaO(%) 5.510 4.990 4.670 2.080 0.296 1.380 0.736 0.859 2.470 1.980 0.539 0.569 1.750 0.829 0.209 0.340 3.340 1.010 0.197 Na2O(%) 1.300 1.270 1.340 1.380 1.170 1.080 1.120 1.200 0.831 0.869 0.853 0.858 0.901 0.942 1.030 0.548 0.980 0.936 0.710 K2O(%) 2.51 2.33 2.54 2.78 2.87 2.91 3.31 3.32 2.69 2.90 3.51 3.74 3.24 3.27 3.43 2.87 3.07 3.49 3.68 MnO(%) 0.158 0.081 0.098 0.039 0.011 0.049 0.024 0.024 0.098 0.062 0.027 0.022 0.057 0.033 0.014 0.058 0.074 0.019 0.016 TiO2(%) 0.622 0.347 0.616 0.375 0.427 0.244 0.778 0.301 0.253 0.358 0.876 0.915 0.237 0.263 0.804 0.725 0.496 0.241 0.928 P2O5(%) 0.143 0.086 0.092 0.084 0.096 0.072 0.154 0.073 0.085 0.100 0.216 0.242 0.069 0.075 0.123 0.232 0.095 0.065 0.116 Sc 12.30 10.10 8.28 10.90 12.50 12.50 10.40 Th 7.58 8.22 12.20 17.00 18.10 13.00 14.30 烧失量(%) 12.77 9.84 10.11 4.77 1.94 3.68 7.24 3.32 5.36 4.71 9.47 10.31 4.64 3.12 5.65 6.89 7.56 3.57 8.49 FeO(%) 0.44 0.40 0.24 0.45 0.35 0.58 0.72 0.59 1.41 1.05 1.34 1.09 1.37 1.00 1.4 2.12 1.76 0.93 1.22 有机C(%) 0.069 0.081 0.072 0.045 0.033 0.032 0.208 0.036 0.031 0.043 0.214 0.213 0.044 0.033 0.040 0.125 0.076 0.048 0.981 U 1.61 1.16 1.60 1.22 2.42 2.16 6.64 2.93 14.70 260.00 6.97 885.00 19.00 5.60 3.76 2.84 11.60 5.91 4.49 Fe2+/Fe3+ 0.123 0.431 0.072 0.330 0.379 0.794 0.308 0.728 6.070 14.625 0.845 0.566 20.790 7.647 2.328 0.462 7.294 7.750 1.401 K/Na 2.16 2.12 3.31 4.60 4.88 5.86 5.80 αALNa 2.68 2.54 3.88 6.14 6.59 10.06 7.32 CPA 86.40 85.76 90.20 93.57 93.98 94.45 94.55 CIX 73.65 72.80 75.72 79.67 80.12 79.24 79.71 PIA 72.23 71.26 82.61 89.87 90.58 92.69 92.87 CIW 76.48 75.78 85.77 91.60 92.18 94.09 94.19 CIA 66.32 65.48 72.58 78.24 78.80 78.99 79.45 Sc/Th 1.62 1.23 0.68 0.64 0.69 0.96 0.73 样品号 HPL-23 HPL-24 HPL-25 HPL-26 HPL-27 HPL-29 HPL-30 HPL-31 HPL-32 HPL-33 HPL-34 HPL-36 HPL-37 HPL-39 HPL-40 HPL-48 HPL-55 HPL-56 HPL-58 岩性 灰色砂岩 灰色砂岩 灰色砂岩 暗色泥岩 灰色砂岩 红色泥岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色砂岩 红色泥岩 红色泥岩 红色砂岩 暗色泥岩 红色泥岩 红色泥岩 红色泥岩 深度(m) 636 632 629 625 623 622 616 610 607 604 602 600 594 592 591 590 586 580 578 SiO2(%) 79.98 70.94 77.65 53.67 77.12 65.9 78.08 77.22 77.51 75.16 71.54 74.19 64.68 62.37 73.05 52.94 62.49 63.5 66.39 Al2O3(%) 9.29 13.00 10.68 23.07 11.37 15.10 12.05 11.79 12.26 13.07 13.05 13.24 16.48 16.12 12.98 14.96 16.1 16.21 15.26 TFe2O3(%) 1.34 2.57 1.43 3.75 1.30 4.63 1.32 2.55 1.76 2.54 3.69 2.94 5.34 6.45 2.11 5.8 6.17 6.11 5.42 MgO(%) 0.537 0.379 0.542 1.54 0.492 0.854 0.221 0.22 0.205 0.29 0.62 0.365 0.789 1.02 0.674 1.99 1.01 0.957 0.796 CaO(%) 1.200 2.280 1.200 0.593 1.030 1.430 0.245 0.245 0.200 0.180 1.050 0.213 0.202 0.212 0.795 3.01 0.177 0.173 0.352 Na2O(%) 0.881 1 0.987 1.02 1.25 0.802 1.54 1.52 1.59 1.49 1.38 1.47 1.32 1.36 1.53 1.42 1.43 1.4 1.42 K2O(%) 3.10 3.32 3.36 3.98 3.50 3.00 3.74 3.35 3.61 3.54 3.19 3.36 3.56 3.94 3.56 2.81 3.89 3.84 3.84 MnO(%) 0.035 0.074 0.027 0.021 0.036 0.07 0.008 0.017 0.012 0.011 0.062 0.015 0.018 0.023 0.024 0.073 0.031 0.024 0.018 TiO2(%) 0.183 0.511 0.319 0.918 0.298 0.688 0.323 0.546 0.360 0.507 0.723 0.543 0.721 0.699 0.446 0.566 0.684 0.687 0.632 P2O5(%) 0.050 0.158 0.070 0.160 0.055 0.250 0.082 0.100 0.070 0.095 0.111 0.089 0.146 0.167 0.088 0.128 0.118 0.098 0.071 Sc 13.30 14.00 9.61 9.03 12.40 11.80 12.10 7.53 Th 18.00 12.60 17.90 15.60 11.90 17.10 17.80 14.10 烧失量(%) 3.38 5.71 3.70 11.26 3.45 7.13 2.29 2.35 2.36 3.02 4.55 3.56 6.66 7.62 4.69 16.23 7.81 6.92 5.79 FeO(%) 0.99 0.98 1.05 0.92 0.62 0.77 0.50 0.46 0.34 0.35 0.44 0.36 0.34 0.59 0.47 1.98 0.63 0.58 0.49 有机C(%) 0.046 0.065 0.066 0.536 0.044 0.053 0.059 0.050 0.030 0.052 0.042 0.052 0.039 0.056 0.043 1.850 0.117 0.078 0.084 U 2.01 3.22 2.46 4.06 1.78 3.41 1.77 1.90 1.62 1.78 2.20 2.66 1.99 2.06 1.70 3.05 2.38 2.38 2.46 Fe2+/Fe3+ 4.657 0.739 4.500 0.376 1.134 0.227 0.730 0.252 0.274 0.181 0.153 0.158 0.076 0.113 0.330 0.614 0.128 0.118 0.112 K/Na 4.36 4.18 3.02 3.24 2.21 3.04 3.07 3.02 αAlNa 5.80 4.83 3.20 3.04 2.70 2.89 2.97 2.76 CPA 93.22 91.96 88.36 87.81 86.49 87.25 87.56 86.72 CIX 79.37 76.75 73.20 71.22 73.53 71.01 71.47 70.12 PIA 88.77 83.51 85.20 84.05 73.13 83.23 83.47 79.82 CIW 90.68 86.59 88.26 87.76 77.37 87.06 87.17 84.47 CIA 77.52 72.97 73.13 71.19 66.83 70.88 71.22 68.64 Sc/Th 0.74 1.11 0.54 0.58 1.04 0.69 0.68 0.53 注:TFe2O3(%)表示样品中以Fe2O3形式的全铁总含量;K/Na、αAlNa、CPA、CIX、PIA、CIW和CIA计算公式参照表 2;Sc、Th和U单位为μg/g;HPL-9,HPL-10,HPL-11,HPL-12,HPL-13,HPL-14样品来自含矿层段. 表 2 化学风化指数及其计算公式
Table 2. Chemical weathering index and its calculation formula
风化指标 计算公式 参考文献 K/Na (K2O×0.83)/(Na2O×0.74) Guo et al., 2018 aAlNa (Al/Na)样品/(Al/Na)UCC Garzanti et al., 2013 CPA 100×(Al2O3)/(Al2O3+Na2O) Cullers, 2000 CIX 100×(Al2O3)/(Al2O3+Na2O+K2O) Garzanti et al., 2014 PIA 100×(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O) Fedo et al., 1995 CIW 100×Al2O3/(Al2O3+CaO*+Na2O) Harnois, 1988 CIA 100×Al2O3/(Al2O3+CaO*+Na2O+K2O) Nesbitt and Young, 1982 注:K/Na和aAlNa式中化学分子式代表质量百分比,其他式中分子式代表摩尔百分比;UCC代表上陆壳;CaO*是指硅酸盐中CaO含量. 表 3 研究区钻孔HLJ-15姚家组下段碎屑岩U含量、Fe2+/Fe3+和TOC含量
Table 3. Statistical data of U content, Fe2+/Fe3+ and TOC content of clastic rocks in the lower member of Yaojia Formation from Borehole HLJ-15 in the study area
区域 岩性 有机碳含量(%) Fe2+/Fe3+ U(×10-6) 范围 平均值 范围 平均值 范围 平均值 松辽盆地HLJ地区 红色泥岩 0.04~0.13 0.08 0.07~0.46 0.16 1.60~3.41 2.30 红色砂岩 0.03~0.08 0.05 0.15~0.79 0.40 1.16~3.22 1.98 暗色泥岩 0.21~1.85 0.61 0.31~2.56 0.95 3.05~885 131.97 灰色砂岩 0.03~0.08 0.05 0.73~20.79 7.05 1.78~260 29.98 伊犁盆地洪海沟 铀矿石带(砂岩) — 0.58 — 1.59 — 544.26 注:伊犁盆地洪海沟地区数据引自陈奋雄等(2016). -
Bao, J., Song, C. H., Yang, Y. B., et al., 2019. Reduced Chemical Weathering Intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. Journal of Asian Earth Sciences, 170: 155-165. https://doi.org/10.1016/j.jseaes.2018.10.018 Bonnetti, C., Cuney, M., Malartre, F., et al., 2015. The Nuheting Deposit, Erlian Basin, NE China: Synsedimentary to Diagenetic Uranium Mineralization. Ore Geology Reviews, 69: 118-139. https://doi.org/10.1016/j.oregeorev.2015.02.010 Cai, C. F., Li, H. T., Qin, M. K., et al., 2007. Biogenic and Petroleum-Related Ore-Forming Processes in Dongsheng Uranium Deposit, NW China. Ore Geology Reviews, 32(1-2): 262-274. https://doi.org/10.1016/j.oregeorev.2006.05.003 Cai, J. F., Yan, Z. B., Zhang, L. L., et al., 2018. Relationship between Grey Sandstone and Uranium Mineralization in Yaojia Formation of Upper Cretaceous in Tongliao, Inner Mongolia. Journal of East China University of Technology (Natural Science), 41(4): 328-335 (in Chinese with English abstract). Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466 (in Chinese with English abstract). Chen, D. S., Liu, W. S., Jia, L. C., 2011. Paleo-Climate Evolution in China and Its Control on the Metallization of Sandstone Type Uranium Deposit of Meso-Cenozoic Basins. Uranium Geology, 27(6): 321-326, 344 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2011.06.001 Chen, F. X., Nie, F. J., Zhang, C. Y., et al., 2016. Geological Characteristics and Genetic Mechanism of the Honghaigou Uranium Deposit in the Southern Margin of Yili Basin. Acta Geologica Sinica, 90(12): 3324-3336 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.12.003 Chen, Z. Y., Guo, Q. Y., 2007. Mechanism of U-Reduction and Concentration by Sulphides at Sandstone Type Uranium Deposits. Uranium Geology, 23(6): 321-327, 334 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.001 Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8 Cuney, M., 2009. The Extreme Diversity of Uranium Deposits. Mineralium Deposita, 44(1): 3-9. https://doi.org/10.1007/s00126-008-0223-1 Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091-7613(1995)0230921: uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 Friedrich, O., Norris, R. D., Erbacher, J., 2012. Evolution of Middle to Late Cretaceous Oceans-A 55 M. y. Record of Earth's Temperature and Carbon Cycle. Geology, 40(2): 107-110. https://doi.org/10.1130/g32701.1 Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060 Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance Versus Weathering Control on the Composition of Tropical River Mud (Southern Africa). Chemical Geology, 366: 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016 Guo, F. N., 2017. Uranium Metallogenic Regularity and Prospect Prediction of Upper Cretaceous Yaojia Formation in Southern Songliao Basin (Dissertation). East China University of Technology, Nanchang (in Chinese with English abstract). Guo, W., 2007. The Study of Cretaceous Tectono-Sedimentary Evolution and Petroleum Accumulation Dynamics in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Guo, Y. L., Yang, S. Y., Su, N., et al., 2018. Revisiting the Effects of Hydrodynamic Sorting and Sedimentary Recycling on Chemical Weathering Indices. Geochimica et Cosmochimica Acta, 227: 48-63. https://doi.org/10.1016/j.gca.2018.02.015 Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3-4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6 Hou, M. C., Jiang, W. J., Ni, S. J., et al., 2016. Geochemical Characteristic of the Lower and Middle Jurassic Clastic Rocks in the Southern Margin of the Yili Basin, Xinjiang and Its Constraints on Provenance. Acta Geologica Sinica, 90(12): 3337-3351 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.12.004 Hu, X. W., Yang, X. Y., Ren, Y. S., et al., 2020. Sedimentary Environment and Tectonic Evolution of Junggar Basin: Constrains on the Mineralization of Sandstone-Type Uranium Deposits. Geotectonica et Metallogenia, 44(4): 725-741 (in Chinese with English abstract). Jiang, H. Y., Xia, Y. Q., Liu, S. P., et al., 2021. Weathering Intensity and Color Genesis of Continental Sediments: A Case Study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan Basin. Acta Sedimentologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000-0550.2021.149 Jiang, W. J., Qin, M. K., Fan, H. H., et al., 2022. Study on the Relationship between Diagenesis of Cretaceous Yaojia Formation Clastic Rocks and Uranium Mineralization in the Southwest of Songliao Basin. Uranium Geology, 38(2): 181-193 (in Chinese with English abstract). Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract). Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract). Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English abstract). Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin "Red and Black Beds" Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract). Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract). Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 Ning, J., Xia, F., Nie, F. J., et al., 2018. Analysis of the Relation between Uranium Mineralization and the Grey Sand Body in the Lower Part of Yaojia Formation in the South of Songliao Basin. Journal of East China University of Technology (Natural Science), 41(4): 336-342 (in Chinese with English abstract). Qin, M. K., He, Z. B., Liu, Z. Y., et al., 2017. Study on Metallogenic Environments and Prospective Direction of Sandstone Type Uranium Deposits in Junggar Basin. Geological Review, 63(5): 1255-1269 (in Chinese with English abstract). Romer, R. L., Cuney, M., 2018. Phanerozoic Uranium Mineralization in Variscan Europe-More than 400 Ma of Tectonic, Supergene, and Climate-Controlled Uranium Redistribution. Ore Geology Reviews, 102: 474-504. https://doi.org/10.1016/j.oregeorev.2018.09.013 Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336 Wang, M., Wu, B. L., Li, Y. Q., et al., 2022. Experimental Study on Possibility of Deep Uranium-Rich Source Rocks Providing Uranium Source in Ordos Basin. Earth Science, 47(1): 224-239 (in Chinese with English abstract). Xia, Y. L., Liu, H. B., 2005. Pre-Enrichment and Metallogeny of Uranium in Zhiluo Formation Sand Bodies of Dongsheng Area, Ordos Basin. World Nuclear Geoscience, 22(4): 187-191 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2005.04.001 Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract). Xu, Z. L., Li, J. G., Zhu, Q., et al., 2019. Late Cretaceous Paleoclimate Change and Its Impact on Uranium Mineralization in the Kailu Depression, Southwest Songliao Basin. Ore Geology Reviews, 104: 403-421. https://doi.org/10.1016/j.oregeorev.2018.10.020 Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2016. Reconstructing Early Permian Tropical Climates from Chemical Weathering Indices. Geological Society of America Bulletin, 128(5-6): 739-751. https://doi.org/10.1130/b31371.1 Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921 (in Chinese with English abstract). Yu, W. B., 2009. Research on Metallogenic Conditions of Sandstone Type Uranium Deposit of Cretaceous in Southern Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). 蔡建芳, 严兆彬, 张亮亮, 等, 2018. 内蒙古通辽地区上白垩统姚家组灰色砂体成因及其与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 328-335. doi: 10.3969/j.issn.1674-3504.2018.04.004 曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375 陈戴生, 刘武生, 贾立城, 2011. 我国中新生代古气候演化及其对盆地砂岩型铀矿的控制作用. 铀矿地质, 27(6): 321-326, 344. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201106001.htm 陈奋雄, 聂逢君, 张成勇, 等, 2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究. 地质学报, 90(12): 3324-3336. doi: 10.3969/j.issn.0001-5717.2016.12.003 陈祖伊, 郭庆银, 2007. 砂岩型铀矿床硫化物还原富集铀的机制. 铀矿地质, 23(6): 321-327, 334. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200706000.htm 郭福能, 2017. 松辽盆地西南部上白垩统姚家组铀成矿规律与远景预测(硕士学位论文). 南昌: 东华理工大学. 郭巍, 2007. 松辽盆地南部白垩纪构造沉积演化与成藏动力学研究(博士学位论文). 长春: 吉林大学. 侯明才, 江文剑, 倪师军, 等, 2016. 伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约. 地质学报, 90(12): 3337-3351. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612004.htm 胡小文, 杨晓勇, 任伊苏, 等, 2020. 准噶尔盆地沉积环境-构造演化对砂岩型铀矿成矿的控制作用. 大地构造与成矿学, 44(4): 725-741. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004014.htm 蒋昊原, 夏燕青, 刘善品, 等, 2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 网络首发. https://doi.org/10.14027/j.issn.1000-0550.2021.149 江文剑, 秦明宽, 范洪海, 等, 2022. 松辽盆地西南部白垩系姚家组碎屑岩成岩作用与铀成矿. 铀矿地质, 38(2): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202202003.htm 焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm 焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512 焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304 金若时, 程银行, 李建国, 等, 2017. 中国北方晚中生代陆相盆地红-黑岩系耦合产出对砂岩型铀矿成矿环境的制约. 中国地质, 44(2): 205-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702002.htm 李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望. 高校地质学报, 28(1): 51-63 https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202201004.htm 宁君, 夏菲, 聂逢君, 等, 2018. 浅析松辽盆地南部姚下段灰色砂体与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 336-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804005.htm 秦明宽, 何中波, 刘章月, 等, 2017. 准噶尔盆地砂岩型铀矿成矿环境与找矿方向研究. 地质论评, 63(5): 1255-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705010.htm 王苗, 吴柏林, 李艳青, 等, 2022. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究. 地球科学, 47(1): 224-239. doi: 10.3799/dqkx.2021.050 夏毓亮, 刘汉彬, 2005. 鄂尔多斯盆地东胜地区直罗组砂体铀的预富集与铀成矿. 世界核地质科学, 22(4): 187-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200504002.htm 谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164 杨江海, 马严, 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121 于文斌, 2009. 松辽盆地南部白垩系砂岩型铀矿成矿(博士学位论文). 长春: 吉林大学. -