• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复

    张洪瑞 刘华 韩载华 李君 张卫彪

    张洪瑞, 刘华, 韩载华, 李君, 张卫彪, 2024. 准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复. 地球科学, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411
    引用本文: 张洪瑞, 刘华, 韩载华, 李君, 张卫彪, 2024. 准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复. 地球科学, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411
    Zhang Hongrui, Liu Hua, Han Zaihua, Li Jun, Zhang Weibiao, 2024. Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin. Earth Science, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411
    Citation: Zhang Hongrui, Liu Hua, Han Zaihua, Li Jun, Zhang Weibiao, 2024. Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin. Earth Science, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411

    准噶尔盆地阜康凹陷三工河组流体包裹体特征与成藏期压力恢复

    doi: 10.3799/dqkx.2022.411
    基金项目: 

    国家自然科学基金项目 41972141

    国家自然科学基金项目 41772136

    详细信息
      作者简介:

      张洪瑞(1997-),男,硕士研究生,从事成藏期次与古压力恢复研究.ORCID:0000-0003-0907-1473. E-mail:s20010061@s.upc.edu.cn

      通讯作者:

      刘华,ORCID: 0000-0002-0357-367.E-mail: liuhua77@upc.edu.cn

    • 中图分类号: P618.13

    Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin

    • 摘要: 油气成藏时间与地层压力恢复对于油气成藏过程分析具有重要意义.综合利用包裹体观测技术以及盐度‒均一温度法和PVTx模拟法,恢复了阜康凹陷三工河组油气成藏时间与储层压力.研究表明,研究区侏罗系自4 500 m开始发育超压,三工河组超压明显.三工河组发育两期烃类包裹体:第一期发育在石英颗粒内部,多呈黄色、黄绿色荧光,伴生盐水包裹体均一温度主区间为85~95 ℃,对应早白垩世中期成藏;第二期沿切穿石英次生加大或整个石英颗粒的愈合缝发育,多呈蓝白色荧光,气液两相明显增多,伴生盐水包裹体均一温度主区间为105~115 ℃,对应新近纪至今成藏.油气运聚成藏时,三工河组发育超压,第一期压力系数介于1.39~1.44,第二期高达2.11,呈现“增压‒泄压‒强增压”演化模式.强超压代表了油气运移动力较强,是侏罗系致密储层成藏的关键因素.

       

    • 图  1  准噶尔盆地阜康凹陷三工河组取样井位图

      Fig.  1.  Regional structure map of Junggar Basin

      图  2  准噶尔盆地阜康凹陷洼陷区实测压力特征

      Fig.  2.  Measured pressure characteristics of Fukang Sag, Junggar Basin

      图  3  准噶尔盆地阜康凹陷储层显微特征

      颗粒以石英和岩屑为主,粒间充填被染色剂染成红色的方解石胶结物(a. 200倍透射光,b. 200倍正交光),董2井,5 040.8 m,J1s

      Fig.  3.  Microscopic characteristics of reservoir in Fukang Sag, Junggar Basin

      图  4  准噶尔盆地阜康凹陷储层烃类包裹体产状特征

      a、b.烃类包裹体沿石英颗粒内部短愈合缝发育,同一包裹体组合中的烃类包裹体呈现黄绿色和蓝白色两种不同荧光颜色,董8井,5 279.05 m,J1s;c、d.烃类包裹体呈集群或线性分布于石英颗粒内部,荧光下集群分布的烃类包裹体呈蓝白色,线性分布的烃类包裹体呈黄绿色,董6井,5 297 m,J1s;e、f.烃类包裹体呈集群分布于石英颗粒内部,荧光下呈蓝绿色,董701井,5 254.8 m,J1s;g、h. 烃类包裹体沿切穿石英次生加大边的愈合缝分布,荧光下呈蓝白色,董7井,5 291 m,J1s;i、j.烃类包裹体沿切穿石英微裂缝的愈合缝分布,荧光下呈蓝白色,董8井,5 279.05 m,J1s;k、l.烃类包裹体沿切除整个石英颗粒的愈合缝分布,荧光下呈蓝白色、蓝色,董7井,5 291 m,J1s

      Fig.  4.  Occurrence characteristics of fluid inclusions in Fukang Sag, Junggar Basin

      图  5  准噶尔盆地阜康凹陷三工河组不同类型烃类包裹体显微观察照片

      a、b.单一液相烃类包裹体,荧光下呈蓝白色,董6井,5 297 m,J1s;c、d.气液两相烃类包裹体,荧光下蓝白色,董7井,5 291 m,J1s;e~h.沥青‒气包裹体,荧光显示较弱,呈弱白色荧光,董8井,5 279.05 m,J1s

      Fig.  5.  Micrographs of different types of hydrocarbon inclusions in Sangonghe Formation in Fukang Sag, Junggar Basin

      图  6  准噶尔盆地阜康凹陷三工河组典型流体包裹体的(a)荧光观察照片、(b)微束荧光光谱分析、(c)荧光光谱λmax频率分布直方图

      Fig.  6.  (a) Fluorescence observation photos, (b) microbeam fluorescence spectrum analysis, (c) histograms of λmax frequency distribution of hydrocarbon inclusions in Sangonghe Formation in Fukang Sag, Junggar Basin

      图  7  准噶尔盆地阜康凹陷头屯河组(a)储层沥青荧光观察照片、(b)储层沥青激光拉曼光谱特征、(c)头屯河组储层抽提物25‒降藿烷特征

      Fig.  7.  (a) Fluorescence observation photos of bitumen, (b) raman spectral characteristics of bitumen, (c) 25-norhopane characteristics of bitumen in Toutunhe Formation in Fukang Sag, Junggar Basin

      图  8  准噶尔盆地阜康凹陷三工河组不同期次烃类包裹体产状示意图(a)及伴生盐水包裹体均一温度直方图(b)

      Fig.  8.  Occurrence diagram of hydrocarbon inclusions in different stages (a) and homogenization temperature histogram of associated aqueous inclusions (b) in Sangonghe Formation in Fukang Sag, Junggar Basin

      图  9  准噶尔盆地阜康凹陷三工河组储层烃类包裹体赋存特征与成岩产物关系(成岩阶段划分据徐文礼等, 2017

      Fig.  9.  Fluorescence and phase characteristics of fluid inclusions in Sangonghe Formation in Fukang Sag, Junggar Basin

      图  10  董6井三工河组气液两相烃类包裹体激光共聚焦显微镜等深度扫描二维切片和三维拟合形态

      Fig.  10.  Continuous scanning 2D section and 3D model of gas-liquid two-phase inclusion in Well Dong 6 of the Sangonghe Formation by laser confocal microscope

      图  11  准噶尔盆地阜康凹陷PVTx模拟烃类包裹体等容线

      Fig.  11.  Simulated hydrocarbon inclusion isovolumics using the PVTx method in Fukang Sag, Junggar Basin

      图  12  准噶尔盆地阜康凹陷(a、b)侏罗系油气成藏示意图和(c)三工河组压力演化史

      Fig.  12.  Schematic diagram of Jurassic hydrocarbon accumulation (a, b), (c) evolution history of pressure in Sangonghe Formation in Fukang Sag, Junggar Basin

      图  13  准噶尔盆地阜康凹陷侏罗系储层含油饱和度与压力系数关系

      Fig.  13.  Relationship between Jurassic reservoir oil saturation and pressure coefficient in Fukang Sag, Junggar Basin

      图  14  准噶尔盆地不同地区三工河组孔、渗下限与压力系数关系

      Fig.  14.  Comparison of lower limits of porosity and permeability of Sangonghe Formation in different structural zones in Junggar Basin

      表  1  准噶尔盆地阜康凹陷埋藏史热史模拟参数

      Table  1.   Parameters showing the simulation of the burial history in Fukang Sag, Junggar Basin

      层位 顶深
      (m)
      厚度
      (m)
      事件 剥蚀厚度(m) 地层
      类型
      生烃化学动力模型 TOC
      (%)
      HI
      (mgHC/gTOC)
      古热流(mW/m2)
      N-Q 0 1 430 沉积 23
      E 1 430 808 沉积
      2 238 0 剥蚀 -100
      K2d 2 238 312 沉积 100 29
      K1q 2 550 1 409 沉积 盖层
      3 959 0 剥蚀 -100
      J3 3 959 336 沉积 100 储层 31
      J2t 4 295 563 沉积 储层
      J2x 4 858 366 沉积 烃源岩 Burnham(1989)_TII 0.51 150.05
      J1s 5 224 349 沉积 储层
      J1b 5 573 527 沉积 烃源岩 Burnham(1989)_TII 1.06 134.18
      T 6 100 1 050 沉积 40
      P3 7 150 550 沉积 52
      P1-P2 7 700 250 沉积 烃源岩 Burnham(1989)_TII 1.85 325 60
      下载: 导出CSV

      表  2  盐度‒均一温度法恢复油气成藏期储层压力数据

      Table  2.   Paleopressure data restored by the salinity-homogenization temperature method

      井号 层位 充注期 均一温度
      (℃)
      冰点温度
      (℃)
      含盐度
      (%)
      古压力
      (MPa)
      古埋深
      (m)
      古压力系数
      董6井 J1s 早白垩世中期 94.9 ‒16.8 20.07 40.38 2 912.5 1.39
      95.8 ‒18.6 21.4 41.43 2 950 1.40
      J1s 新近纪至今 116.1 ‒20.1 22.44 43.58 3 119.23 1.40
      124.3 ‒4.2 6.74 52.98 3 307.41 1.60
      董7井 J1s 早白垩世中期 87.6 ‒8.3 12.05 38.86 2 788.33 1.39
      94.1 ‒13.8 17.61 38.84 2 879.17 1.35
      J1s 古近纪中期 103.2 ‒4.7 7.45 40.04 2 991.75 1.34
      新近纪至今 104 ‒4.1 6.59 55.61 3 595.83 1.55
      107.2 ‒5.2 8.14 61.62 3 633.33 1.70
      下载: 导出CSV

      表  3  准噶尔盆地阜康凹陷董6井三工河组成藏期流体组分模拟数据

      Table  3.   Simulation data of fluid composition in the Well Dong 6 of the Sangonghe Formation of in Fukang Sag, Junggar Basin

      组分 CO2 N2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7
      mol% 0.6 2.6 20.9 2.1 2.0 1.5 0.8 1.0 1.0 1.1 1.5
      g/m3 44.01 28.014 16.043 30.07 44.097 58.124 58.124 72.151 72.151 86.178 96
      组分 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
      mol% 2.3 3.2 3.1 3.0 4.0 5.5 6.0 7.0 9.5 10.3 11.0
      g/m3 107 121 134 147 161 175 190 206 222 237 251
      下载: 导出CSV

      表  4  准噶尔盆地阜康凹陷气液两相烃类包裹体PVTx模拟法恢复古压力数据

      Table  4.   Pressure data of gas-liquid two-phase hydrocarbon inclusions in Fukang Sag during reservoir formation restored by PVTx simulation method

      井名 层位 充注期 均一温度
      (℃)
      捕获温度(℃) 气液比(%) 等容线方程 伴生盐水等
      容线方程
      捕获压力(MPa) 古埋深(m) 压力系数
      董6井 J1s 新近纪至今 116.1 132.55 8.91 P=9.2T‒760 P=25.4T‒2 907.2 45.95 3 119.23 1.47
      124.3 142.89 P=19.4T‒2 217.2 55.46 3 307.41 1.68
      董7井 J1s 早白垩世中期 87.6 102.98 5.88 P=4.75T‒95.1 P=25.6T‒2 241.8 39.41 2 788.33 1.41
      94.1 107.43 P=26.9T‒2 474.67 41.52 2 879.17 1.44
      新近纪至今 104 124.95 36.52 P=13T‒1 026.6 P=21.4T‒2 076.23 59.77 3 595.83 1.66
      107.2 130.24 P=29.0T‒3 106.5 66.65 3 633.33 1.83
      下载: 导出CSV

      表  5  准噶尔盆地阜康凹陷不同古压力恢复方法结果对比

      Table  5.   Comparison of paleopressure data restored by different recovery methods in Fukang Sag, Junggar Basin

      古压力恢复方法 方法差异(%)
      PVTx模拟法
      (MPa)
      盐度‒均一温度法(MPa)
      45.95 43.58 5.16
      55.46 52.98 4.48
      39.41 38.86 1.38
      41.52 38.84 6.47
      59.77 55.61 6.96
      66.65 61.62 7.55
      下载: 导出CSV
    • Aplin, A. C., MacLeod, G., Larter, S. R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. https://doi.org/10.1016/S0264-8172(98)00079-8
      Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
      Hao, F., Zou, Y. H., Jiang, J. Q., et al., 2005. Hydrocarbon Generation Dynamics and Hydrocarbon Accumulation Mechanism in Overpressure Basins. Science Press, Beijing, 239-254 (in Chinese).
      He, D. F., Zhang, L., Wu, S. T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract).
      Hunt, J. M., Liu, S. Y., 1990. Generation and Migration of Oil in Abnormal Pressure Fluid Interval. Geology - Geochemistry, 18(6): 13-22 (in Chinese).
      Li, J., Zhao, J. Z., Wei, X. S., et al., 2019. Origin of Abnormal Pressure in the Upper Paleozoic Shale of the Ordos Basin, China. Marine and Petroleum Geology, 110: 162-177. https://doi.org/10.1016/j.marpetgeo.2019.07.016
      Li, P. P., Zou, H. Y., Hao, F., et al., 2006. Restoration of Eroded Strata Thickness in Cretaceous/Jurassic Unconformity in Hinterland of Junggar Basin. Acta Petrolei Sinica, 27(6): 34-38 (in Chinese with English abstract).
      Lindsay, R., Towner, B., 2001. Pore Pressure Influence on Rock Property and Reflectivity Modeling. The Leading Edge, 20(2): 184-187. https://doi.org/10.1190/1.1438906
      Liu, B., 2001. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications. Geological Review, 47(6): 617-622 (in Chinese with English abstract).
      Liu, H., Hu, X. Q., Liang, J. J., et al., 2018. Characteristics of Jurassic Fault and Its Control Effect on Hydrocarbon Accumulation in the Block 4 in the Middle of the Junggar Basin. Geological Review, 64(6): 1489-1504 (in Chinese with English abstract).
      Liu, H., Jiang, Y. L., Lu, H., et al., 2016. Restoration of Fluid Pressure during Hydrocarbon Accumulation Period and Fluid Inclusion Feature in the Bonan Sag. Earth Science, 41(8): 1384-1394 (in Chinese with English abstract).
      Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123-1139. https://doi.org/10.1306/02260706035
      Mao, C., Chen, Y., Zhou, Y. Q., et al., 2015. Improved Thermodynamic Simulation Method of Hydrocarbon Fluid Inclusions and Its Application in Oil and Gas Accumulation Research. Journal of Jilin University (Earth Science Edition), 45(5): 1352-1364 (in Chinese with English abstract).
      O'Connor, S., Swarbrick, R., Lahann, R., 2011. Geologically-Driven Pore Fluid Pressure Models and Their Implications for Petroleum Exploration. Introduction to Thematic Set. Geofluids, 11(4): 343-348. https://doi.org/10.1111/j.1468-8123.2011.00354.x
      Qiu, N. S., Wang, X. L., Yang, H. B., et al., 2001. The Characteristics of Temperature Distribution in the Junggar Basin. Scientia Geologica Sinica, 36(3): 350-358 (in Chinese with English abstract).
      Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403
      Shi, H. G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246 (in Chinese with English abstract).
      Su, A., Chen, H. H., Lei, C., et al., 2014. Application of PVTx Simulation of Fluid Inclusions to Estimate Petroleum Charge Stages and Restore Pressure: Using Pinghu Structural Belt in Xihu Depression as an Example. Geological Science and Technology Information, 33(6): 137-142 (in Chinese with English abstract).
      Su, A., Chen, H. H., Zhao, J. X., et al., 2020. Integrated Fluid Inclusion Analysis and Petrography Constraints on the Petroleum System Evolution of the Central and Southern Biyang Sag, Nanxiang Basin, Eastern China. Marine and Petroleum Geology, 118: 104437. https://doi.org/10.1016/j.marpetgeo.2020.104437
      Thomas, A. V., Pasteris, J. D., Bray, C. J., et al., 1990. H2O-CH4-NaCl-CO2 Inclusions from the Footwall Contact of the Tanco Granitic Pegmatite: Estimates of Internal Pressure and Composition from Microthermometry, Laser Raman Spectroscopy, and Gas Chromatography. Geochim. Cosmochim. Acta, 54(3): 559-573. https://doi.org/10.1016/0016-7037(90)90353-M
      Tian, X. R., Zhang, Y. Y., Zhuo, Q. G., et al., 2019. Tight Oil Charging Characteristics of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin: Evidence from Fluid Inclusions in Alkaline Minerals. Acta Petrolei Sinica, 40(6): 646-659 (in Chinese with English abstract).
      Wang, F. L., Tang, G. M., Chen, R. T., et al., 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202 (in Chinese with English abstract).
      Wu, H. S., Zheng, M. L., He, W. J., et al., 2017. Formation Pressure Anomalies and Controlling Factors in Central Junggar Basin. Oil & Gas Geology, 38(6): 1135-1146 (in Chinese with English abstract).
      Xu, W. L., Liu, R., Wen, H. G., et al., 2017. Diagenesis and Diagenetic Facies of 2nd Member of Lower Juriassic Sangonghe Formation in Fubei Area, Junggar Basin. Geological Bulletin of China, 36(4): 555-564 (in Chinese with English abstract).
      Yang, Z., Zou, C. N., Chen, J. J., et al., 2021. "Exploring Petroleum inside or near the Source Kitchen": Innovations in Petroleum Geology Theory and Reflections on Hydrocarbon Exploration in Key Fields. Acta Petrolei Sinica, 42(10): 1310-1324 (in Chinese with English abstract).
      Yin, W., Zheng, H. R., 2009. Hydrocarbon Accumulation Stages and Exploration Directions in the Central Junggar Basin. Petroleum Geology & Experiment, 31(3): 216-220, 226 (in Chinese with English abstract).
      Zhang, F. Q., Lu, X. S., Zhuo, Q. G., et al., 2020. Genetic Mechanism and Evolution Characteristics of Overpressure in the Lower Play at the Southern Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(5): 1004-1016 (in Chinese with English abstract).
      Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl KCl CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3-4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-X
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郝芳, 邹华耀, 姜建群, 等, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社, 239-254.
      何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805002.htm
      Hunt, J. M., 刘淑英, 1990. 异常压力流体区间中石油的生成与运移. 地质地球化学, 18(6): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199006002.htm
      李平平, 邹华耀, 郝芳, 等, 2006. 准噶尔盆地腹部白垩系/侏罗系不整合地层剥蚀厚度的恢复方法. 石油学报, 27(6): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606006.htm
      刘斌, 2001. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用. 地质论评, 47(6): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200106014.htm
      刘辉, 胡修权, 梁家驹, 等, 2018. 准噶尔盆地准中4区块侏罗系断裂特征及对油气成藏的控制作用. 地质论评, 64(6): 1489-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201806016.htm
      刘华, 蒋有录, 卢浩, 等, 2016. 渤南洼陷流体包裹体特征与成藏期流体压力恢复. 地球科学, 41(8): 1384-1394. doi: 10.3799/dqkx.2016.109
      毛毳, 陈勇, 周瑶琪, 等, 2015. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用. 吉林大学学报(地球科学版), 45(5): 1352-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505009.htm
      邱楠生, 王绪龙, 杨海波, 等, 2001. 准噶尔盆地地温分布特征. 地质科学, 36(3): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103010.htm
      石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm
      苏奥, 陈红汉, 雷川, 等, 2014. 流体包裹体PVTx模拟研究油气充注期次和古压力恢复: 以西湖凹陷平湖构造带为例. 地质科技情报, 33(6): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406019.htm
      田孝茹, 张元元, 卓勤功, 等, 2019. 准噶尔盆地玛湖凹陷下二叠统风城组致密油充注特征——碱性矿物中的流体包裹体证据. 石油学报, 40(6): 646-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906002.htm
      王飞龙, 汤国民, 陈容涛, 等, 2021. 渤海湾盆地黄河口凹陷渤中29‒6油田原油稠化机制及成藏模式. 地球科学, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331
      吴海生, 郑孟林, 何文军, 等, 2017. 准噶尔盆地腹部地层压力异常特征与控制因素. 石油与天然气地质, 38(6): 1135-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706016.htm
      徐文礼, 刘冉, 文华国, 等, 2017. 准噶尔盆地阜北地区下侏罗统三工河组二段成岩作用及成岩相. 地质通报, 36(4): 555-564. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201704009.htm
      杨智, 邹才能, 陈建军, 等, 2021. "进(近)源找油": 油气地质理论创新与重点领域勘探思考. 石油学报, 42(10): 1310-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202110005.htm
      尹伟, 郑和荣, 2009. 准噶尔盆地中部油气成藏期次及勘探方向. 石油实验地质, 31(3): 216-220, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202204001.htm
      张凤奇, 鲁雪松, 卓勤功, 等, 2020. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征. 石油与天然气地质, 41(5): 1004-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005012.htm
    • 加载中
    图(14) / 表(5)
    计量
    • 文章访问数:  256
    • HTML全文浏览量:  223
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-07
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回