Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin
-
摘要: 油气成藏时间与地层压力恢复对于油气成藏过程分析具有重要意义.综合利用包裹体观测技术以及盐度‒均一温度法和PVTx模拟法,恢复了阜康凹陷三工河组油气成藏时间与储层压力.研究表明,研究区侏罗系自4 500 m开始发育超压,三工河组超压明显.三工河组发育两期烃类包裹体:第一期发育在石英颗粒内部,多呈黄色、黄绿色荧光,伴生盐水包裹体均一温度主区间为85~95 ℃,对应早白垩世中期成藏;第二期沿切穿石英次生加大或整个石英颗粒的愈合缝发育,多呈蓝白色荧光,气液两相明显增多,伴生盐水包裹体均一温度主区间为105~115 ℃,对应新近纪至今成藏.油气运聚成藏时,三工河组发育超压,第一期压力系数介于1.39~1.44,第二期高达2.11,呈现“增压‒泄压‒强增压”演化模式.强超压代表了油气运移动力较强,是侏罗系致密储层成藏的关键因素.Abstract: Formation pressure recovery is of great significance for the analysis of hydrocarbon accumulation process. This study restores the pressure of Jurassic Sangonghe Formation during hydrocarbon accumulation period in Fukang Sag with inclusion observation technology, the inclusion salinity homogenization temperature method and PVTx simulation method. The results show that the overpressure of Jurassic begins from 4 500 m, and the overpressure amplitude increases with the increase in buried depth, in Fukang Sag. At the same depth, the overpressure of the main reservoir of Sangonghe Formation is obvious. There are two stages of hydrocarbon inclusions captured in the Sangonghe Formation. The fluorescence colors of hydrocarbon inclusions captured in the first stage which occur inside the quartz particles are mainly yellow and yellowish green, and the main temperature range of associated aqueous inclusions is 85-95 ℃, corresponding to the hydrocarbon accumulation in the middle of Early Cretaceous. Since Neogene, the fluorescence color of hydrocarbon inclusions captured in the second stage, which occur along the healing seams that cut through secondary enlargement of quartz or the whole the after the secondary, is mainly bluish white, and the number of the gas-liquid two-phase hydrocarbon inclusions significantly increases. The homogenization temperature of associated aqueous inclusions is 105-115 ℃, corresponding to hydrocarbon accumulation since the Neogene. During hydrocarbon migration and accumulation, overpressure developed in the Sangonghe Formation. The pressure coefficient in the first stage is 1.39-1.44 and that in the second stage is as high as 2.11. The pressure presents the evolution mode of "pressurization-decompression-strong pressurization". Strong overpressure represents strong hydrocarbon transportation and movement force. It is the key factor for hydrocarbon accumulation in Jurassic tight reservoirs.
-
Key words:
- Junggar Basin /
- fluid inclusion /
- overpressure /
- paleopressure recover /
- pressure evolution /
- petroleum geology /
-
-
图 4 准噶尔盆地阜康凹陷储层烃类包裹体产状特征
a、b.烃类包裹体沿石英颗粒内部短愈合缝发育,同一包裹体组合中的烃类包裹体呈现黄绿色和蓝白色两种不同荧光颜色,董8井,5 279.05 m,J1s;c、d.烃类包裹体呈集群或线性分布于石英颗粒内部,荧光下集群分布的烃类包裹体呈蓝白色,线性分布的烃类包裹体呈黄绿色,董6井,5 297 m,J1s;e、f.烃类包裹体呈集群分布于石英颗粒内部,荧光下呈蓝绿色,董701井,5 254.8 m,J1s;g、h. 烃类包裹体沿切穿石英次生加大边的愈合缝分布,荧光下呈蓝白色,董7井,5 291 m,J1s;i、j.烃类包裹体沿切穿石英微裂缝的愈合缝分布,荧光下呈蓝白色,董8井,5 279.05 m,J1s;k、l.烃类包裹体沿切除整个石英颗粒的愈合缝分布,荧光下呈蓝白色、蓝色,董7井,5 291 m,J1s
Fig. 4. Occurrence characteristics of fluid inclusions in Fukang Sag, Junggar Basin
图 9 准噶尔盆地阜康凹陷三工河组储层烃类包裹体赋存特征与成岩产物关系(成岩阶段划分据徐文礼等, 2017)
Fig. 9. Fluorescence and phase characteristics of fluid inclusions in Sangonghe Formation in Fukang Sag, Junggar Basin
表 1 准噶尔盆地阜康凹陷埋藏史热史模拟参数
Table 1. Parameters showing the simulation of the burial history in Fukang Sag, Junggar Basin
层位 顶深
(m)厚度
(m)事件 剥蚀厚度(m) 地层
类型生烃化学动力模型 TOC
(%)HI
(mgHC/gTOC)古热流(mW/m2) N-Q 0 1 430 沉积 23 E 1 430 808 沉积 2 238 0 剥蚀 -100 K2d 2 238 312 沉积 100 29 K1q 2 550 1 409 沉积 盖层 3 959 0 剥蚀 -100 J3 3 959 336 沉积 100 储层 31 J2t 4 295 563 沉积 储层 J2x 4 858 366 沉积 烃源岩 Burnham(1989)_TII 0.51 150.05 J1s 5 224 349 沉积 储层 J1b 5 573 527 沉积 烃源岩 Burnham(1989)_TII 1.06 134.18 T 6 100 1 050 沉积 40 P3 7 150 550 沉积 52 P1-P2 7 700 250 沉积 烃源岩 Burnham(1989)_TII 1.85 325 60 表 2 盐度‒均一温度法恢复油气成藏期储层压力数据
Table 2. Paleopressure data restored by the salinity-homogenization temperature method
井号 层位 充注期 均一温度
(℃)冰点温度
(℃)含盐度
(%)古压力
(MPa)古埋深
(m)古压力系数 董6井 J1s 早白垩世中期 94.9 ‒16.8 20.07 40.38 2 912.5 1.39 95.8 ‒18.6 21.4 41.43 2 950 1.40 J1s 新近纪至今 116.1 ‒20.1 22.44 43.58 3 119.23 1.40 124.3 ‒4.2 6.74 52.98 3 307.41 1.60 董7井 J1s 早白垩世中期 87.6 ‒8.3 12.05 38.86 2 788.33 1.39 94.1 ‒13.8 17.61 38.84 2 879.17 1.35 J1s 古近纪中期 103.2 ‒4.7 7.45 40.04 2 991.75 1.34 新近纪至今 104 ‒4.1 6.59 55.61 3 595.83 1.55 107.2 ‒5.2 8.14 61.62 3 633.33 1.70 表 3 准噶尔盆地阜康凹陷董6井三工河组成藏期流体组分模拟数据
Table 3. Simulation data of fluid composition in the Well Dong 6 of the Sangonghe Formation of in Fukang Sag, Junggar Basin
组分 CO2 N2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7 mol% 0.6 2.6 20.9 2.1 2.0 1.5 0.8 1.0 1.0 1.1 1.5 g/m3 44.01 28.014 16.043 30.07 44.097 58.124 58.124 72.151 72.151 86.178 96 组分 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 mol% 2.3 3.2 3.1 3.0 4.0 5.5 6.0 7.0 9.5 10.3 11.0 g/m3 107 121 134 147 161 175 190 206 222 237 251 表 4 准噶尔盆地阜康凹陷气液两相烃类包裹体PVTx模拟法恢复古压力数据
Table 4. Pressure data of gas-liquid two-phase hydrocarbon inclusions in Fukang Sag during reservoir formation restored by PVTx simulation method
井名 层位 充注期 均一温度
(℃)捕获温度(℃) 气液比(%) 等容线方程 伴生盐水等
容线方程捕获压力(MPa) 古埋深(m) 压力系数 董6井 J1s 新近纪至今 116.1 132.55 8.91 P=9.2T‒760 P=25.4T‒2 907.2 45.95 3 119.23 1.47 124.3 142.89 P=19.4T‒2 217.2 55.46 3 307.41 1.68 董7井 J1s 早白垩世中期 87.6 102.98 5.88 P=4.75T‒95.1 P=25.6T‒2 241.8 39.41 2 788.33 1.41 94.1 107.43 P=26.9T‒2 474.67 41.52 2 879.17 1.44 新近纪至今 104 124.95 36.52 P=13T‒1 026.6 P=21.4T‒2 076.23 59.77 3 595.83 1.66 107.2 130.24 P=29.0T‒3 106.5 66.65 3 633.33 1.83 表 5 准噶尔盆地阜康凹陷不同古压力恢复方法结果对比
Table 5. Comparison of paleopressure data restored by different recovery methods in Fukang Sag, Junggar Basin
古压力恢复方法 方法差异(%) PVTx模拟法
(MPa)盐度‒均一温度法(MPa) 45.95 43.58 5.16 55.46 52.98 4.48 39.41 38.86 1.38 41.52 38.84 6.47 59.77 55.61 6.96 66.65 61.62 7.55 -
Aplin, A. C., MacLeod, G., Larter, S. R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. https://doi.org/10.1016/S0264-8172(98)00079-8 Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1 Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract). Hao, F., Zou, Y. H., Jiang, J. Q., et al., 2005. Hydrocarbon Generation Dynamics and Hydrocarbon Accumulation Mechanism in Overpressure Basins. Science Press, Beijing, 239-254 (in Chinese). He, D. F., Zhang, L., Wu, S. T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract). Hunt, J. M., Liu, S. Y., 1990. Generation and Migration of Oil in Abnormal Pressure Fluid Interval. Geology - Geochemistry, 18(6): 13-22 (in Chinese). Li, J., Zhao, J. Z., Wei, X. S., et al., 2019. Origin of Abnormal Pressure in the Upper Paleozoic Shale of the Ordos Basin, China. Marine and Petroleum Geology, 110: 162-177. https://doi.org/10.1016/j.marpetgeo.2019.07.016 Li, P. P., Zou, H. Y., Hao, F., et al., 2006. Restoration of Eroded Strata Thickness in Cretaceous/Jurassic Unconformity in Hinterland of Junggar Basin. Acta Petrolei Sinica, 27(6): 34-38 (in Chinese with English abstract). Lindsay, R., Towner, B., 2001. Pore Pressure Influence on Rock Property and Reflectivity Modeling. The Leading Edge, 20(2): 184-187. https://doi.org/10.1190/1.1438906 Liu, B., 2001. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications. Geological Review, 47(6): 617-622 (in Chinese with English abstract). Liu, H., Hu, X. Q., Liang, J. J., et al., 2018. Characteristics of Jurassic Fault and Its Control Effect on Hydrocarbon Accumulation in the Block 4 in the Middle of the Junggar Basin. Geological Review, 64(6): 1489-1504 (in Chinese with English abstract). Liu, H., Jiang, Y. L., Lu, H., et al., 2016. Restoration of Fluid Pressure during Hydrocarbon Accumulation Period and Fluid Inclusion Feature in the Bonan Sag. Earth Science, 41(8): 1384-1394 (in Chinese with English abstract). Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123-1139. https://doi.org/10.1306/02260706035 Mao, C., Chen, Y., Zhou, Y. Q., et al., 2015. Improved Thermodynamic Simulation Method of Hydrocarbon Fluid Inclusions and Its Application in Oil and Gas Accumulation Research. Journal of Jilin University (Earth Science Edition), 45(5): 1352-1364 (in Chinese with English abstract). O'Connor, S., Swarbrick, R., Lahann, R., 2011. Geologically-Driven Pore Fluid Pressure Models and Their Implications for Petroleum Exploration. Introduction to Thematic Set. Geofluids, 11(4): 343-348. https://doi.org/10.1111/j.1468-8123.2011.00354.x Qiu, N. S., Wang, X. L., Yang, H. B., et al., 2001. The Characteristics of Temperature Distribution in the Junggar Basin. Scientia Geologica Sinica, 36(3): 350-358 (in Chinese with English abstract). Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403 Shi, H. G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246 (in Chinese with English abstract). Su, A., Chen, H. H., Lei, C., et al., 2014. Application of PVTx Simulation of Fluid Inclusions to Estimate Petroleum Charge Stages and Restore Pressure: Using Pinghu Structural Belt in Xihu Depression as an Example. Geological Science and Technology Information, 33(6): 137-142 (in Chinese with English abstract). Su, A., Chen, H. H., Zhao, J. X., et al., 2020. Integrated Fluid Inclusion Analysis and Petrography Constraints on the Petroleum System Evolution of the Central and Southern Biyang Sag, Nanxiang Basin, Eastern China. Marine and Petroleum Geology, 118: 104437. https://doi.org/10.1016/j.marpetgeo.2020.104437 Thomas, A. V., Pasteris, J. D., Bray, C. J., et al., 1990. H2O-CH4-NaCl-CO2 Inclusions from the Footwall Contact of the Tanco Granitic Pegmatite: Estimates of Internal Pressure and Composition from Microthermometry, Laser Raman Spectroscopy, and Gas Chromatography. Geochim. Cosmochim. Acta, 54(3): 559-573. https://doi.org/10.1016/0016-7037(90)90353-M Tian, X. R., Zhang, Y. Y., Zhuo, Q. G., et al., 2019. Tight Oil Charging Characteristics of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin: Evidence from Fluid Inclusions in Alkaline Minerals. Acta Petrolei Sinica, 40(6): 646-659 (in Chinese with English abstract). Wang, F. L., Tang, G. M., Chen, R. T., et al., 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202 (in Chinese with English abstract). Wu, H. S., Zheng, M. L., He, W. J., et al., 2017. Formation Pressure Anomalies and Controlling Factors in Central Junggar Basin. Oil & Gas Geology, 38(6): 1135-1146 (in Chinese with English abstract). Xu, W. L., Liu, R., Wen, H. G., et al., 2017. Diagenesis and Diagenetic Facies of 2nd Member of Lower Juriassic Sangonghe Formation in Fubei Area, Junggar Basin. Geological Bulletin of China, 36(4): 555-564 (in Chinese with English abstract). Yang, Z., Zou, C. N., Chen, J. J., et al., 2021. "Exploring Petroleum inside or near the Source Kitchen": Innovations in Petroleum Geology Theory and Reflections on Hydrocarbon Exploration in Key Fields. Acta Petrolei Sinica, 42(10): 1310-1324 (in Chinese with English abstract). Yin, W., Zheng, H. R., 2009. Hydrocarbon Accumulation Stages and Exploration Directions in the Central Junggar Basin. Petroleum Geology & Experiment, 31(3): 216-220, 226 (in Chinese with English abstract). Zhang, F. Q., Lu, X. S., Zhuo, Q. G., et al., 2020. Genetic Mechanism and Evolution Characteristics of Overpressure in the Lower Play at the Southern Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(5): 1004-1016 (in Chinese with English abstract). Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl KCl CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3-4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-X 宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366 郝芳, 邹华耀, 姜建群, 等, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社, 239-254. 何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805002.htm Hunt, J. M., 刘淑英, 1990. 异常压力流体区间中石油的生成与运移. 地质地球化学, 18(6): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199006002.htm 李平平, 邹华耀, 郝芳, 等, 2006. 准噶尔盆地腹部白垩系/侏罗系不整合地层剥蚀厚度的恢复方法. 石油学报, 27(6): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606006.htm 刘斌, 2001. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用. 地质论评, 47(6): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200106014.htm 刘辉, 胡修权, 梁家驹, 等, 2018. 准噶尔盆地准中4区块侏罗系断裂特征及对油气成藏的控制作用. 地质论评, 64(6): 1489-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201806016.htm 刘华, 蒋有录, 卢浩, 等, 2016. 渤南洼陷流体包裹体特征与成藏期流体压力恢复. 地球科学, 41(8): 1384-1394. doi: 10.3799/dqkx.2016.109 毛毳, 陈勇, 周瑶琪, 等, 2015. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用. 吉林大学学报(地球科学版), 45(5): 1352-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505009.htm 邱楠生, 王绪龙, 杨海波, 等, 2001. 准噶尔盆地地温分布特征. 地质科学, 36(3): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103010.htm 石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm 苏奥, 陈红汉, 雷川, 等, 2014. 流体包裹体PVTx模拟研究油气充注期次和古压力恢复: 以西湖凹陷平湖构造带为例. 地质科技情报, 33(6): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406019.htm 田孝茹, 张元元, 卓勤功, 等, 2019. 准噶尔盆地玛湖凹陷下二叠统风城组致密油充注特征——碱性矿物中的流体包裹体证据. 石油学报, 40(6): 646-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906002.htm 王飞龙, 汤国民, 陈容涛, 等, 2021. 渤海湾盆地黄河口凹陷渤中29‒6油田原油稠化机制及成藏模式. 地球科学, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331 吴海生, 郑孟林, 何文军, 等, 2017. 准噶尔盆地腹部地层压力异常特征与控制因素. 石油与天然气地质, 38(6): 1135-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706016.htm 徐文礼, 刘冉, 文华国, 等, 2017. 准噶尔盆地阜北地区下侏罗统三工河组二段成岩作用及成岩相. 地质通报, 36(4): 555-564. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201704009.htm 杨智, 邹才能, 陈建军, 等, 2021. "进(近)源找油": 油气地质理论创新与重点领域勘探思考. 石油学报, 42(10): 1310-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202110005.htm 尹伟, 郑和荣, 2009. 准噶尔盆地中部油气成藏期次及勘探方向. 石油实验地质, 31(3): 216-220, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202204001.htm 张凤奇, 鲁雪松, 卓勤功, 等, 2020. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征. 石油与天然气地质, 41(5): 1004-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005012.htm -