• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于统计学岩石物理模型的火山岩横波速度预测方法

    乔汉青 刘财 方慧 朱威

    乔汉青, 刘财, 方慧, 朱威, 2023. 基于统计学岩石物理模型的火山岩横波速度预测方法. 地球科学, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417
    引用本文: 乔汉青, 刘财, 方慧, 朱威, 2023. 基于统计学岩石物理模型的火山岩横波速度预测方法. 地球科学, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417
    Qiao Hanqing, Liu Cai, Fang Hui, Zhu Wei, 2023. S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model. Earth Science, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417
    Citation: Qiao Hanqing, Liu Cai, Fang Hui, Zhu Wei, 2023. S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model. Earth Science, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417

    基于统计学岩石物理模型的火山岩横波速度预测方法

    doi: 10.3799/dqkx.2022.417
    基金项目: 

    中国地质调查项目 DD20221638

    中国地质调查局基本科研项目 AS2022J04

    中国地质调查局基本科研项目 AS2020J02

    中国地质调查局基本科研项目 AS2020P01

    详细信息
      作者简介:

      乔汉青(1990-),男,工程师,主要从事岩石物理、地震各向异性和地震正反演等方面的研究. ORCID:0000-0002-8719-0542. E-mail:qiaohanqing@mail.cgs.gov.cn

      通讯作者:

      朱威, ORCID:0000-0002-5566-8679.E-mail:cgszhuwei@mail.cgs.gov.cn

    • 中图分类号: P31

    S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model

    • 摘要: 火山岩储层因蕴藏地热、矿产、油气等资源,受到各国学者的广泛关注. 横波速度是地震AVO分析、储层特征描述和流体识别的必要信息,因受限于采集技术和采集成本等因素,测井资料中常常缺失横波速度信息. 基于统计学岩石物理反演方法和Xu-White岩石物理模型,提出了一种适用于火山岩储层的统计学岩石物理模型横波速度预测方法. 该方法利用Xu-White模型中砂的纵、横波速度和粘土相关孔隙纵横比作为关键岩石物理参数对岩石速度的影响,根据统计学岩石物理反演方法,首先通过已知参考井常规测井资料和Xu-White模型构建关键岩石物理参数的先验分布,其次利用先验分布代替固定参数值初始化Xu-White模型建立统计学岩石物理模型,再次基于贝叶斯反演理论,匹配目标井位实际纵波速度与模拟纵波速度,计算目标井位关键岩石物理参数后验信息,最后利用统计学岩石物理模型和目标井关键岩石物理参数的后验分布反演出目标井的横波速度信息. 将该方法应用于中国东部南堡凹陷5号构造实际测井数据,得到的横波速度预测结果优于常规方法,证明了该方法的有效性和准确性. 研究将为火山岩储层的后续勘探开发提供更准确的横波速度资料.

       

    • 图  1  Xu-White模型中不同砂的速度下模拟出的岩石纵、横波速度

      Fig.  1.  The simulated P-wave and S-wave velocities of rock with different velocities of sand in Xu-White model

      图  2  Xu-White模型中不同砂相关孔隙纵横比下模拟出的岩石纵、横波速度

      Fig.  2.  The simulated P-wave and S-wave velocities with different aspect ratios of sand-related pores in Xu-White model

      图  3  Xu-White模型中不同粘土相关孔隙纵横比下模拟出的岩石纵、横波速度

      Fig.  3.  The simulated P-wave and S-wave velocities with different aspect ratios of clay-related pores in Xu-White model

      图  4  基于统计学岩石物理模型的横波速度预测工作流程

      Fig.  4.  Workflow of S-wave velocity prediction based on statistical rock-physics model

      图  5  参考井的测井曲线和矿物组分信息

      Fig.  5.  Logging curves and mineral composition information of target well

      图  6  目标井的测井曲线

      Fig.  6.  Logging curves of target well

      图  7  参考井关键岩石物理参数的统计学先验信息

      Fig.  7.  Statistical prior information of key petrophysical parameters of reference wells

      图  8  目标井关键岩石物理参数的统计学后验信息

      Fig.  8.  Statistical posterior information of key petrophysical parameters of target well

      图  9  基于3种方法纵、横波速度预测结果

      Fig.  9.  Prediction results of P-wave and S-wave velocities based on three methods

      表  1  矿物和孔隙流体的模量和密度

      Table  1.   Modulus and density of minerals and fluids

      体积模量(Bulk modulus)(GPa) 剪切模量(Shear modulus)(GPa) 密度(Density)(g/cm3)
      石英(Quartz) 37.9 44.3 2.65
      岩浆包裹体(SMI) 37.5 15 2.62
      粘土(Clay) 25 9 2.55
      气体(Gas) 0.336 0.34
      水(Water) 2.2 1.40
      下载: 导出CSV

      表  2  不同方法预测的$ {\mathit{V}}_{\mathrm{p}} $和$ {\mathit{V}}_{\mathrm{s}} $的均方误差(MSE)和相关系数($ \mathit{r} $)

      Table  2.   Mean square error (MSE) and correlation coefficient (r) of P-save and S-wave velocity predicted by different methods

      方法 MSE of Vp MSE of Vs r of Vp r of Vs
      Han经验公式 0.112 94 0.143 14 0.801 31 0.753 2
      常规Xu-White模型 0.054 99 0.070 57 0.858 21 0.824 7
      统计学岩石物理模型 0.022 41 0.030 12 0.967 13 0.956 9
      下载: 导出CSV
    • Bachrach, R., 2006. Joint Estimation of Porosity and Saturation Using Stochastic Rock-Physics Modeling. Geophysics, 71(5): O53-O63. https://doi.org/10.1190/1.2235991
      Bai, J. Y., Song, Z. X., Su, L., et al., 2012. Error Analysis of Shear-Velocity Prediction by the Xu-White Model. Chinese Journal of Geophysics, 55(2): 589-595(in Chinese with English abstract).
      Berryman, J. G., 1980. Long-Wavelength Propagation in Composite Elastic Media II. Ellipsoidal Inclusions. The Journal of the Acoustical Society of America, 68(6): 1820-1831. https://doi.org/10.1121/1.385172
      Castagna, J. P., Batzle, M. L., Eastwood, R. L., 1985. Relationships between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks. GEOPHYSICS, 50(4): 571-581. https://doi.org/10.1190/1.1441933
      Gassmann, F., 1951. Elastic Waves through a Packing of Spheres. Geophysics, 16(4): 673-685. https://doi.org/10.1190/1.1437718
      Grana, D., Della Rossa, E., 2010. Probabilistic Petrophysical-Properties Estimation Integrating Statistical Rock Physics with Seismic Inversion. GEOPHYSICS, 75(3): O21-O37. https://doi.org/10.1190/1.3386676
      Greenberg, M. L., Castagna, J. P., 1992. Shear-Wave Velocity Estimation in Porous Rocks: Theoretical Formulation, Preliminary Verification and Applications. Geophysical Prospecting, 40(2): 195-209. https://doi.org/10.1111/j.1365-2478.1992.tb00371.x
      Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
      Hawlander, H. M., 1990. Diagenesis and Reservoir Potential of Volcanogenic Sandstones-Cretaceous of the Surat Basin, Australia. Sedimentary Geology, 66(3/4): 181-195. https://doi.org/10.1016/0037-0738(90)90059-3
      Hill, R., 1952. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society Section A, 65(5): 349-354. https://doi.org/10.1088/0370-1298/65/5/307
      Hunter, B. E., Davies, D. K., 1979. Distribution of Volcanic Sediments in the Golf Coastal Province-Significance to Petroleum Geology. Transactions, Golf Coast Association of Geological Societies, 29(1): 147-155.
      Keys, R. G., Xu, S. Y., 2002. An Approximation for the Xu-White Velocity Model. Geophysics, 67(5): 1406-1414. https://doi.org/10.1190/1.1512786
      Liu, C., Qiao, H. Q., Guo, Z. Q., et al., 2017. Shale Pore Structure Inversion and Shear Wave Velocity Prediction Based on Particle Swarm Optimization (pso) Algorithm. Progress in Geophysics, 32(2): 689-695(in Chinese with English abstract).
      Mollajan, A., Memarian, H., Quintal, B., 2019. Imperialist Competitive Algorithm Optimization Method for Nonlinear Amplitude Variation with Angle Inversion. Geophysics, 84(3): N81-N92. https://doi.org/10.1190/geo2018-0507.1
      Pan, B. Z., Xue, L. F., Huang, B. Z., et al., 2008. Evaluation of Volcanic Reservoirs with the "QAPM Mineral Model" Using a Genetic Algorithm. Applied Geophysics, 5(1): 1-8. https://doi.org/10.1007/s11770-008-0004-8
      Pillar, N., Yan, J., Lubbe, R., 2007. Variable Aspect Ratio Method in the Xu-White Model for AVO. In 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007. European Association of Geoscientists & Engineers. cp-27-00230. https://doi.org/10.3997/2214-4609.201401648
      Qiao, H, Q., 2017. Shear Wave Velocity Prediction Method Based on Improved Particle Swarm Algorithm(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Rajabi, M., Bohloli, B., Gholampour Ahangar, E., 2010. Intelligent Approaches for Prediction of Compressional, Shear and Stoneley Wave Velocities from Conventional Well Log Data: a Case Study from the Sarvak Carbonate Reservoir in the Abadan Plain (Southwestern Iran). Computers & Geosciences, 36(5): 647-664. https://doi.org/10.1016/j.cageo.2009.09.008
      Ruiz, F., Dvorkin, J., 2010. Predicting Elasticity in Nonclastic Rocks with a Differential Effective Medium Model. Geophysics, 75(1): E41-E53. https://doi.org/10.1190/1.3267854
      Sohail, G. M., Hawkes, C. D., 2020. An Evaluation of Empirical and Rock Physics Models to Estimate Shear Wave Velocity in a Potential Shale Gas Reservoir Using Wireline Logs. Journal of Petroleum Science and Engineering, 185: 106666. https://doi.org/10.1016/j.petrol.2019.106666
      Wang, J. W., Du, J. X., Zhang, Y. C., et al., 2019. The Geological Conditions, Resource Potential and Exploration Direction in Nanpu Sag of Jidong Depression, Bohai Bay Basin. Marine Origin Petroleum Geology, 24(3): 21-28(in Chinese with English abstract).
      Wang, X. G., 2013. Application of Self-Adaptive BP Neural Network to the Prediction of Shear Wave Velocity. Lithologic Reservoirs, 25(5): 86-88(in Chinese with English abstract).
      Wang, Z., Zhou, X., 1982. Volcanic Petrology. Science Press, Beijing, 47-100(in Chinese).
      Wood, A. B., Lindsay, R. B., 1956. A Textbook of Sound. Physics Today, 9(11): 37. https://doi.org/10.1063/1.3059819
      Wu, H. B., Wang, G. C., Hou, Y. P., et al., 2022. Seismic Identification of the Jurassic Volcano-Sedimentary series in the Hailar Basin and Lithofacies Palaeogeography Reconstruction. Earth Science, 47(8): 3056-3072(in Chinese with English abstract).
      Xing, G. F., Li, J. Q., Duan, Z., et al., 2021. Mesozoic-Cenozoic Volcanic Cycle and Volcanic Reservoirs in East China. Journal of Earth Science, 32(4): 742-765. https://doi.org/10.1007/s12583-021-1476-1
      Xu, M. M., Yin, X. Y., Zong, Z. Y., et al., 2020. Rock-Physics Model of Volcanic Rocks, an Example from Junggar Basin of China. Journal of Petroleum Science and Engineering, 195: 107003. https://doi.org/10.1016/j.petrol.2020.107003
      Xu, S. Y., White, R. E., 1995. A New Velocity Model for Clay-Sand Mixtures 1. Geophysical Prospecting, 43(1): 91-118. https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
      Xu, S. Y., White, R. E., 1996. A Physical Model for Shear-Wave Velocity Prediction1. Geophysical Prospecting, 44(4): 687-717. https://doi.org/10.1111/j.1365-2478.1996.tb00170.x
      Yan, J., Li, X. Y., Liu, E. R., 2002. Effects of Pore Aspect Ratios on Velocity Prediction from Well-Log Data. Geophysical Prospecting, 50(3): 289-300.
      Yuan, C., Li, J. Y., Chen, X. H., et al., 2016. Quantitative Uncertainty Evaluation of Seismic Facies Classification: a Case Study from Northeast China. Geophysics, 81(3): B87-B99. https://doi.org/10.1190/geo2015-0228.1
      Zhang, B., Liu, C., Guo, Z. Q., et al., 2018. Probabilistic Reservoir Parameters Inversion for Anisotropic Shale Using a Statistical Rock Physics Model. Chinese Journal of Geophysics, 61(6): 2601-2617(in Chinese with English abstract).
      Zhang, C., Ma, C. Q., Liao, Q., et al., 2009. Geochemistry of Late Mesozoic-Cenozoic Volcanic Rocks in the Huanghua Depression, Bohai Bay: Petrogenesis and Implications for Tectonic Transition. Acta Petrologica Sinica, 25(5): 1159-1177(in Chinese with English abstract).
      Zhang, L. H., Pan, B. Z., Shan, G. Y., et al., 2020. Volcanic Alteration of Nanpu-5 Structure in Bohai Bay Basin: Effects on the Physical Property of Reservoir and Lower Limits of Physical Property. Geology and Resources, 29(4): 351-35629(4): 6(in Chinese with English abstract).
      Zhang, L. H., 2009. Study on methods of evaluating igneous Reservoir of Logging. Jilin University(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Zhang, Y., Zhong, H. R., Wu, Z. Y., et al., 2020. Improvement of Petrophysical Workflow for Shear Wave Velocity Prediction Based on Machine Learning Methods for Complex Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 192: 107234. https://doi.org/10.1016/j.petrol.2020.107234
      Zhao, H. B., Cheng, D. A., Li, L. L., 2009. Rock Physics Analysis of Deep Volcanic Rocks in Daqing Oilfield Beijing 2009 International Geophysical Conference and Exposition, Beijing, China, 24-27 April 2009. Beijing.
      Zhao, P. F., Liu, P., Ming, J., et al., 2021. Distribution Characteristics of Volcanic Rock in CFD Oilfield and Its Controlling Effect on Reservoir. Earth Science, 46(7): 2466-2480(in Chinese with English abstract).
      Zhu, X, J., 2011. Research on Logging Identification and Evaluation of Deep Volcanic Reservoirs in Nanpu 5th Structure(Dissertation). China University of Petroleum, Qingdao(in Chinese with Englishabstract).
      Zimmermann, G., Burkhard, H., Melchert, M., 1992. Estimation of Porosity in Crystalline Rock by a Multivariate Statistical Approach. Scientific Drilling, 3(1-3): 27-35.
      白俊雨, 宋志翔, 苏凌, 等, 2012. 基于Xu-White模型横波速度预测的误差分析. 地球物理学报, 55(2): 589-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202020.htm
      刘财, 乔汉青, 郭智奇, 等, 2017. 基于粒子群算法的页岩孔隙结构反演及横波速度预测. 地球物理学进展, 32(2): 689-695. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201702032.htm
      乔汉青, 2017. 基于改进粒子群算法的横波速度预测方法研究(硕士学位论文). 长春: 吉林大学.
      王德滋, 周新民, 1982. 火山岩岩石学. 北京: 北京科学出版社, 47-100.
      王建伟, 杜景霞, 张永超, 等, 2019. 南堡凹陷石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(3): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201903003.htm
      王晓光, 2013. 自适应BP神经网络在横波速度预测中的应用. 岩性油气藏, 25(5): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201305020.htm
      吴海波, 王国臣, 侯艳平, 等, 2022. 海拉尔盆地侏罗系火山-沉积岩地震识别和岩相古地理重建. 地球科学, 47(8): 3056-3072. doi: 10.3799/dqkx.2021.236
      张冰, 刘财, 郭智奇, 等, 2018. 基于统计岩石物理模型的各向异性页岩储层参数反演. 地球物理学报, 61(6): 2601-2617. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806036.htm
      张超, 马昌前, 廖群安, 等, 2009. 渤海湾黄骅盆地晚中生代-新生代火山岩地球化学: 岩石成因及构造体制转换. 岩石学报, 25(5): 1159-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905010.htm
      张丽华, 2009. 火成岩储层测井评价方法研究(博士学位论文). 长春: 吉林大学.
      张丽华, 潘保芝, 单刚义, 等, 2020. 渤海湾盆地南堡5号构造火山岩蚀变对储层物性影响及物性下限. 地质与资源, 29(4): 351-35629(4): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202004007.htm
      赵鹏飞, 刘朋, 明君, 田晓平, 刘文超, 吕世聪, 2021. CFD油田火山岩展布特征及其对油藏的控制作用. 地球科学, 46(7): 2466-2480. doi: 10.3799/dqkx.2020.238
      朱学娟, 2011. 南堡5号深层火山岩油气藏测井识别与评价技术研究(硕士学位论文). 青岛: 中国石油大学(华东).
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  706
    • HTML全文浏览量:  908
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-19
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回